Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
Int J Biol Macromol ; 270(Pt 1): 132315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740149

ABSTRACT

LysR-type transcriptional regulators (LTTRs) are ubiquitously distributed and abundant transcriptional regulators in prokaryotes, playing pivotal roles in diverse physiological processes. Nonetheless, despite their prevalence, the intricate functionalities and physiological implications of this protein family remain incompletely elucidated. In this study, we employed a comprehensive approach to deepen our understanding of LTTRs by generating a collection of 20 LTTR gene-deletion strains in Aeromonas hydrophila, accounting for 42.6 % of the predicted total LTTR repertoire, and subjected them to meticulous assessment of their physiological phenotypes. Leveraging quantitative proteomics, we conducted a comparative analysis of protein expression variations between six representative mutants and the wild-type strain. Subsequent bioinformatics analysis unveiled the involvement of these LTTRs in modulating a wide array of biological processes, notably including two-component regulatory systems (TCSs) and intracellular central metabolism. Moreover, employing subsequent microbiological methodologies, we experimentally verified the direct involvement of at least six LTTRs in the regulation of galactose metabolism. Importantly, through ELISA and competitive ELISA assays, we demonstrated the competitive binding capabilities of these LTTRs with the promoter of the α-galactosidase gene AHA_1897 and identified that four LTTRs (XapR, YidZ, YeeY, and AHA_1805) do not engage in competitive binding with other LTTRs. Overall, our comprehensive findings not only provide fundamental insights into the regulatory mechanisms governing crucial physiological functions of bacteria through LTTR family proteins but also uncover an intricate and interactive regulatory network mediated by LTTRs.


Subject(s)
Aeromonas hydrophila , Bacterial Proteins , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Proteomics , Aeromonas hydrophila/genetics , Aeromonas hydrophila/metabolism , Proteomics/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Front Cell Infect Microbiol ; 14: 1380747, 2024.
Article in English | MEDLINE | ID: mdl-38585655

ABSTRACT

Introduction: Bacterial biofilm is a well-known characteristic that plays important roles in diverse physiological functions, whereas the current intrinsic regulatory mechanism of its formation is still largely unknown. Methods: In the present study, a label-free based quantitative proteomics technology was conducted to compare the differentially expressed proteins (DEPs) between ΔuidR and the wild-type strain in the biofilm state. Results: The results showed that the deletion of gene uidR encoding a TetR transcriptional regulator significantly increased the biofilm formation in Aeromonas hydrophila. And there was a total of 220 DEPs, including 120 up-regulated proteins and 100 down-regulated proteins between ΔuidR and the wild-type strain based on the quantitative proteomics. Bioinformatics analysis suggested that uidR may affect bacterial biofilm formation by regulating some related proteins in glyoxylic acid and dicarboxylic acid pathway. The expressions of selected proteins involved in this pathway were further confirmed by q-PCR assay, and the results was in accordance with the quantitative proteomics data. Moreover, the deletion of four genes (AHA_3063, AHA_3062, AHA_4140 and aceB) related to the glyoxylic acid and dicarboxylic acid pathway lead to a significant decrease in the biofilm formation. Discussion: Thus, the results indicated that uidR involved in the regulatory of bacterial biofilm formation, and it may provide a potential target for the drug development and a new clue for the prevention of pathogenic A. hydrophila in the future.


Subject(s)
Aeromonas hydrophila , Bacterial Proteins , Glyoxylates , Bacterial Proteins/metabolism , Aeromonas hydrophila/metabolism , Proteomics/methods , Biofilms
3.
Open Vet J ; 14(1): 70-89, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633150

ABSTRACT

Background: Organic selenium (Sel-Plex®) supplementation holds considerable promise for improving the effectiveness of fish production. Aim: This experiment was accomplished to judge the potential benefits of Sel-Plex® nutritional additive on growth outcomes, physiological response, oxidative status, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Utilizing a basal diet of 30% protein, four experimental diets were prepared, each of which contained Sel-Plex® at concentrations of 0.0, 0.5, 1, and 2 mg/kg, respectively. Three replicates of 20 fish/treatment were used using 240 healthy Nile tilapia fingerlings. Fish were placed in 12 glass aquariums and separated into 4 groups at random. For the entire span of 8 weeks, diets were admitted to fish at a 3% rate of fish biomass/aquarium. After the feeding trial, pathogenic A. hydrophila was intraperitoneally injected into fish of each treatment, and fish were observed for 15 days to track the survival rate (SR) after the challenge. Results: Growth performance, physiological response, immunological parameters (phagocytic activity, phagocytic index, and lysozyme), and antioxidant parameters [catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GPx)] were noticeably improved in Sel-Plex® treated groups. Moreover, Sel-Plex® increased gene expression linked with the immune system in the liver (tumor necrosis factor-alpha and interleukin 1ß), to growth (insulin-like growth factor 1 and growth hormone receptor), and antioxidants (SOD and GPx). Under pathogen-challenge conditions, the employed dietary Sel-Plex® supplementation could successfully lower fish oxidative stress, offering a potential preventive additive for Nile tilapia instead of antibiotics. On the other hand, Sel-Plex® significantly enhanced each of three intestinal morphological measurements (villus width, villus length, and crypt depth), demonstrating the greatest influence on the improvement of intestinal structure overall. In the Nile tilapia control group, the infection with A. hydrophila caused noticeable degenerative alterations in the gut, hepatopancreas, spleen, and posterior kidney. The severity of the lesion was significantly reduced and significantly improved with higher Sel-Plex® concentrations. Sel-Plex® supplemented groups had 100% SRs among the A. hydrophila-challenged groups. Conclusion: It could be advised to enrich the diets of Nile tilapia fingerlings with 1-2 mg.kg-1 of Sel-Plex® to enhance growth rate, physiological response, immunological reaction, and intestinal absorptive capacity.


Subject(s)
Cichlids , Gram-Negative Bacterial Infections , Animals , Aeromonas hydrophila/metabolism , Cichlids/metabolism , Disease Resistance , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary , Dietary Supplements , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Oxidative Stress , Gene Expression
4.
Open Vet J ; 14(1): 116-135, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633169

ABSTRACT

Background: Mannanoligosaccharides (MOS) usage in fish production has drawn more attention because of their positive benefits on disease resistance and fish performance. Aim: The ongoing research was executed to assess the potential advantages of Bio-Mos® dietary supplementation regarding the growth outcomes, physiological response, oxidative biomarkers, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Four experimental diets were developed using a 30% protein baseline diet, with Bio-Mos® added at variable levels; 0.0, 0.5, 1, and 2 g/kg, respectively. 240 healthy Nile tilapia fingerlings were split into 4 groups at random and assigned to 12 glass aquariums (three replicates of 20 fish/treatment). Diets were admitted at a 3% rate of fish biomass/aquarium for 8 weeks. Following the feeding trial, fish from every treatment were intraperitoneally injected with pathogenic A. hydrophila, and then observed for 15 days to record the survival rate percent (SR%) post challenge. Results: Results revealed significant improvement in growth performance, physiological response, immunological parameters (phagocytic index, phagocytic activity, and lysozyme), and antioxidant parameters [catalase, malondialdehyde, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD)] among Bio-Mos® treated groups. Moreover, Bio-Mos® increased the expression of tumor necrosis factor alpha and Interleukin 1ß, genes linked to the liver immune system. Growth-related genes (GHr), antioxidant-related genes (SOD and GSH-Px). In fish subjected to pathogens, dietary MOS supplementation could significantly lower oxidative stress, showing promise as a preventative supplement for Nile tilapia in place of antibiotics. On the other hand, Bio-Mos® considerably improved each of the three intestinal morphological measures (villus width, villus length, and crypt depth), showing the best overall intestinal structure-improving impact. The challenge with A. hydrophila caused marked degenerative alterations in the intestine, hepatopancreas, spleen, and posterior kidney of Nile tilapia, in the control group. However, lesion severity was greatly decreased and showed marked amelioration with an increased concentration of Bio-Mos®. The A. hydrophila-challenged groups revealed a 100% SR% mainly among the Bio-Mos® supplemented groups. Conclusion: It is recommended to enrich the Nile tilapia fingerlings diets with 2 g.kg-1 of MOS for better results on the growth rate, physiological response, immunological response, and intestinal absorptive capacity.


Subject(s)
Antioxidants , Cichlids , Animals , Antioxidants/metabolism , Aeromonas hydrophila/metabolism , Cichlids/metabolism , Dietary Supplements , Superoxide Dismutase/metabolism , Oxidative Stress , Gene Expression
5.
Front Cell Infect Microbiol ; 14: 1378094, 2024.
Article in English | MEDLINE | ID: mdl-38510959

ABSTRACT

This investigation delves into elucidating the mechanism by which resveratrol (Res), a natural polyterpenoid renowned for its antimicrobial properties, exerts its effects on Aeromonas hydrophila, a ubiquitous waterborne pathogen. Our findings underscore the dose-dependent manifestation of resveratrol in exhibiting antibacterial and antibiofilm formation activities against A. hydrophila. Employing a Data-independent acquisition (DIA) based quantitative proteomics methodology, we systematically compared differentially expressed proteins in A. hydrophila subjected to varying concentrations of Res. Subsequent bioinformatics analyses revealed key proteins and pathways pivotal in resveratrol's antimicrobial action, encompassing oxidative stress, energy metabolism, and cell membrane integrity. Validation of the proteomics outcomes was meticulously conducted using the qPCR method at the mRNA level. Dynamic trend analysis unveiled alterations in biological processes, notably the correlation between the cell division-related protein ZapC and resveratrol content. Furthermore, scanning electron microscopy corroborated a significant elongation of A. hydrophila cells, affirming resveratrol's capability to inhibit cell division. In concert, resveratrol emerges as a participant in the cell membrane integrity pathway, biofilm formation, and potentially, the regulation of genes associated with cell division, resulting in morphological elongation. These revelations position resveratrol as a promising natural alternative to conventional antibiotics for treating A. hydrophila infections.


Subject(s)
Aeromonas hydrophila , Proteomics , Humans , Aeromonas hydrophila/metabolism , Resveratrol/pharmacology , Resveratrol/metabolism , Proteomics/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/therapeutic use
6.
Microb Pathog ; 186: 106464, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043626

ABSTRACT

Koumine (KM) has anxiolytic, anti-inflammatory and growth-promoting effects in pigs and sheep. Based on the growth-promoting and immunological effects of koumine, the present study was conducted on Cyprinus carpio (C. carpio) with four KM concentrations: 0 mg/kg, 0.2 mg/kg, 2 mg/kg, and 20 mg/kg for 10 weeks, followed by a 1-week Aeromonas hydrophila (A. hydrophila) infection experiment. The effect of KM on the immunity of A. hydrophila infected carp was analyzed by histopathology, biochemical assay, and qRT-PCR to assess the feasibility of KM in aquaculture. The results showed that the presence of KM alleviated pathogen damage to carp tissues. At 2 mg/kg and 20 mg/kg concentrations of KM successively and significantly elevated (p < 0.05) the SOD activities in the intestinal tract, hepatopancreas and kidney of carp. The expression levels of hepatopancreatic antioxidant genes Nrf2 and IGF-1 were significantly up-regulated in the same group (p < 0.05), while the expression levels of immune genes IL-8 and IL-10 were down-regulated. In summary, KM at concentrations of 2 mg/kg and 20 mg/kg could regulate the expression of antioxidant and immune genes in various tissues in an orderly and rapid manner, and significantly improve the antioxidant and immune abilities of carp, which is conducive to the improvement of the resilience of carp.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Sheep , Swine , Antioxidants/metabolism , Immunity, Innate/genetics , Carps/metabolism , Aeromonas hydrophila/metabolism , Fish Diseases/drug therapy , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/veterinary , Dietary Supplements/analysis
7.
Dev Comp Immunol ; 152: 105110, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38081403

ABSTRACT

IL-22 is a critical cytokine of epithelial mucosal barrier. In humans, IL-22 signals through a heteroduplex receptor consisting of IL-22R and IL-10Rß. In fish, IL-22 and its receptors homologues have been cloned in a number of species, however, no studies have been reported how the receptors are involved in IL-22 transduction. For this purpose, in this study we identified IL-22 and its soluble receptor IL-22BP and transmembrane receptors IL-22RA1 and IL-10R2 in Carassius cuvieri × Carassius auratus red var. (named WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1, respectively). WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1 were relatively conserved in the evolutionary process, sharing the same conserved domains as their higher vertebrate homologues. When the fish were infected with the Aeromonas hydrophila, the expression of WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1 were significantly induced in the gut. The co-IP assay showed that WR-IL-22 not only interacted with WR-IL-22BP, but also with WR-IL10R2 and WR-IL22RA1. When introduced in vivo, WR-IL-22 activated the JAK1-STAT3 axis and protected the gut mucosa from A. hydrophila infection. However, overexpression of WR-IL-22BP or knockdown of transmembrane receptors WR-IL10R2 and WR-IL22RA1 significantly inhibited the activation of WR-IL-22-mediated JAK1-STAT3 axis and promoted bacterial colonization in the gut. These results provided new insights into the role of IL-22 and its receptors in the gut mucosa barrier and immune response in teleost.


Subject(s)
Bacterial Infections , Fish Diseases , Humans , Animals , Interleukin-22 , Cytokines/metabolism , Carrier Proteins , Mucous Membrane/metabolism , Aeromonas hydrophila/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism
8.
Gene ; 898: 148108, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38141691

ABSTRACT

Serum amyloid A (SAA) predominantly synthesized by hepatocytes is a classical acute phase protein and has been extensively studied in mammals. However, the studies on the structure and properties of fish SAA are limited although SAA genes have been cloned and identified from various fishes. In the present study, a cDNA of grass carp (Ctenopharyngodon idella) SAA (gcSAA) was cloned and characterized, displaying a high homology with its counterparts in vertebrates. gcSAA mRNA was expressed with highest abundance in the liver and its levels were increased by a 24-hour infection of Aeromonas hydrophila (A. hydrophila) for more than 5 folds in the intestine, 15 folds in the spleen, 75 folds in the head kidney and 100 folds in the liver, implying that it is an acute phase protein in grass carp. Subsequently, recombinant gcSAA protein (rgcSAA) was prepared from a prokaryotic expression system after codon optimization of its coding sequence. The direct antibacterial activity assay and the plate count assay disclosed that gcSAA inhibited the growth and survival of A. hydrophila but not Edwardsiella piscicida (E. piscicida) which both are common bacterial pathogens in aquaculture. The propidium iodide (PI) uptake assay confirmed the bactericidal property of gcSAA, showing that it is able to enhance the uptake of PI in A. hydrophila but not E. piscicida. These findings revealed the molecular features of gcSAA and its roles in host defense against bacterial infection.


Subject(s)
Bacterial Infections , Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Immunity, Innate , Serum Amyloid A Protein , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Carps/genetics , Carps/metabolism , Recombinant Proteins/genetics , Aeromonas hydrophila/metabolism , Fish Diseases/genetics , Fish Diseases/microbiology , Fish Proteins/metabolism , Mammals/metabolism
9.
Sci Total Environ ; 912: 169225, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38101646

ABSTRACT

Research has demonstrated that polystyrene nanoplastics (PS-NPs) can have adverse effects on the immune responses of fish. NPs have the potential to increase the likelihood of infections in fish by pathogenic bacteria, such as the opportunistic pathogen Aeromonas hydrophila, potentially increasing the virulence of pathogenic bacteria infections in fish. The concurrent effects of PS-NPs and A. hydrophila on grass carp intestinal tissues were assessed by exposing grass carp to different concentrations of PS-NPs (10 µg/L, 100 µg/L, 1000 µg/L) after infection with A. hydrophila. As the concentration of PS-NPs in the exposure and the duration of A. hydrophila infection both escalated, intestinal tissues showed damage in the form of disordered breakage of intestinal villi, thinning of the intestinal wall, and reduced necrosis of the cells in the annulus muscle layer. The AHS-PS100 group and AHS-PS1000 group exhibited a substantial rise in the function of CAT, SOD, GST, and MPO, as well as increased MDA content and elevated ROS levels (p < 0.05). In the AHS-PS1000 group, the expression levels of IL-6, IL-8, IL-10, IL-1ß, TNF-α, and IFN-γ2 experienced a significant upsurge (p < 0.05). In addition, exposure to PS-NPs and A. hydrophila infection induced modifications in the microbial composition of the grass carp gut, affecting both phylum and genus taxonomic categories. Moreover, an increase in the abundance of Spirochaetota and Bacteroidota was observed not only in the positive control group but also in the AHS-PS100 and AHS-PS1000 groups following A. hydrophila infection. These experimental results indicate that PS-NPs exposure will aggravate the oxidative stress and inflammatory response of grass carp intestinal tissue in response to A. hydrophila infection, and lead to changes in intestinal microbial diversity and abundance. Overall, this study provides valuable hints on the potential concurrent effects of PS-NPs exposure on grass carp's response to A. hydrophila infection.


Subject(s)
Carps , Fish Diseases , Gastrointestinal Microbiome , Animals , Signal Transduction , Immunity, Innate , Aeromonas hydrophila/metabolism , Microplastics/metabolism , Polystyrenes/toxicity , Polystyrenes/metabolism , Carps/metabolism , Fish Proteins/metabolism , Oxidative Stress , Animal Feed/analysis
10.
Cells ; 12(11)2023 05 30.
Article in English | MEDLINE | ID: mdl-37296630

ABSTRACT

Canonical Wnt signaling plays a major role in regulating microbial pathogenesis. However, to date, its involvement in A. hydrophila infection is not well known. Using zebrafish (Danio rerio) kidney macrophages (ZKM), we report that A. hydrophila infection upregulates wnt2, wnt3a, fzd5, lrp6, and ß-catenin (ctnnb1) expression, coinciding with the decreased expression of gsk3b and axin. Additionally, increased nuclear ß-catenin protein accumulation was observed in infected ZKM, thereby suggesting the activation of canonical Wnt signaling in A. hydrophila infection. Our studies with the ß-catenin specific inhibitor JW67 demonstrated ß-catenin to be pro-apoptotic, which initiates the apoptosis of A. hydrophila-infected ZKM. ß-catenin induces NADPH oxidase (NOX)-mediated ROS production, which orchestrates sustained mitochondrial ROS (mtROS) generation in the infected ZKM. Elevated mtROS favors the dissipation of the mitochondrial membrane potential (ΔΨm) and downstream Drp1-mediated mitochondrial fission, leading to cytochrome c release. We also report that ß-catenin-induced mitochondrial fission is an upstream regulator of the caspase-1/IL-1ß signalosome, which triggers the caspase-3 mediated apoptosis of the ZKM as well as A. hydrophila clearance. This is the first study suggesting a host-centric role of canonical Wnt signaling pathway in A. hydrophila pathogenesis wherein ß-catenin plays a primal role in activating the mitochondrial fission machinery, which actively promotes ZKM apoptosis and helps in containing the bacteria.


Subject(s)
Zebrafish , beta Catenin , Animals , beta Catenin/metabolism , Zebrafish/metabolism , Caspase 1/metabolism , Aeromonas hydrophila/metabolism , Reactive Oxygen Species/metabolism , Mitochondrial Dynamics , Macrophages/metabolism
11.
J Proteomics ; 279: 104870, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36906258

ABSTRACT

Aeromonas hydrophila (Ah) is a Gram-negative bacterium and a serious global pathogen causing Motile Aeromonas Septicaemia (MAS) in fish leading to global loss in aquaculture. Investigation of the molecular alterations of host tissues such as liver could be a powerful approach to identify mechanistic and diagnostic immune signatures of disease pathogenesis. We performed a proteomic analysis of Labeo rohita liver tissue to examine the protein dynamics in the host cells during Ah infection. The proteomic data was acquired using two strategies; discovery and targeted proteomics. Label-free quantification was performed between Control and challenged group (AH) to identify the differentially expressed proteins (DEPs). A total of 2525 proteins were identified and 157 were DEPs. DEPs include metabolic enzymes (CS, SUCLG2), antioxidative proteins, cytoskeletal proteins and immune related proteins (TLR3, CLEC4E). Pathways like lysosome pathway, apoptosis, metabolism of xenobiotics by cytochrome P450 were enriched by downregulated proteins. However, upregulated proteins majorly mapped to innate immune system, signaling of B cell receptor, proteosome pathway, ribosome, carbon metabolism and protein processing in ER. Our study would help in exploring the role of Toll-like receptors, C-type lectins and, metabolic intermediates like citrate and succinate in Ah pathogenesis to understand the Ah infection in fish. SIGNIFICANCE: Bacterial diseases such as motile aeromonas septicaemia (MAS) are among the most serious problems in aquaculture industry. Small molecules that target the metabolism of the host have recently emerged as potential treatment possibilities in infectious diseases. However, the ability to develop new therapies is hampered due to lack of knowledge about pathogenesis mechanisms and host-pathogen interactions. We examined alterations in the host proteome during MAS caused by Aeromonas hydrophila (Ah) infection, in Labeo rohita liver tissue to find cellular proteins and processes affected by Ah infection. Upregulated proteins belong to innate immune system, signaling of B cell receptor, proteosome pathway, ribosome, carbon metabolism and protein processing. Our work is an important step towards leveraging host metabolism in targeting the disease by providing a bigger picture on proteome pathology correlation during Ah infection.


Subject(s)
Cyprinidae , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Aeromonas hydrophila/metabolism , Proteome/metabolism , Proteomics , Cyprinidae/metabolism , Liver/metabolism , Metabolic Networks and Pathways , Receptors, Antigen, B-Cell/metabolism , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/metabolism , Fish Diseases/microbiology
12.
J Proteome Res ; 22(4): 1193-1200, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36856436

ABSTRACT

Recently, the prevalence of Aeromonas hydrophila antibiotic-resistant strains has been reported in aquaculture, but its intrinsic antibiotic resistance mechanisms are largely unknown. In the present study, a label-free proteomics technology was used to compare the differential protein abundances in response to norfloxacin (NOR) stress in A. hydrophila. The results showed that there were 186 proteins decreasing and 220 proteins increasing abundances in response to NOR stress. Bioinformatics analysis showed that the differentially expressed proteins were enriched in several biological processes, such as sulfur metabolism and homologous recombination. Furthermore, the antibiotic sensitivity assays showed that the deletion of AHA_0904, cirA, and cysI significantly decreased the resistance against NOR, whereas ΔAHA_1239, ΔcysA, ΔcysD, and ΔcysN significantly increased the resistance against NOR. Our results provide insights into NOR resistance mechanisms and indicate that AHA_0904, cirA, AHA_1239, and sulfur metabolism may play important roles in NOR resistance in A. hydrophila.


Subject(s)
Aeromonas hydrophila , Norfloxacin , Norfloxacin/pharmacology , Norfloxacin/metabolism , Aeromonas hydrophila/genetics , Aeromonas hydrophila/metabolism , Bacterial Proteins/metabolism , Proteomics/methods , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Sulfur/metabolism
13.
Environ Microbiol ; 25(5): 977-989, 2023 05.
Article in English | MEDLINE | ID: mdl-36604972

ABSTRACT

The colicin I receptor (CirA) is a well-studied outer membrane protein that has been reported to play important roles in antibiotic resistance, virulence, and iron homeostasis, although its exact physiological roles require further investigation. In this study, differentially expressed proteins between the ΔahcirA and wild-type (WT) strains of Aeromonas hydrophila were compared using quantitative proteomics. Bioinformatics analysis revealed that the expression of peptide, histidine, and arginine ATP-binding cassette (ABC) transporter system-related proteins was significantly higher in the ΔahcirA strain. Subsequent growth assays revealed that ΔahcirA grew slower than the WT strain in nutrient-limited medium when supplemented with dipeptide, histidine, and arginine as the carbon source. Far-western blot analysis further confirmed that AhCirA can directly bind to histidine/arginine and dipeptide small-molecule substrates in addition to their periplasmic-binding proteins, AhDppA and AhHisJ, respectively. These results indicate that AhCirA may play an important role in the uptake of amino acids and peptides as a channel-forming porin while also directly interacting with ABC transporters to transport nutrient substances into the plasma membrane. Overall, this study demonstrates that AhCirA is a multifunctional protein in A. hydrophila and extends our understanding of known nutrient transport mechanisms among bacteria.


Subject(s)
Bacterial Proteins , Colicins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Colicins/metabolism , Aeromonas hydrophila/genetics , Aeromonas hydrophila/metabolism , Proteomics/methods , Histidine/metabolism , Nutrients , Arginine/metabolism
14.
Microbes Infect ; 25(1-2): 105038, 2023.
Article in English | MEDLINE | ID: mdl-35963567

ABSTRACT

The TonB system is required for the active transport of iron compounds across the outer membrane in Gram-negative bacteria. Our previous data indicated that three TonB systems act coordinately to contribute to the motility of Aeromonas hydrophila NJ-35. In this study, we found that flagellum biogenesis was defective in the ΔtonB123 mutant. Subcellular localization indicated that the flagellin subunits FlaA and FlaB were trapped in the cytoplasm of ΔtonB123 mutant with reduced molecular mass. Overexpression of FlaA or FlaB in the ΔtonB123 mutant was unable to restore the secretion of flagellin subunits. Further investigation demonstrated that flagellins in the ΔtonB123 mutant showed a weak affinity for the flagellin-specific chaperone FliS, which is necessary for the export of flagellins. Deglycosylation analysis indicated that flagellins in the cytoplasm of the ΔtonB123 mutant were almost nonglycosylated. Our data suggested that disruption of tonB123 impairs the formation of flagella by inhibiting flagellin glycosylation and decreasing the binding affinity of flagellin for the chaperone FliS. Taken together, our findings indicate a new role of the TonB system in flagellar biogenesis in A. hydrophila.


Subject(s)
Aeromonas hydrophila , Flagellin , Flagellin/genetics , Flagellin/metabolism , Aeromonas hydrophila/genetics , Aeromonas hydrophila/metabolism , Flagella/genetics
15.
Biol Trace Elem Res ; 201(8): 4079-4092, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36374364

ABSTRACT

Functional trace elements and vitamins can boost immunity and anti-oxidative response in aquatic animals with effects on nutritional physiology. Nano-selenium (nano-Se) and vitamin C (VC) have been used as immunomodulators and antioxidants in fish feed. The present work was performed to determine the protective effects of diets supplemented with different combinations of nano-Se and VC on Nile tilapia (Oreochromis niloticus). Triplicate groups of 20 fish/tank (13.87 ± 0.10 g) were reared and fed with basal diet (control-T1) (without supplementation of nano-Se and VC) and three experimental diets as T2, T3, and T4 (100, 200, and 300 mg/kg VC respectively) with a pre-determined dose of nano-Se (1.0 mg/kg) for 90 days. Different immune indices, haemato-biochemical, and antioxidant activities were measured at the end of the first, second, and third months of feeding. The findings depicted that significantly (p < 0.05) higher growth was observed in T4. Red blood cells, white blood cells, and haemoglobin were found significantly (p < 0.05) higher in T4 for the third month. Serum biochemical-immunological indices (alkaline phosphatase, glucose, cholesterol, lysozyme, myeloperoxidase, total protein, albumin and globulin) followed the same trend. Furthermore, antioxidant assays such as catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and malondialdehyde were significantly (p < 0.05) improved in T4 for the third month. Significantly (p < 0.05) least cumulative mortality against Aeromonas hydrophila was obtained in the fish-fed diets incorporated with nano-Se and VC. Therefore, dietary supplementation with nano-Se and VC is noteworthy for improving growth, serum biochemical status, immune response, antioxidant status, and disease resistance.


Subject(s)
Cichlids , Selenium , Animals , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Aeromonas hydrophila/metabolism , Selenium/pharmacology , Selenium/metabolism , Dietary Supplements , Diet/veterinary , Vitamins , Disease Resistance , Oxidative Stress , Animal Feed/analysis
16.
J Antibiot (Tokyo) ; 75(11): 635-649, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36123536

ABSTRACT

Emergence of antibiotics resistance has threatening consequences not only for human health but also for animal health issues in agriculture. Several animal pathogenic bacteria have developed antibiotic resistance and managing same has tremendous cost repercussions and may lead to total harvest loss. Hence in the present study, efforts are made to revitalize an old antibiotic molecule, oxytetracycline (OTc), through nanodelivery approaches using zinc oxide nanoparticles (nZnO) to confront OTc resistant fish pathogenic bacteria Aeromonas hydrophila. OTc was impregnated in nZnO through in situ precipitation method to develop OTc loaded ZnO nanoparticles (OTc@nZnO) with average size of 99.42 nm. Spectroscopic investigation of same revealed complexation of Zn2+ with amide and aromatic carbonyl moieties of OTc [ZnOTc]+. The complex performed better against A. hydrophila with 7-15 mm inhibition zone as compared to nil for bare OTc at same dose. OTc also showed MIC of 150 µg ml-1 and for OTc@nZnO it was 7.02 µg ml-1 with faster killing rate (k, -0.95). In silico docking simulation suggest that [ZnOTc]+ had low binding affinity (LBE > -5.00 kcal mol-1) toward TetR(E) and TetA(E) proteins of A. hydrophila as compared to OTc (LBE < -8.00 kcal mol-1). This study postulates that [ZnOTc]+ released from OTc@nZnO can escape TetR(E) and TetA(E) resistance proteins and bind at 30S ribosomal subunit with high affinity (<-11.00 kcal mol-1) to exert antibacterial properties. In the recent scenario of recurrent antimicrobial resistance, the develop antibiotic-nanocomposites could come out as potential solution, however further study is required for its feasibility for use in animal health care.


Subject(s)
Oxytetracycline , Zinc Oxide , Aeromonas hydrophila/metabolism , Amides , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Computer Simulation , Humans , Oxytetracycline/metabolism , Oxytetracycline/pharmacology , Zinc Oxide/pharmacology
17.
J Fish Dis ; 45(11): 1609-1621, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35822274

ABSTRACT

Aeromonas hydrophila infections are common in aquaculture. Our previous studies found that the A. hydrophila B11 strain can survive in fish macrophages for at least 24 h and the two-component system EnvZ/OmpR may be involved in intracellular survival. To reveal the role and mechanism of the two-component system EnvZ/OmpR in intracellular survival of A. hydrophila, the genes of envZ/ompR were silenced by shRNAi. The results showed that the survival rates of the envZ-RNAi and ompR-RNAi strains were only 2.05% and 3.75%, respectively, which were decreased by 91% and 83.6% compared with that of the wild-type strain. The escape ability of envZ-RNAi and ompR-RNAi was also decreased by 51.4% and 19.7%, respectively. The comparative transcriptome analysis revealed that the functional genes directly related to bacterial intracellular survival mainly included the genes related to anti-stress capacity, and the genes related to Zn2+ and Mg2+ transport. Further research confirmed that two-component system EnvZ/OmpR can regulate the expression of the important molecular chaperones, such as groEL, htpG, dnaK, clpB and grpE. The expression of these molecular chaperones in wild-type strain was up-regulated with the increase in H2 O2 concentrations, while the expression of these molecular chaperones in silent strains did not change significantly. Cells that phagocytosed wild-type strain had higher ROS content than cells that phagocytosed silent strains. Two-component system EnvZ/OmpR could also regulate zinc transporter (znuA, znuB, znuC) and zinc efflux protein (zntA) to maintain zinc homeostasis in cells, thus affecting the ability of bacteria to survive in phagocytes. Moreover, two-component system EnvZ/OmpR could affect the growth and intracellular survival of A. hydrophila by regulating the expression of MgtA, MgtC and MgtE and participating in bacterial Mg2+ homeostasis in fish macrophages.


Subject(s)
Aeromonas hydrophila , Fish Diseases , Aeromonas hydrophila/genetics , Aeromonas hydrophila/metabolism , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fish Diseases/microbiology , Reactive Oxygen Species/metabolism , Zinc
18.
J Hazard Mater ; 436: 129268, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739783

ABSTRACT

Ochratoxin A (OTA) is a common hazardous food contaminant that seriously endangers human and animal health. However, limited study is focused on aquatic animal. This research investigated the multiple biotoxicity of OTA on spleen (SP) and head kidney (HK) in grass carp and its related mechanism. Our data showed that, dietary supplemented with OTA above 1209 µg/kg caused histopathological damages by decreasing the number of lymphocytes and necrotizing renal parenchymal cells. Meanwhile, OTA caused oxidative damage and reduced the isoforms mRNAs transcripts of antioxidant enzymes (e.g., GPX1, GPX4, GSTO) partly due to suppressing NF-E2-related factor 2 (Nrf2). OTA triggered apoptosis through mitochondria and death receptor pathway potentially by p38 mitogen-activated protein kinase (p38MAPK) activation. Besides, OTA exacerbated inflammation by down-regulation of anti-inflammatory factor (e.g., IL-10, IL-4) and up-regulations of pro-inflammatory factors (e.g., TNF-α, IL-6), which could be ascribed to signaling meditation of Janus kinase / signal transducer and activator of transcription (JAK/STAT). Additionally, the safe upper limits of OTA were estimated to be 677.6 and 695.08 µg/kg based on the immune-related indexes (C3 contents in the SP and LZ activities in the HK, respectively). Our study has provided a wide insight for toxicological assessment of feed pollutant in aquatic animals.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Aeromonas hydrophila/metabolism , Animal Feed/analysis , Animals , Apoptosis , Carps/metabolism , Diet , Fish Proteins/metabolism , Humans , Immunity, Innate , Immunosuppression Therapy , Ochratoxins , Oxidative Stress
19.
Oxid Med Cell Longev ; 2022: 7969825, 2022.
Article in English | MEDLINE | ID: mdl-35126821

ABSTRACT

The present study deals with extracellular synthesis and characterization of copper sulfide (CuS) nanoparticles using Aeromonas hydrophila, and the biological applications of the synthesized CuS like antibacterial, anti-inflammatory, and antioxidant activity were reported. Further, the toxicological effects of the CuS were evaluated using zebrafish as an animal model. The primary step of the synthesis was carried out by adding the precursor copper sulfates to the culture supernatant of Aeromonas hydrophila. The UV-visible spectrophotometer was used to characterize the synthesized nanoparticles, and the peak was obtained at 307 nm through the reduction process. Fourier transform infrared spectroscopy (FTIR) was involved to find out the functional groups (carboxylic acid, alcohols, alkanes, and nitro compounds) associated with copper sulfide nanoparticles (CuS-NPs). Atomic force microscopy (AFM) was used to characterize the CuS topographically, and a scanning electron microscope (SEM) revealed about 200 nm sized CuS nanoparticles with agglomerated structures. Overall, the characterized nanoparticles can be considered as a potential candidate with therapeutic proficiencies as antibacterial, antioxidant, and anti-inflammatory mediator/agents.


Subject(s)
Aeromonas hydrophila/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/toxicity , Antioxidants/chemistry , Antioxidants/toxicity , Copper/chemistry , Copper/toxicity , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Sulfides/chemistry , Sulfides/toxicity , Zebrafish/metabolism , Animals , Cell Culture Techniques/methods , Copper Sulfate/metabolism , Erythrocytes/drug effects , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning/methods , Models, Animal , Particle Size , Spectroscopy, Fourier Transform Infrared/methods , Zebrafish/embryology
20.
Future Microbiol ; 17: 251-265, 2022 03.
Article in English | MEDLINE | ID: mdl-35152710

ABSTRACT

Aim: To investigate the function of broad-spectrum racemases in Aeromonas hydrophila (BsrA). Results: The A. hydrophila gene encoding BsrA (bsr) mutants (AHΔbsr) exhibited a significant decrease in growth, motility, extracellular protease production and biofilm formation compared with the wild-type. Furthermore, bsr gene knockout instigated cell wall damage compared with the wild-type strains. The survival rate and replication capability in the blood and organs of the AHΔbsr-infected mice were significantly decreased. The degree of tissue injury in the AHΔbsr-infected group was lower than that of the wild-type-infected group. Moreover, there was a significant decrease in the expression of 12 AHΔbsr virulence genes. Conclusion: The bsr gene is essential for the viability and virulence of A. hydrophila.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Aeromonas hydrophila/genetics , Aeromonas hydrophila/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mice , Racemases and Epimerases/metabolism , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL