Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.598
Filter
1.
Parasit Vectors ; 17(1): 204, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715075

ABSTRACT

BACKGROUND: Mosquito-borne viruses cause various infectious diseases in humans and animals. Oya virus (OYAV) and Ebinur Lake virus (EBIV), belonging to the genus Orthobunyavirus within the family Peribunyaviridae, are recognized as neglected viruses with the potential to pose threats to animal or public health. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. METHODS: To investigate the range of mosquito vectors for OYAV (strain SZC50) and EBIV (strain Cu20-XJ), the susceptibility of four mosquito species (Culex pipiens pallens, Cx. quinquefasciatus, Aedes albopictus, and Ae. aegypti) was measured through artificial oral infection. Then, mosquito species with a high infection rate (IR) were chosen to further evaluate the dissemination rate (DR), transmission rate (TR), and transmission efficiency. The viral RNA in each mosquito sample was determined by RT-qPCR. RESULTS: The results revealed that for OYAV, Cx. pipiens pallens had the highest IR (up to 40.0%) among the four species, but the DR and TR were 4.8% and 0.0%, respectively. For EBIV, Cx. pipiens pallens and Cx. quinquefasciatus had higher IR compared to Ae. albopictus (1.7%). However, the EBIV RNA and infectious virus were detected in Cx. pipiens pallens, with a TR of up to 15.4% and a transmission efficiency of 3.3%. CONCLUSIONS: The findings indicate that Cx. pipiens pallens was susceptible to OYAV but had an extremely low risk of transmitting the virus. Culex pipiens pallens and Cx. quinquefasciatus were susceptible to EBIV, and Cx. pipiens pallens had a higher transmission risk to EBIV than Cx. quinquefasciatus.


Subject(s)
Aedes , Culex , Mosquito Vectors , Orthobunyavirus , Animals , Mosquito Vectors/virology , Aedes/virology , Culex/virology , Orthobunyavirus/genetics , Orthobunyavirus/classification , Orthobunyavirus/isolation & purification , RNA, Viral/genetics , Bunyaviridae Infections/transmission , Bunyaviridae Infections/virology
2.
Sci Rep ; 14(1): 10814, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734695

ABSTRACT

Chikungunya virus (CHIKV) poses a significant global health threat, re-emerging as a mosquito-transmitted pathogen that caused high fever, rash, and severe arthralgia. In Thailand, a notable CHIKV outbreak in 2019-2020 affected approximately 20,000 cases across 60 provinces, underscoring the need for effective mosquito control protocols. Previous studies have highlighted the role of midgut bacteria in the interaction between mosquito vectors and pathogen infections, demonstrating their ability to protect the insect from invading pathogens. However, research on the midgut bacteria of Aedes (Ae.) aegypti, the primary vector for CHIKV in Thailand remains limited. This study aims to characterize the bacterial communities in laboratory strains of Ae. aegypti, both infected and non-infected with CHIKV. Female mosquitoes from a laboratory strain of Ae. aegypti were exposed to a CHIKV-infected blood meal through membrane feeding, while the control group received a non-infected blood meal. At 7 days post-infection (dpi), mosquito midguts were dissected for 16S rRNA gene sequencing to identify midgut bacteria, and CHIKV presence was confirmed by E1-nested RT-PCR using mosquito carcasses. The study aimed to compare the bacterial communities between CHIKV-infected and non-infected groups. The analysis included 12 midgut bacterial samples, divided into three groups: CHIKV-infected (exposed and infected), non-infected (exposed but not infected), and non-exposed (negative control). Alpha diversity indices and Bray-Curtis dissimilarity matrix revealed significant differences in bacterial profiles among the three groups. The infected group exhibited an increased abundance of bacteria genus Gluconobacter, while Asaia was prevalent in both non-infected and negative control groups. Chryseobacterium was prominent in the negative control group. These findings highlight potential alterations in the distribution and abundance of gut microbiomes in response to CHIKV infection status. This study provides valuable insights into the dynamic relationship between midgut bacteria and CHIKV, underscoring the potential for alterations in bacterial composition depending on infection status. Understanding the relationships between mosquitoes and their microbiota holds promise for developing new methods and tools to enhance existing strategies for disease prevention and control. This research advances our understanding of the circulating bacterial composition, opening possibilities for new approaches in combating mosquito-borne diseases.


Subject(s)
Aedes , Chikungunya virus , Gastrointestinal Microbiome , Mosquito Vectors , Animals , Female , Aedes/microbiology , Aedes/virology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Chikungunya virus/physiology , Mosquito Vectors/microbiology , Mosquito Vectors/virology , RNA, Ribosomal, 16S/genetics , Thailand
3.
Sci Rep ; 14(1): 10003, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693192

ABSTRACT

Zika, a viral disease transmitted to humans by Aedes mosquitoes, emerged in the Americas in 2015, causing large-scale epidemics. Colombia alone reported over 72,000 Zika cases between 2015 and 2016. Using national surveillance data from 1121 municipalities over 70 weeks, we identified sociodemographic and environmental factors associated with Zika's emergence, re-emergence, persistence, and transmission intensity in Colombia. We fitted a zero-state Markov-switching model under the Bayesian framework, assuming Zika switched between periods of presence and absence according to spatially and temporally varying probabilities of emergence/re-emergence (from absence to presence) and persistence (from presence to presence). These probabilities were assumed to follow a series of mixed multiple logistic regressions. When Zika was present, assuming that the cases follow a negative binomial distribution, we estimated the transmission intensity rate. Our results indicate that Zika emerged/re-emerged sooner and that transmission was intensified in municipalities that were more densely populated, at lower altitudes and/or with less vegetation cover. Warmer temperatures and less weekly-accumulated rain were also associated with Zika emergence. Zika cases persisted for longer in more densely populated areas with more cases reported in the previous week. Overall, population density, elevation, and temperature were identified as the main contributors to the first Zika epidemic in Colombia. We also estimated the probability of Zika presence by municipality and week, and the results suggest that the disease circulated undetected by the surveillance system on many occasions. Our results offer insights into priority areas for public health interventions against emerging and re-emerging Aedes-borne diseases.


Subject(s)
Aedes , Markov Chains , Zika Virus Infection , Zika Virus , Zika Virus Infection/transmission , Zika Virus Infection/epidemiology , Colombia/epidemiology , Humans , Animals , Aedes/virology , Bayes Theorem , Mosquito Vectors/virology , Disease Outbreaks
4.
PLoS One ; 19(5): e0303137, 2024.
Article in English | MEDLINE | ID: mdl-38722911

ABSTRACT

The Asian tiger mosquito, Aedes albopictus, is a significant public health concern owing to its expanding habitat and vector competence. Disease outbreaks attributed to this species have been reported in areas under its invasion, and its northward expansion in Japan has caused concern because of the potential for dengue virus infection in newly populated areas. Accurate prediction of Ae. albopictus distribution is crucial to prevent the spread of the disease. However, limited studies have focused on the prediction of Ae. albopictus distribution in Japan. Herein, we used the random forest model, a machine learning approach, to predict the current and potential future habitat ranges of Ae. albopictus in Japan. The model revealed that these mosquitoes prefer urban areas over forests in Japan on the current map. Under predictions for the future, the species will expand its range to the surrounding areas and eventually reach many areas of northeastern Kanto, Tohoku District, and Hokkaido, with a few variations in different scenarios. However, the affected human population is predicted to decrease owing to the declining birth rate. Anthropogenic and climatic factors contribute to range expansion, and urban size and population have profound impacts. This prediction map can guide responses to the introduction of this species in new areas, advance the spatial knowledge of diseases vectored by it, and mitigate the possible disease burden. To our knowledge, this is the first distribution-modelling prediction for Ae. albopictus with a focus on Japan.


Subject(s)
Aedes , Mosquito Vectors , Animals , Aedes/virology , Aedes/physiology , Japan , Mosquito Vectors/virology , Ecosystem , Humans , Animal Distribution , Dengue/transmission , Dengue/epidemiology , Machine Learning , Models, Biological
5.
Euro Surveill ; 29(20)2024 May.
Article in English | MEDLINE | ID: mdl-38757289

ABSTRACT

Aedes albopictus collected in 2023 in the greater Paris area (Île-de-France) were experimentally able to transmit five arboviruses: West Nile virus from 3 days post-infection (dpi), chikungunya virus and Usutu virus from 7 dpi, dengue virus and Zika virus from 21 dpi. Given the growing number of imported dengue cases reported in early 2024 in France, surveillance of Ae. albopictus should be reinforced during the Paris Olympic Games in July, when many international visitors including from endemic countries are expected.


Subject(s)
Aedes , Chikungunya virus , Dengue Virus , Zika Virus , Animals , Aedes/virology , Humans , Zika Virus/isolation & purification , Dengue Virus/isolation & purification , Chikungunya virus/isolation & purification , Paris , Mosquito Vectors/virology , West Nile virus/isolation & purification , Arboviruses/isolation & purification , Arbovirus Infections/transmission , Flavivirus/isolation & purification , France , Dengue/transmission , Dengue/epidemiology , Zika Virus Infection/transmission
6.
Front Immunol ; 15: 1368066, 2024.
Article in English | MEDLINE | ID: mdl-38751433

ABSTRACT

Introduction: Aedes spp. are the most prolific mosquito vectors in the world. Found on every continent, they can effectively transmit various arboviruses, including the dengue virus which continues to cause outbreaks worldwide and is spreading into previously non-endemic areas. The lack of widely available dengue vaccines accentuates the importance of targeted vector control strategies to reduce the dengue burden. High-throughput tools to estimate human-mosquito contact and evaluate vector control interventions are lacking. We propose a novel serological tool that allows rapid screening of human cohorts for exposure to potentially infectious mosquitoes. Methods: We tested 563 serum samples from a longitudinal pediatric cohort study previously conducted in Cambodia. Children enrolled in the study were dengue-naive at baseline and were followed biannually for dengue incidence for two years. We used Western blotting and enzyme-linked immunosorbent assays to identify immunogenic Aedes aegypti salivary proteins and measure total anti-Ae. aegypti IgG. Results: We found a correlation (rs=0.86) between IgG responses against AeD7L1 and AeD7L2 recombinant proteins and those to whole salivary gland homogenate. We observed seasonal fluctuations of AeD7L1+2 IgG responses and no cross-reactivity with Culex quinquefasciatus and Anopheles dirus mosquitoes. The baseline median AeD7L1+2 IgG responses for young children were higher in those who developed asymptomatic versus symptomatic dengue. Discussion: The IgG response against AeD7L1+2 recombinant proteins is a highly sensitive and Aedes specific marker of human exposure to Aedes bites that can facilitate standardization of future serosurveys and epidemiological studies by its ability to provide a robust estimation of human-mosquito contact in a high-throughput fashion.


Subject(s)
Aedes , Dengue , Insect Proteins , Mosquito Vectors , Salivary Proteins and Peptides , Humans , Aedes/immunology , Aedes/virology , Animals , Salivary Proteins and Peptides/immunology , Child , Mosquito Vectors/immunology , Mosquito Vectors/virology , Dengue/immunology , Dengue/transmission , Insect Proteins/immunology , Female , Child, Preschool , Immunoglobulin G/immunology , Immunoglobulin G/blood , Male , Cambodia , Longitudinal Studies , Dengue Virus/immunology , Adolescent , Insect Bites and Stings/immunology
7.
PLoS One ; 19(5): e0281851, 2024.
Article in English | MEDLINE | ID: mdl-38748732

ABSTRACT

Zika (ZIKV) and chikungunya (CHIKV) are arboviruses that cause infections in humans and can cause clinical complications, representing a worldwide public health problem. Aedes aegypti is the primary vector of these pathogens and Culex quinquefasciatus may be a potential ZIKV vector. This study aimed to evaluate fecundity, fertility, survival, longevity, and blood feeding activity in Ae. aegypti after exposure to ZIKV and CHIKV and, in Cx. quinquefasciatus exposed to ZIKV. Three colonies were evaluated: AeCamp (Ae. aegypti-field), RecL (Ae. aegypti-laboratory) and CqSLab (Cx. quinquefasciatus-laboratory). Seven to 10 days-old females from these colonies were exposed to artificial blood feeding with CHIKV or ZIKV. CHIKV caused reduction in fecundity and fertility in AeCamp and reduction in survival and fertility in RecL. ZIKV impacted survival in RecL, fertility in AeCamp and, fecundity and fertility in CqSLab. Both viruses had no effect on blood feeding activity. These results show that CHIKV produces a higher biological cost in Ae. aegypti, compared to ZIKV, and ZIKV differently alters the biological performance in colonies of Ae. aegypti and Cx. quinquefasciatus. These results provide a better understanding over the processes of virus-vector interaction and can shed light on the complexity of arbovirus transmission.


Subject(s)
Aedes , Chikungunya virus , Culex , Fertility , Mosquito Vectors , Zika Virus Infection , Zika Virus , Animals , Aedes/virology , Aedes/physiology , Chikungunya virus/physiology , Chikungunya virus/pathogenicity , Zika Virus/physiology , Zika Virus/pathogenicity , Culex/virology , Culex/physiology , Mosquito Vectors/virology , Mosquito Vectors/physiology , Female , Zika Virus Infection/transmission , Zika Virus Infection/virology , Chikungunya Fever/transmission , Chikungunya Fever/virology , Feeding Behavior/physiology , Humans , Longevity
8.
Parasit Vectors ; 17(1): 223, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750581

ABSTRACT

BACKGROUND: Batai virus (BATV) is a zoonotic arbovirus of veterinary importance. A high seroprevalence in cows, sheep and goats and infection in different mosquito species has been observed in Central Europe. Therefore, we studied indigenous as well as exotic species of the genera Culex and Aedes for BATV vector competence at different fluctuating temperature profiles. METHODS: Field caught Culex pipiens biotype pipiens, Culex torrentium, Aedes albopictus and Aedes japonicus japonicus from Germany and Aedes aegypti laboratory colony were infected with BATV strain 53.3 using artificial blood meals. Engorged mosquitoes were kept under four (Culex species) or three (Aedes species) fluctuating temperature profiles (18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C) at a humidity of 70% and a dark/light rhythm of 12:12 for 14 days. Transmission was measured by testing the saliva obtained by forced salivation assay for viable BATV particles. Infection rates were analysed by testing whole mosquitoes for BATV RNA by quantitative reverse transcription PCR. RESULTS: No transmission was detected for Ae. aegypti, Ae. albopictus or Ae. japonicus japonicus. Infection was observed for Cx. p. pipiens, but only in the three conditions with the highest temperatures (21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C). In Cx. torrentium infection was measured at all tested temperatures with higher infection rates compared with Cx. p. pipiens. Transmission was only detected for Cx. torrentium exclusively at the highest temperature of 27 ± 5 °C. CONCLUSIONS: Within the tested mosquito species, only Cx. torrentium seems to be able to transmit BATV if the climatic conditions are feasible.


Subject(s)
Aedes , Bunyamwera virus , Culex , Mosquito Vectors , Temperature , Animals , Aedes/virology , Aedes/physiology , Aedes/classification , Culex/virology , Culex/physiology , Culex/classification , Mosquito Vectors/virology , Mosquito Vectors/physiology , Bunyamwera virus/genetics , Bunyamwera virus/physiology , Bunyamwera virus/isolation & purification , Saliva/virology , Bunyaviridae Infections/transmission , Bunyaviridae Infections/virology , Female , Europe , Germany
9.
BMC Infect Dis ; 24(1): 463, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698345

ABSTRACT

BACKGROUND: The use of temephos, the most common intervention for the chemical control of Aedes aegypti over the last half century, has disappointing results in control of the infection. The footprint of Aedes and the diseases it carries have spread relentlessly despite massive volumes of temephos. Recent advances in community participation show this might be more effective and sustainable for the control of the dengue vector. METHODS: Using data from the Camino Verde cluster randomized controlled trial, a compartmental mathematical model examines the dynamics of dengue infection with different levels of community participation, taking account of gender of respondent and exposure to temephos. RESULTS: Simulation of dengue endemicity showed community participation affected the basic reproductive number of infected people. The greatest short-term effect, in terms of people infected with the virus, was the combination of temephos intervention and community participation. There was no evidence of a protective effect of temephos 220 days after the onset of the spread of dengue. CONCLUSIONS: Male responses about community participation did not significantly affect modelled numbers of infected people and infectious mosquitoes. Our model suggests that, in the long term, community participation alone may have the best results. Adding temephos to community participation does not improve the effect of community participation alone.


Subject(s)
Aedes , Community Participation , Dengue , Insecticides , Temefos , Dengue/prevention & control , Dengue/transmission , Humans , Male , Female , Animals , Aedes/virology , Adult , Models, Theoretical , Sex Factors , Young Adult , Adolescent , Mosquito Control/methods , Middle Aged
10.
Parasit Vectors ; 17(1): 200, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704595

ABSTRACT

BACKGROUND: Mayaro virus (MAYV) is an emerging alphavirus, primarily transmitted by the mosquito Haemagogus janthinomys in Central and South America. However, recent studies have shown that Aedes aegypti, Aedes albopictus and various Anopheles mosquitoes can also transmit the virus under laboratory conditions. MAYV causes sporadic outbreaks across the South American region, particularly in areas near forests. Recently, cases have been reported in European and North American travelers returning from endemic areas, raising concerns about potential introductions into new regions. This study aims to assess the vector competence of three potential vectors for MAYV present in Europe. METHODS: Aedes albopictus from Italy, Anopheles atroparvus from Spain and Culex pipiens biotype molestus from Belgium were exposed to MAYV and maintained under controlled environmental conditions. Saliva was collected through a salivation assay at 7 and 14 days post-infection (dpi), followed by vector dissection. Viral titers were determined using focus forming assays, and infection rates, dissemination rates, and transmission efficiency were calculated. RESULTS: Results indicate that Ae. albopictus and An. atroparvus from Italy and Spain, respectively, are competent vectors for MAYV, with transmission possible starting from 7 dpi under laboratory conditions. In contrast, Cx. pipiens bioform molestus was unable to support MAYV infection, indicating its inability to contribute to the transmission cycle. CONCLUSIONS: In the event of accidental MAYV introduction in European territories, autochthonous outbreaks could potentially be sustained by two European species: Ae. albopictus and An. atroparvus. Entomological surveillance should also consider certain Anopheles species when monitoring MAYV transmission.


Subject(s)
Aedes , Alphavirus Infections , Alphavirus , Culex , Mosquito Vectors , Animals , Aedes/virology , Mosquito Vectors/virology , Alphavirus/physiology , Alphavirus/isolation & purification , Culex/virology , Europe , Alphavirus Infections/transmission , Alphavirus Infections/virology , Saliva/virology , Anopheles/virology , Spain , Italy , Female , Belgium
11.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669573

ABSTRACT

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Subject(s)
Aedes , Dengue Virus , Mosquito Vectors , Symbiosis , Zika Virus , Animals , Aedes/microbiology , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Zika Virus/physiology , Dengue/transmission , Dengue/virology , Dengue/prevention & control , Gastrointestinal Microbiome , Acetobacteraceae/physiology , Female , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Flavivirus/physiology , Flavivirus/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology
12.
Acta Trop ; 254: 107205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579960

ABSTRACT

Lumpy skin disease virus (LSDV) is a transboundary viral disease in cattle and water buffaloes. Although this Poxvirus is supposedly transmitted by mechanical vectors, only a few studies have investigated the role of local vectors in the transmission of LSDV. This study examined the infection, dissemination, and transmission rates of LSDV in Aedes aegypti, Culex tritaeniorhynchus, and Culex quinquefasciatus following artificial membrane feeding of 102.7, 103.7, 104.7 TCID50/mL LSDV in sheep blood. The results demonstrated that these mosquito species were susceptible to LSDV, with Cx tritaeniorhynchus exhibiting significantly different characteristics from Ae. aegypti and Cx. quinquefasciatus. These three mosquito species were susceptible to LSDV. Ae. aegypti showed it as early as 2 days post-infection (dpi), indicating swift dissemination in this particular species. The extrinsic incubation period (EIP) of LSDV in Cx. tritaeniorhynchus and Cx. quinquefasciatus was 8 and 14 dpi, respectively. Ingestion of different viral titers in blood did not affect the infection, dissemination, or transmission rates of Cx. tritaeniorhynchus and Cx. quinquefasciatus. All rates remained consistently high at 8-14 dpi for Cx. tritaeniorhynchus. In all three species, LSDV remained detectable until 14 dpi. The present findings indicate that, Ae. aegypti, Cx. tritaeniorhynchus, and Cx. quinquefasciatus may act as vectors during the LSDV outbreak; their involvement may extend beyond being solely mechanical vectors.


Subject(s)
Aedes , Culex , Lumpy skin disease virus , Animals , Culex/virology , Aedes/virology , Lumpy skin disease virus/isolation & purification , Lumpy skin disease virus/physiology , Sheep , Lumpy Skin Disease/transmission , Lumpy Skin Disease/virology , Mosquito Vectors/virology , Female
13.
Medicina (B Aires) ; 84(2): 189-195, 2024.
Article in Spanish | MEDLINE | ID: mdl-38683503

ABSTRACT

OBJECTIVES: To monitor the oviposition activity of the mosquito Aedes aegypti and of dengue and chikungunya cases in four localities of temperate Argentina, during the 2023 epidemic. METHODS: During the summer and autumn of 2023, the oviposition activity of the mosquito vector was monitored weekly using ovitraps, and the arrival of cases with dengue or chikungunya in Tandil, Olavarría, Bahía Blanca and Laprida were registered. RESULTS: Monthly variations of the percentage of positive traps were similar in the first three locations; in Laprida the mosquito was not detected. On the contrary, a significant difference was observed in the percentage of total traps that ever tested positive in each locality, being higher in Olavarría (83.3%) than in Bahía Blanca (68.6%) and Tandil (48.7%). Regarding diseases, 18 imported cases of dengue and 3 of chikungunya were registered. In addition, the first autochthonous case of dengue in the region was recorded, being the southernmost until known. CONCLUSION: It is essential to raise awareness and train the members of the health systems of the new regions exposed to Ae. aegypti for early detection of cases, and to the general population to enhance prevention actions.


OBJETIVOS: Monitorear la actividad de oviposición del mosquito Aedes aegypti y de casos de dengue y chikungunya en cuatro localidades de Argentina templada, durante la epidemia del 2023. Métodos: Durante el verano y otoño del 2023, se monitoreó semanalmente mediante ovitrampas la actividad de oviposición del mosquito vector, y se registró el arribo de casos con dengue o chikungunya a Tandil, Olavarría, Bahía Blanca y Laprida. RESULTADOS: La variación mensual del porcentaje de trampas positivas fue similar en las tres primeras localidades; en Laprida no se detectó el mosquito. Por el contrario, se observó una diferencia significativa del porcentaje de trampas que alguna vez resultó positiva en cada localidad, siendo mayor en Olavarría (83%), que en Bahía Blanca (67%) y Tandil (49%). Respecto a las enfermedades, se registraron 18 casos importados de dengue y 3 de chikungunya. Además, se registró el primer caso autóctono de dengue en la región, siendo el más austral hasta el momento. Conclusión: Es imprescindible sensibilizar y capacitar a los integrantes de los sistemas de salud de las nuevas regiones expuestas al Ae. aegypti para la detección temprana de casos, y a la población en general para potenciar las acciones de prevención.


Subject(s)
Aedes , Chikungunya Fever , Dengue , Mosquito Vectors , Seasons , Argentina/epidemiology , Dengue/epidemiology , Dengue/transmission , Dengue/prevention & control , Chikungunya Fever/epidemiology , Chikungunya Fever/transmission , Chikungunya Fever/prevention & control , Animals , Aedes/virology , Aedes/physiology , Mosquito Vectors/physiology , Humans , Epidemics , Female , Oviposition/physiology
14.
J Vector Borne Dis ; 61(1): 61-71, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648407

ABSTRACT

BACKGROUND OBJECTIVES: Dengue and chikungunya infections are one of the major health problems that have plagued the human population globally. All dengue virus (DENV) serotypes circulate within Malaysia with particular serotypes dominating in different years/outbreaks. In the state of Kelantan, an increasing number of DENV and chikungunya virus (CHIKV) new cases have been reported, including several deaths. This study aimed to isolate and detect these arboviruses from adult mosquitoes in Kelantan. METHODS: Adult mo squito samples were collected from January to August 2019 and were identified according to gender, species and locality. The isolation of the virus was done in C6/36 cells. Dengue NS1 antigen was carried out using direct mosquito lysate and mosquito culture supernatant. Detection and serotyping of the DENV was performed using multiplex RT-PCR and CHIKV detection using a one-step RT-PCR assay. RESULTS: Of 91 mosquito pools, four were positive for NS1 antigen comprising two pools (2.2%) of male Ae. albopictus (Pulau Melaka and Kubang Siput) and two pools (2.2%) of Ae. aegypti (Kampung Demit Sungai). DENV 1 was detected in one pool (0.9%) of female Ae. albopictus among 114 tested Aedes pools. Two pools of 114 pools (1.7%) from both male Aedes species were positive with double serotypes, DENV 1 and DENV 2 (Pulau Melaka). However, no pool was positive for CHIKV. INTERPRETATION CONCLUSION: The presence of DENV and the main vectors of arboviruses in Kelantan are pertinent indicators of the need to improve vector controls to reduce arbovirus infections among people in the localities.


Subject(s)
Aedes , Chikungunya virus , Dengue Virus , Dengue , Mosquito Vectors , Animals , Malaysia , Dengue Virus/genetics , Dengue Virus/isolation & purification , Dengue Virus/classification , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Chikungunya virus/classification , Male , Female , Aedes/virology , Mosquito Vectors/virology , Dengue/virology , Chikungunya Fever/virology , Humans , Viral Nonstructural Proteins/genetics , Serogroup
15.
J Vector Borne Dis ; 61(1): 101-106, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648411

ABSTRACT

BACKGROUND OBJECTIVES: Dengue is a major vector-borne disease having public health importance. It is caused by Dengue Virus (DENV) and is transmitted by mosquitoes of Aedes species. With the unavailability of a vaccine, vector control remains the only preventive measure for dengue. Studies have already been conducted to establish the presence of dengue vectors in the north-eastern states of India. However, limited studies have been conducted in Tripura state. In the present study we aimed to identify the preferred breeding habitats of dengue vectors in the state. METHODS: Clinical case data of dengue since the last five years was studied and the areas with the highest case numbers were identified. Entomological investigation was carried out in areas reporting the highest number of cases. Larvae were collected from the breeding habitats using standard protocol followed by morphological and molecular identification. Further, House index (HI), Container index (CI) and Pupal index (PI) were determined. The positive pools were then processed for incrimination for the presence of dengue virus. Calculation of entomological indices was done. RESULTS: Of the total 815 containers searched, 36.80% containers were positive for mosquito larvae. Among the immature mosquito collection, 836 adults emerged and were identified as Aedes albopictus using standard taxonomic keys followed by molecular methods. HI, CI and PI, varied from 15.38% to 100%, 21% to 31.04 %, and 2.93% to 110.53% respectively. However, none of the pools was positive for dengue virus. INTERPRETATION CONCLUSION: The present study identified Ae. albopictus as a potential vector of dengue in Tripura. The study gave important insights on the preferred larval habitats and provides information on the indication of displacement of Ae. albopictus from rural to urban and semi-urban areas. However, longitudinal studies for longer time frame are necessary for any conclusive remarks.


Subject(s)
Aedes , Dengue Virus , Dengue , Ecosystem , Larva , Mosquito Vectors , Pupa , Animals , India , Larva/virology , Larva/growth & development , Larva/physiology , Mosquito Vectors/virology , Mosquito Vectors/physiology , Mosquito Vectors/growth & development , Aedes/virology , Aedes/physiology , Aedes/growth & development , Pupa/virology , Pupa/growth & development , Dengue/transmission , Humans , Female
17.
Viruses ; 16(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38675868

ABSTRACT

E-20-monooxygenase (E20MO) is an enzymatic product of the shade (shd) locus (cytochrome p450, E20MO). Initially discovered in Drosophila, E20MO facilitates the conversion of ecdysone (E) into 20-hydroxyecdysone (20E) and is crucial for oogenesis. Prior research has implicated 20E in growth, development, and insecticide resistance. However, little attention has been given to the association between the E20MO gene and DENV2 infection. The transcriptome of Ae. aegypti cells (Aag2 cells) infected with DENV2 revealed the presence of the E20MO gene. The subsequent quantification of E20MO gene expression levels in Aag2 cells post-DENV infection was carried out. A CRISPR/Cas9 system was utilized to create an E20MO gene knockout cell line (KO), which was then subjected to DENV infection. Analyses of DENV2 copies in KO and wild-type (WT) cells were conducted at different days post-infection (dpi). Plasmids containing E20MO were constructed and transfected into KO cells, with pre- and post-transfection viral copy comparisons. Gene expression levels of E20MO increased after DENV infection. Subsequently, a successful generation of an E20MO gene knockout cell line and the verification of code-shifting mutations at both DNA and RNA levels were achieved. Furthermore, significantly elevated DENV2 RNA copies were observed in the mid-infection phase for the KO cell line. Viral RNA copies were lower in cells transfected with plasmids containing E20MO, compared to KO cells. Through knockout and plasmid complementation experiments in Aag2 cells, the role of E20MO in controlling DENV2 replication was demonstrated. These findings contribute to our understanding of the intricate biological interactions between mosquitoes and arboviruses.


Subject(s)
Aedes , Dengue Virus , Gene Knockout Techniques , Virus Replication , Animals , Virus Replication/genetics , Aedes/virology , Aedes/genetics , Dengue Virus/genetics , Dengue Virus/physiology , Cell Line , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Mosquito Vectors/virology , Mosquito Vectors/genetics , CRISPR-Cas Systems , Dengue/virology
18.
Viruses ; 16(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38675870

ABSTRACT

In the last few years, there has been a dramatic increase in the number of discovered viruses that are transmitted by arthropods. Some of them are pathogenic for humans and mammals, and the pathogenic potential of others is unknown. The genus Orthoflavivirus belongs to the family Flaviviridae and includes arboviruses that cause severe human diseases with damage to the central nervous system and hemorrhagic fevers, as well as viruses with unknown vectors and viruses specific only to insects. The latter group includes Lammi virus, first isolated from a mosquito pool in Finland. It is known that Lammi virus successfully replicates in mosquito cell lines but not in mammalian cell cultures or mice. Lammi virus reduces the reproduction of West Nile virus during superinfection and thus has the potential to reduce the spread of West Nile virus in areas where Lammi virus is already circulating. In this work, we isolated Lammi virus from a pool of adult Aedes cinereus mosquitoes that hatched from larvae/pupae collected in Saint Petersburg, Russia. This fact may indicate transovarial transmission and trans-stadial survival of the virus.


Subject(s)
Aedes , Mosquito Vectors , Animals , Aedes/virology , Russia , Female , Mosquito Vectors/virology , Flaviviridae/physiology , Flaviviridae/isolation & purification , Flaviviridae/classification , Flaviviridae/genetics , Larva/virology
19.
Viruses ; 16(4)2024 04 09.
Article in English | MEDLINE | ID: mdl-38675917

ABSTRACT

The incidence of chikungunya has dramatically surged worldwide in recent decades, imposing an expanding burden on public health. In recent years, South America, particularly Brazil, has experienced outbreaks that have ravaged populations following the rapid dissemination of the chikungunya virus (CHIKV), which was first detected in 2014. The primary vector for CHIKV transmission is the urban mosquito species Aedes aegypti, which is highly prevalent throughout Brazil. However, the impact of the locally circulating CHIKV genotypes and specific combinations of local mosquito populations on vector competence remains unexplored. Here, we experimentally analyzed and compared the infectivity and transmissibility of the CHIKV-ECSA lineage recently isolated in Brazil among four Ae. aegypti populations collected from different regions of the country. When exposed to CHIKV-infected AG129 mice for blood feeding, all the mosquito populations displayed high infection rates and dissemination efficiency. Furthermore, we observed that all the populations were highly efficient in transmitting CHIKV to a vertebrate host (naïve AG129 mice) as early as eight days post-infection. These results demonstrate the high capacity of Brazilian Ae. aegypti populations to transmit the locally circulating CHIKV-ECSA lineage. This observation could help to explain the high prevalence of the CHIKV-ECSA lineage over the Asian lineage, which was also detected in Brazil in 2014. However, further studies comparing both lineages are necessary to gain a better understanding of the vector's importance in the epidemiology of CHIKV in the Americas.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Mosquito Vectors , Animals , Aedes/virology , Chikungunya virus/genetics , Chikungunya virus/classification , Chikungunya virus/physiology , Chikungunya virus/isolation & purification , Brazil/epidemiology , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya Fever/epidemiology , Mice , Mosquito Vectors/virology , Genotype , Female , Phylogeny
20.
Viruses ; 16(4)2024 04 12.
Article in English | MEDLINE | ID: mdl-38675935

ABSTRACT

In 2023, Nepal faced its second largest dengue outbreak ever, following a record-breaking number of dengue cases in 2022, characterized by the expansion of infections into areas of higher altitudes. However, the characteristics of the 2023 circulating dengue virus (DENV) and the vector density remain poorly understood. Therefore, we performed DENV serotyping, clinical and laboratory assessment, and entomological analysis of the 2023 outbreak in central Nepal. A total of 396 fever cases in Dhading hospital suspected of being DENV positive were enrolled, and blood samples were collected and tested by different techniques including PCR. Of these, 278 (70.2%) had confirmed DENV infection. Multiple serotypes (DENV-1, -2, and -3) were detected. DENV-2 (97.5%) re-emerged after six years in Dhading while DENV-3 was identified for the first time. Dengue inpatients had significantly higher frequency of anorexia, myalgia, rash, diarrhea, nausea, vomiting, abdominal pain, and thrombocytopenia (p < 0.05). In this area, Aedes mosquitoes largely predominated (90.7%) with the majority being A. aegypti (60.7%). We also found high levels of Aedes index (20.0%) and container index (16.7%). We confirmed multiple DENV serotype circulation with serotype re-emergence and new serotype introduction, and high vector density in 2023. These findings call for the urgent initiation and scaling up of DENV molecular surveillance in human and mosquito populations for dengue control and prevention in Nepal.


Subject(s)
Aedes , Dengue Virus , Dengue , Disease Outbreaks , Mosquito Vectors , Serogroup , Nepal/epidemiology , Dengue/epidemiology , Dengue/virology , Humans , Dengue Virus/genetics , Dengue Virus/classification , Dengue Virus/isolation & purification , Animals , Aedes/virology , Male , Female , Mosquito Vectors/virology , Adult , Adolescent , Middle Aged , Young Adult , Child , Serotyping , Child, Preschool , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...