Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.120
Filter
1.
Sensors (Basel) ; 24(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38794084

ABSTRACT

Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer-fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Fluorescence Polarization , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Aptamers, Nucleotide/chemistry , Fluorescence Polarization/methods , Polyelectrolytes/chemistry , Biosensing Techniques/methods , Polyamines/chemistry , Limit of Detection , Fluorescent Dyes/chemistry
2.
Food Chem ; 452: 139541, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718457

ABSTRACT

Identifying aflatoxin-detoxifying probiotics remains a significant challenge in mitigating the risks associated with aflatoxin contamination in crops. Biological detoxification is a popular technique that reduces mycotoxin hazards and garners consumer acceptance. Through multiple rounds of screening and validation tests, Geotrichum candidum XG1 demonstrated the ability to degrade aflatoxin B1 (AFB1) by 99-100%, exceeding the capabilities of mere adsorption mechanisms. Notably, the degradation efficiency was demonstrably influenced by the presence of copper and iron ions in the liquid medium, suggesting a potential role for proteases in the degradation process. Subsequent validation experiments with red pepper revealed an 83% reduction in AFB1 levels following fermentation with G. candidum XG1. Furthermore, mass spectrometry analysis confirmed the disruption of the AFB1 furan ring structure, leading to a subsequent reduction in its toxicity. Collectively, these findings establish G. candidum XG1 as a promising candidate for effective aflatoxin degradation, with potential applications within the food industry.


Subject(s)
Aflatoxin B1 , Food Contamination , Geotrichum , Probiotics , Aflatoxin B1/metabolism , Aflatoxin B1/chemistry , Aflatoxin B1/analysis , Probiotics/metabolism , Probiotics/chemistry , Geotrichum/metabolism , Geotrichum/chemistry , Food Contamination/analysis , Fermentation , Capsicum/chemistry , Capsicum/metabolism , Capsicum/microbiology , China
3.
Anal Methods ; 16(19): 3088-3098, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38690679

ABSTRACT

Herein, a novel fluorescent/colorimetric/photothermal biosensor is proposed for aflatoxin B1 (AFB1) detection in food based on Prussian blue nanoparticles (PBNPs) (∼50 nm), gold nanoclusters (AuNCs), and an aptamer (Apt) within three hours. Briefly, a multifunctional compound, namely PBNPs-PEI@AuNCs, was synthesized from PBNPs as the loading carrier, polyethyleneimine (PEI) as the cross-linking agent, and AuNCs directly combined on the surface of PBNPs. The AFB1 Apt was then modified on the PBNPs-PEI@AuNCs to form a PBNPs-PEI@AuNCs-Apt probe, whereby when AFB1 is present, AFB1 is specifically captured by the probe. Meanwhile, the MNPs@antibody was also introduced to capture AFB1, thereby forming a "sandwich" structure compound. After magnetic separation, high temperature was applied to this "sandwich" structure compound to induce the denaturation of the Apt. Then the fluorescent/colorimetric/photothermal signals were collected from the PBNPs-PEI@AuNCs@Apt to give information on its related condition. The detection limits of the biosensor were 0.64 × 10-14, 0.96 × 10-14, and 0.55 × 10-12 g mL-1 for the three signals, which were outputted independently and could be verified with each other to ensure the accuracy of the results. Moreover, the colorimetric and photothermal strategies with this probe do not require large-scale instruments, providing a promising choice for achieving the rapid field detection of AFB1.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Ferrocyanides , Gold , Metal Nanoparticles , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Gold/chemistry , Biosensing Techniques/methods , Ferrocyanides/chemistry , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Limit of Detection , Colorimetry/methods , Food Contamination/analysis , Polyethyleneimine/chemistry
4.
ACS Appl Mater Interfaces ; 16(19): 25333-25342, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38696706

ABSTRACT

Mycotoxin contamination in food and the environment seriously harms human health. Sensitive and timely detection of mycotoxins is crucial. Here, we report a dual-functional hybrid membrane with absorptivity and responsiveness for fluorescent-quantitative detection of mycotoxin aflatoxin B1 (AFB1). A biomineralization-inspired and microwave-accelerated fabrication method was established to prepare a hybrid membrane with a metal-organic framework (MOF) loaded in high density. The MOF presented high efficiency in capturing AFB1 and showed fluorescence intensity alteration simultaneously, enabling a dual adsorption-response mode. Deriving from the inherent porous structure of the hybrid membrane and the absorptive/responsive ability of the loaded MOF, a filtration-enhanced detection mode was elaborated to provide a 1.67-fold signal increase compared with the conventional soaking method. Therefore, the hybrid membrane exhibited a rapid response time of 10 min and a low detection limit of 0.757 ng mL-1, superior to most analogues in rapidity and sensitivity. The hybrid membrane also presented superior specificity, reproducibility, and anti-interference ability and even performed well in extreme environments such as strong acid or alkaline, satisfying the practical requirements for facile and in-field detection. Therefore, the membrane had strong applicability in chicken feed samples, with a detection recovery between 70.6% and 101%. The hybrid membrane should have significant prospects in the rapid and in-field inspection of mycotoxins for agriculture and food.


Subject(s)
Aflatoxin B1 , Filtration , Metal-Organic Frameworks , Microwaves , Aflatoxin B1/analysis , Aflatoxin B1/isolation & purification , Aflatoxin B1/chemistry , Metal-Organic Frameworks/chemistry , Food Contamination/analysis , Animals , Chickens , Membranes, Artificial , Limit of Detection , Adsorption
5.
Biosens Bioelectron ; 258: 116357, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38729049

ABSTRACT

The label probe plays a crucial role in enhancing the sensitivity of lateral flow immunoassays. However, conventional fluorescent microspheres (FMs) have limitations due to their short fluorescence lifetime, susceptibility to background fluorescence interference, and inability to facilitate multi-component detection. In this study, carboxylate-modified Eu(III)-chelate-doped polystyrene nanobeads were employed as label probes to construct a multiple time-resolved fluorescent microsphere-based immunochromatographic test strip (TRFM-ICTS). This novel TRFM-ICTS facilitated rapid on-site quantitative detection of three mycotoxins in grains: Aflatoxin B1 (AFB1), Zearalenone (ZEN), and Deoxynivalenol (DON). The limit of detection (LOD) for AFB1, ZEN, and DON were found to be 0.03 ng/g, 0.11 ng/g, and 0.81 ng/g, respectively. Furthermore, the TRFM-ICTS demonstrated a wide detection range for AFB1 (0.05-8.1 ng/g), ZEN (0.125-25 ng/g), and DON (1.0-234 ng/g), while maintaining excellent selectivity. Notably, the test strip exhibited remarkable stability, retaining its detection capability even after storage at 4 °C for over one year. Importantly, the detection of these mycotoxins relied solely on simple manual operations, and with a portable reader, on-site detection could be accomplished within 20 min. This TRFM-ICTS presents a promising solution for sensitive on-site mycotoxin detection, suitable for practical application in various settings due to its sensitivity, accuracy, simplicity, and portability.


Subject(s)
Biosensing Techniques , Edible Grain , Food Contamination , Limit of Detection , Microspheres , Mycotoxins , Zearalenone , Mycotoxins/analysis , Edible Grain/chemistry , Edible Grain/microbiology , Biosensing Techniques/methods , Food Contamination/analysis , Zearalenone/analysis , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Aflatoxin B1/analysis , Aflatoxin B1/isolation & purification , Trichothecenes/analysis , Reagent Strips/analysis , Immunoassay/methods , Immunoassay/instrumentation , Fluorescent Dyes/chemistry
6.
Molecules ; 29(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38792140

ABSTRACT

Aflatoxins (AFs) including AFB1, AFB2, AFG1 and AFG2 are widely found in agriculture products, and AFB1 is considered one of the most toxic and harmful mycotoxins. Herein, a highly sensitive (at the pg mL-1 level) and group-specific enzyme-linked immunosorbent assay (ELISA) for the detection of AFB1 in agricultural and aquiculture products was developed. The AFB1 derivative containing a carboxylic group was synthesized and covalently linked to bovine serum albumin (BSA). The AFB1-BSA conjugate was used as an immunogen to immunize mice. A high-quality monoclonal antibody (mAb) against AFB1 was produced by hybridoma technology, and the mAb-based ELISA for AFB1 was established. IC50 and limit of detection (LOD) of the ELISA for AFB1 were 90 pg mL-1 and 18 pg mL-1, respectively. The cross-reactivities (CRs) of the assay with AFB2, AFG1, and AFG2 were 23.6%, 42.5%, and 1.9%, respectively, revealing some degree of group specificity. Corn flour, wheat flour, and crab roe samples spiked with different contents of AFB1 were subjected to ELISA procedures. The recoveries and relative standard deviation (RSD) of the ELISA for AFB1 in spiked samples were 78.3-116.6% and 1.49-13.21% (n = 3), respectively. Wheat flour samples spiked with the mixed AF (AFB1, AFB2, AFG1, AFG2) standard solution were measured by ELISA and LC-MS/MS simultaneously. It was demonstrated that the proposed ELISA can be used as a screening method for evaluation of AFs (AFB1, AFB2, AFG1, AFG2) in wheat flour samples.


Subject(s)
Aflatoxin B1 , Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunosorbent Assay/methods , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Aflatoxin B1/analysis , Aflatoxin B1/immunology , Mice , Food Contamination/analysis , Limit of Detection , Zea mays/chemistry , Flour/analysis , Agriculture , Serum Albumin, Bovine/chemistry
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124394, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38723467

ABSTRACT

A fast, simple and reagent-free detection method for aflatoxin B1 (AFB1) is of great significance to food safety and human health. Visible and near-infrared (Vis-NIR) spectroscopy was applied to the discriminant analysis of AFB1 excessive standard of peanut meal as feedstuff materials. Two types of excessive standard discriminant models based on spectral quantitative analysis with partial least squares (PLS) and direct pattern recognition with partial least squares-discrimination analysis (PLS-DA) were established, respectively. Multi-parameter optimization of Norris derivative filtering (NDF) was used for spectral preprocessing; the two-stage wavelength screening method based on equidistant combination-wavelength step-by-step phase-out (EC-WSP) was used for wavelength optimization. A rigorous sample experimental design of calibration-prediction-validation was utilized. The calibration and prediction samples were used for modeling and parameter optimization, and the selected model was validated using the independent validation samples. For quantitative analysis-based, the positive, negative and total recognition-accuracy rates in validation (RARV+, RARV-, and RARV) were 84.8 %, 74.6 % and 79.8 %, respectively; but, the relative root mean square error of prediction was as high as 51.0 %. For pattern recognition-based, the RARV+, RARV-, and RARV were 93.3 %, 90.5 % and 91.9 %, respectively. Moreover, the number of wavelengths N was drastically reduced to 17, and the discrete wavelength combination was in NIR overtone frequency region. The results indicated that, the EC-WSP-PLS-DA model achieved significantly better discrimination effect. Thus demonstrated that Vis-NIR spectroscopy has feasibility for the excessive standard discrimination of aflatoxin B1 in feedstuff materials.


Subject(s)
Aflatoxin B1 , Arachis , Spectroscopy, Near-Infrared , Aflatoxin B1/analysis , Arachis/chemistry , Spectroscopy, Near-Infrared/methods , Discriminant Analysis , Least-Squares Analysis , Food Contamination/analysis , Calibration , Reproducibility of Results
8.
Anal Chem ; 96(17): 6853-6859, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38646918

ABSTRACT

The presence of small molecule contaminants such as mycotoxins and heavy metals in foods and the environment causes a serious threat to human health and huge economic losses. The development of simple, rapid, sensitive, and on-site methods for small molecule pollutant detection is highly demanded. Here, combining the advantages of structure-switchable aptamer-mediated signal conversion and CRISPR/Cas12a-based signal amplification, we developed a CRISPR/Cas12a-amplified aptamer switch assay on a microplate for sensitive small molecule detection. In this assay, a short DNA strand complementary to the aptamer (cDNA) is immobilized on a microplate, which can capture the aptamer-linked active DNA probe (Apt-acDNA) in the sample solution when the target is absent. With the addition of the Cas12a reporter system, the captured Apt-acDNA probes activate Cas12a to indiscriminately cleave fluorescent DNA substrates, producing a high fluorescence signal. When the target is present, the Apt-acDNA probe specifically binds to the target rather than hybridizing with cDNA on the microplate, and the fluorescence signal is reduced. The analytical performance of our method was demonstrated by the detection of two highly toxic pollutants, aflatoxin B1 (AFB1) and cadmium ion (Cd2+), as examples. The assay exhibited good selectivity and high sensitivity, with detection limits of 31 pM AFB1 and 3.9 nM Cd2+. It also allowed the detection of targets in the actual sample matrix. With the general signal conversion strategy, this method can be used to detect other targets by simply changing the aptamer and cDNA, showing potential practical applications in broad fields.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , CRISPR-Cas Systems , Aptamers, Nucleotide/chemistry , CRISPR-Cas Systems/genetics , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Biosensing Techniques/methods , Cadmium/chemistry , Cadmium/analysis , Limit of Detection
9.
Food Chem ; 449: 139316, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38615633

ABSTRACT

In this work, the perovskite fluorescent nanocrystals (CsPbBr3) were successfully synthesized and wrapped with SiO2 shell, utilized for the assembly of solid-state detection strip capable of conveniently and specifically detection of aflatoxin B1 (AFB1). The SiO2 coating aimed to enhance the stability of CsPbBr3 nanocrystals. The resulting CsPbBr3@SiO2 material exhibited remarkable fluorescence properties, and further self-assembled onto solid-state plate, generating AFB1-specific quenched fluorescence at a specific wavelength of 515 nm. When combined with the capture of AFB1 by magnetic nanoparticles conjugated with aptamers (MNPs-Apt), it was achieved the good separation and specific detection of AFB1 toxin in food matrices. The constructed fluorescent solid-state detection strip based on CsPbBr3@SiO2 exhibited good response to AFB1 toxin within a linear range of 0.1-100 ng mL-1 and an impressive detection limit as low as 0.053 ng mL-1. This presents a new strategy for the rapid screening and convenient detection of highly toxic AFB1.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Calcium Compounds , Food Contamination , Nanoparticles , Oxides , Silicon Dioxide , Titanium , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Food Contamination/analysis , Silicon Dioxide/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Aptamers, Nucleotide/chemistry , Limit of Detection , Fluorescence
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124268, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38603962

ABSTRACT

Aflatoxin B1 (AFB1) is a virulent metabolite secreted by Aspergillus fungi, impacting crop quality and posing health risks to human. Herein, a dual-mode Raman/fluorescence aptasensor was constructed to detect AFB1. The aptasensor was assembled by gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs), while the surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET) effects were both realized. AuNPs were modified with the Raman signal molecule 4-MBA and the complementary chain of AFB1 aptamer (cDNA). MNPs were modified with the fluorescence signal molecule Cy5 and the AFB1 aptamer (AFB1 apt). Through base pairing, AuNPs aggregated on the surface of MNPs, forming a satellite-like nanocomposite, boosting SERS signal via increased "hot spots" but reducing fluorescence signal due to the proximity of AuNPs to Cy5. Upon exposure to AFB1, AFB1 apt specifically bound to AFB1, causing AuNPs detachment from MNPs, weakening the SERS signal while restoring the fluorescence signal. AFB1 concentration displayed a good linear relationship with SERS/fluorescence signal in the range of 0.01 ng/mL-100 ng/mL, with a detection limit as low as 5.81 pg/mL. The use of aptamer assured the high selectivity toward AFB1. Furthermore, the spiked recovery in peanut samples ranged from 91.4 % to 95.6 %, indicating the applicability of real sample detection. Compared to single-signal sensor, this dual-signal sensor exhibited enhanced accuracy, robust anti-interference capability, and increased flexibility, promising for toxin detection in food safety applications.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Gold , Limit of Detection , Metal Nanoparticles , Spectrum Analysis, Raman , Aflatoxin B1/analysis , Aptamers, Nucleotide/chemistry , Arachis/chemistry , Arachis/microbiology , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Food Contamination/analysis , Gold/chemistry , Magnetite Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Aspergillus
11.
BMJ Open ; 14(4): e084257, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38684249

ABSTRACT

INTRODUCTION: In Sidama, Ethiopia, animal-source foods can be difficult to access. Milk has important nutrients for child growth, but carries the risk of aflatoxin M1 (AFM1) contamination. AFM1 is a metabolite of the mycotoxin aflatoxin B1 (AFB1) in dairy feed; cows secrete AFM1 in milk when their feed contains AFB1 produced by Aspergillus fungi in maize, nuts and oilseeds. It is unknown whether AFM1 compromises child growth and health. METHODS AND ANALYSIS: This protocol paper describes our study in Sidama to determine the impact of milk consumption and AFM1 on child growth in the first 18 months of life. We will collect baseline and end-line data on dairy production, socioeconomic and nutritional factors of 1000 dairy-owning households with children ages 6-18 months at baseline; and gather samples of milk and dairy feed and child anthropometrics. We will conduct phone interviews every 6 months to ascertain changes in practices or child health. Dairy feed will be tested for AFB1; milk for AFM1, pathogens and nutrients. Controlling for herd size, socioeconomic, nutritional and behavioural factors, we will determine the association between child anthropometrics and milk consumption, as well as AFM1 exposure. We will examine whether AFM1 exposure affects child growth in the first 18 months of life, and weigh the benefits and risks of milk consumption. ETHICS AND DISSEMINATION: The protocol is approved by the Institutional Review Boards of the Ethiopian Public Health Institute (EPHI-IRB-481-2022), Michigan State University (STUDY00007996) and International Food Policy Research Institute (DSGD-23-0102). Written informed consent will be obtained from all participants, who may withdraw from the study at any time. Confidentiality of collected data will be given high priority during each stage of data handling. The study's findings will be disseminated through stakeholder workshops, local and international conferences, journal articles and technical reports.


Subject(s)
Aflatoxin M1 , Food Contamination , Milk , Humans , Ethiopia/epidemiology , Aflatoxin M1/analysis , Infant , Animals , Food Contamination/analysis , Risk Assessment/methods , Female , Male , Research Design , Dairy Products , Aflatoxin B1/analysis
12.
Food Chem ; 449: 139171, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604026

ABSTRACT

Aflatoxins, harmful substances found in peanuts, corn, and their derivatives, pose significant health risks. Addressing this, the presented research introduces an innovative MSGhostDNN model, merging contrastive learning with multi-scale convolutional networks for precise aflatoxin detection. The method significantly enhances feature discrimination, achieving an impressive 97.87% detection accuracy with a pre-trained model. By applying Grad-CAM, it further refines the model to identify key wavelengths, particularly 416 nm, and focuses on 40 key wavelengths for optimal performance with 97.46% accuracy. The study also incorporates a task dimensionality reduction approach for continuous learning, allowing effective ongoing aflatoxin spectrum monitoring in peanuts and corn. This approach not only boosts aflatoxin detection efficiency but also sets a precedent for rapid online detection of similar toxins, offering a promising solution to mitigate the health risks associated with aflatoxin exposure.


Subject(s)
Aflatoxin B1 , Arachis , Food Contamination , Zea mays , Aflatoxin B1/analysis , Food Contamination/analysis , Arachis/chemistry , Zea mays/chemistry , Neural Networks, Computer , Spectrum Analysis/methods , Machine Learning
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124322, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38663134

ABSTRACT

Aflatoxin B1 (AFB1), among the identified aflatoxins, exhibits the highest content, possesses the most potent toxicity, and poses the gravest threat. It is commonly found in peanuts and their derivatives. This study employs Raman spectroscopy to monitor the AFB1 levels in moldy peanuts, providing a reliable theoretical basis for peanut storage management. Firstly, different degrees of moldy peanuts are spectrally characterized using a portable Raman spectrometer. Subsequently, a two-step hybrid strategy for feature selection is proposed, combining backward interval partial least squares (BiPLS) and variable combination population analysis (VCPA), aiming to simplify model complexity and enhance predictive accuracy. Finally, partial least squares (PLS) regression models are constructed based on different feature intervals and wavelength points. The research results reveal that the PLS regression model using the optimized feature intervals and wavelength points exhibits improved predictive capability and generalization performance. Notably, the BiPLS-VCPA-PLS model, established through the two-step optimization, selects nine wavelength variables, achieving a root mean square error of prediction (RMSEP) of 33.3147 µg∙kg-1, a correlation coefficient of the prediction set (RP) of 0.9558, and a relative percent deviation (RPD) of 3.4896. These findings demonstrate that the two-step feature optimization method, combining feature interval selection and feature wavelength selection, can more accurately identify optimal variables, thus enhancing detection efficiency and predictive precision.


Subject(s)
Aflatoxin B1 , Arachis , Spectrum Analysis, Raman , Arachis/chemistry , Spectrum Analysis, Raman/methods , Aflatoxin B1/analysis , Least-Squares Analysis , Multivariate Analysis , Food Contamination/analysis
14.
Anal Methods ; 16(19): 3030-3038, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38682263

ABSTRACT

In this work, a sensitive colorimetric bioassay method based on a poly(adenine) aptamer (polyA apt) and gold nanoparticles (AuNPs) was developed for the determination of aflatoxin B1 (AFB1). The polyA apt, adsorbed on the AuNPs, especially can bind to the analyte while deterring non-specific interactions. This nano aptasensor uses cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA), as an aggregating agent, to aggregate gold nanoparticles. PolyA apt-decorated gold nanoparticles (AuNPs/polyA apt) show resistance to PDDA-induced aggregation and maintains their dispersed state (red color) with the optical absorbance signal at λ = 520 nm. However, in the presence of AFB1 in the assay solution, the specific aptamer reacts with high affinity and folds into its three-dimensional form. Aggregation of AuNPs induced by PDDA caused their optical signal shift to λ = 620 nm (blue color). AFB1 concentration in the bioassay solution determines the amount of optical signal shift. Therefore, optical density ratio in two wavelengths (A620/520) can be used as a sturdy colorimetric signal to detect the concentration of aflatoxin B1. AFB1 was linearly detected between 0.5 and 20 ng mL-1, with a detection limit of 0.09 ng mL-1 (S/N = 3). The fabricated aptasensor was applied to the detection of AFB1 in real corn samples.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Colorimetry , Gold , Metal Nanoparticles , Zea mays , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Gold/chemistry , Colorimetry/methods , Zea mays/chemistry , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Poly A/chemistry , Limit of Detection , Food Contamination/analysis , Quaternary Ammonium Compounds/chemistry , Polyethylenes
15.
Talanta ; 275: 126122, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38663063

ABSTRACT

Hydrogel biosensors present numerous advantages in food safety analysis owing to their remarkable biocompatibility, cargo-loading capabilities and optical properties. However, the current drawbacks (slow target responsiveness and poor mechanical strength) restricted their further utilization at on-site detection of targets. To address these challenges, a DNA-functionalized cryogel with hierarchical pore structures is constructed to improve the reaction rate and the robustness of hydrogel biosensor. During cryogel preparation, ice crystals serve as templates, shaping interconnected hierarchical microporous structures to enhance mass transfer for faster responses. Meanwhile, in the non-freezing zone, concentrated monomers create a dense cross-linked network, strengthening cryogel matrix strength. Accordingly, a colorimetric biosensor based on DNA cryogel has been developed as a proof of concept for rapid detection of aflatoxin B1 (AFB1) in food samples, and an excellent analytical performance was obtained under the optimized conditions with a low detection limit (1 nM), broad detection range (5-100 nM), satisfactory accuracy and precision (recoveries, 81.2-112.6 %; CV, 2.75-5.53 %). Furthermore, by integrating with a smartphone sensing platform, a portable device was created for rapid on-site measurement of target within 45 min, which provided some insight for hydrogel biosensors design.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Colorimetry , Cryogels , DNA , Food Contamination , Aflatoxin B1/analysis , Biosensing Techniques/methods , Colorimetry/methods , DNA/chemistry , DNA/analysis , Cryogels/chemistry , Food Contamination/analysis , Limit of Detection , Hydrogels/chemistry , Food Analysis/methods
16.
J Hazard Mater ; 469: 133916, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38479137

ABSTRACT

Aflatoxins from the fungus Aspergillus flavus (A. flavus) that contaminate stored peanuts is a major hazard to human health worldwide. Reducing A. flavus in soil can decrease the risk of aflatoxins in stored peanuts. In this experiment, we determined whether peanuts grown on soil fumigated with dazomet (DZ), metham sodium (MS), allyl isothiocyanate (AITC), chloropicrin (PIC) or dimethyl disulfide (DMDS) would reduce of the quantity of A. flavus and its toxin's presence. The results of bioassays and field tests showed that PIC was the most effective fumigant for preventing and controlling A. flavus, followed by MS. PIC and MS applied to the soil for 14 d resulted in LD50 values against A. flavus of 3.558 and 4.893 mg kg-1, respectively, leading to almost 100% and 98.82% effectiveness of A. flavus, respectively. Peanuts harvested from fumigated soil and then stored for 60 d resulted in undetectable levels of aflatoxin B1 (AFB1) compared to unfumigated soil that contained 0.64 ug kg-1 of AFB1, which suggested that soil fumigation can reduce the probability of aflatoxin contamination during peanut storage and showed the potential to increase the safety of peanuts consumed by humans. Further research is planned to determine the practical value of our research in commercial practice.


Subject(s)
Aflatoxin B1 , Aflatoxins , Humans , Aflatoxin B1/toxicity , Aflatoxin B1/analysis , Arachis , Soil , Disinfection , Aspergillus flavus , Aflatoxins/toxicity , Aflatoxins/analysis
17.
Food Chem ; 447: 138917, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38452540

ABSTRACT

The polymer ionic liquid (1-allyl-3-butylimidazolium bromide) enhanced silica aerogel was modified onto the surface of stainless-steel mesh to immobilize aptamer-1 for the specific recognition of AFB1. The porous channels of silica aerogel could prevent the interference of macromolecules in food samples. Enzyme kinetic analysis showed that the MoS2/Au was an effective peroxidase mimic with a relatively low Michaelis constant (Km) value of 0.17 mM and a high catalytic rate of 3.87 × 10-8 mol (L·s)-1, which exhibited obvious superiority compared with horseradish peroxidase. The established "sandwich-structure" biosensor was coupled with the smartphone "Color Picker" application was used to detect AFB1 with a wide linear range (1-100 ng mL-1) and low detection limit (0.25 ng mL-1). The anti-interference ability of the established biosensor was evaluated by adding different concentrations of standards in corn, peanut, and wheat and matrix effects were 90.84-106.11 %. The results showed that this method demonstrated high specificity, sensitivity, rapidity and low interference in food samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ionic Liquids , Silicon Dioxide , Aflatoxin B1/analysis , Colorimetry/methods , Smartphone , Kinetics , Biosensing Techniques/methods , Limit of Detection
18.
Food Chem ; 447: 138997, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38513493

ABSTRACT

Herein we developed a multicolor lateral flow immunoassay (LFIA) test strip for rapid and simultaneous quantitative detection of aflatoxin B1 (AFB1) and zearalenone (ZEN). Three differently colored aggregation-induced emission nanoparticles (AIENPs) were designed as LFIA signal tags, with red and green AIENPs for targeting AFB1 and ZEN at the test line, and yellow AIENPs for indicating the validity of the test strip at the control (C) line. After surface functionalization with antibodies, the developed AIENP-based multicolor LFIA allows simultaneous and accurate quantification of AFB1 and ZEN using an independent C-line assisted ratiometric signal output strategy. The detection limits of AFB1 and ZEN were 6.12 and 26 pg/mL, respectively. The potential of this method for real-world applications was well demonstrated in corn and wheat. Overall, this multicolor LFIA shows great potential for field screening of multiple mycotoxins and can be extended to rapid and simultaneous monitoring of other small molecule targets.


Subject(s)
Metal Nanoparticles , Mycotoxins , Zearalenone , Zearalenone/analysis , Aflatoxin B1/analysis , Antibodies, Monoclonal , Mycotoxins/analysis , Immunoassay/methods , Limit of Detection , Food Contamination/analysis
19.
Talanta ; 273: 125915, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38522188

ABSTRACT

Aflatoxin (AFs) contamination is one of the serious food safety issues. Aflatoxin B1 (AFB1) is the most common and toxic aflatoxin, which has been classified as a class 1 carcinogen by the International Agency for Research on Cancer (IARC). It is extremely destructive to liver tissue. Developing a convenient and sensitive detection technique is essential. In this paper, we developed a homogeneous dual recognition strategy based electrochemical aptasensor for accurate and sensitive detection of aflatoxin B1 (AFB1) based on the magnetic graphene oxide (MGO) and UiO-66. The MGO was synthesized for the recognition and magnetic separation of AFB1 from complex samples. UiO-66/ferrocenecarboxylic acid (Fc)/aptamer composites were constructed as both recognition and signal probes. The probes would specifically capture AFB1 enriched by MGO, which enables dual recognition in homogeneous solution, thus further improving the accuracy of AFB1 detection. The electrochemical aptasensor for AFB1 had a linear range from 0.005 to 500 ng mL-1. Additionally, the limit of detection was 1 pg mL-1. It shows a favorable potential for both sensitive and accurate detection of AFB1 in real samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Metal-Organic Frameworks , Phthalic Acids , Aflatoxin B1/analysis , Magnesium Oxide , Biosensing Techniques/methods , Limit of Detection , Magnetic Phenomena , Electrochemical Techniques/methods
20.
Int J Biol Macromol ; 264(Pt 1): 130479, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431003

ABSTRACT

This work reports an improved enzyme-linked immunosorbent assay (ELISA) via the interaction between prussian blue nanoparticles (PBNPs) and amines for aflatoxin B1 (AFB1) detection. The effect of different amines on the structure and properties of PBNPs was systematically investigated. Amines with pKb < 7, like ethylenediamine (EDA), can decompose structure of PBNPs, leading to the reduction of extinction coefficient and photothermal effect. Whereas, amines with large pKb > 7, such as o-phenylenediamine (OPD), could undergo catalytic oxidation by PBNPs, resulting in the production of fluorescent and colored oxidation products. Accordingly, EDA and OPD were used to construct improved ELISA. Specifically, silica nanoparticles, on which AFB1 aptamer and amino binding agent (ethylenediaminetetraacetic acid disodium salt, EDTA•2Na) were previously assembled via carboxyl-amino linkage, are anchored to microplates by AFB1 and antibody. EDA concentration can be regulated by EDTA•2Na to affect extinction coefficient and photothermal effect of PBNPs, thereby achieving visual colorimetric and portable photothermal signal readout (Model 1). OPD concentration can also be controlled by EDTA•2Na, thus generating colorimetric and ultrasensitive fluorescent signals through PBNPs catalysis (Model 2). The proposed strategy not only opens new avenue for signal readout mode of biosensing, but also provides universal technique for hazards.


Subject(s)
Biosensing Techniques , Ferrocyanides , Nanoparticles , Aflatoxin B1/analysis , Amines , Nanoparticles/chemistry , Enzyme-Linked Immunosorbent Assay , Biosensing Techniques/methods , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...