Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
Front Cell Infect Microbiol ; 14: 1395716, 2024.
Article in English | MEDLINE | ID: mdl-38716195

ABSTRACT

Objective: The relationship between macrophages and the gut microbiota in patients with atherosclerosis remains poorly defined, and effective biological markers are lacking. This study aims to elucidate the interplay between gut microbial communities and macrophages, and to identify biomarkers associated with the destabilization of atherosclerotic plaques. The goal is to enhance our understanding of the underlying molecular pathways and to pave new avenues for diagnostic approaches and therapeutic strategies in the disease. Methods: This study employed Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis on atherosclerosis datasets to identify macrophage-associated genes and quantify the correlation between these genes and gut microbiota gene sets. The Random Forest algorithm was utilized to pinpoint PLEK, IRF8, BTK, CCR1, and CD68 as gut microbiota-related macrophage genes, and a nomogram was constructed. Based on the top five genes, a Non-negative Matrix Factorization (NMF) algorithm was applied to construct gut microbiota-related macrophage clusters and analyze their potential biological alterations. Subsequent single-cell analyses were conducted to observe the expression patterns of the top five genes and the interactions between immune cells. Finally, the expression profiles of key molecules were validated using clinical samples from atherosclerosis patients. Results: Utilizing the Random Forest algorithm, we ultimately identified PLEK, IRF8, CD68, CCR1, and BTK as gut microbiota-associated macrophage genes that are upregulated in atherosclerotic plaques. A nomogram based on the expression of these five genes was constructed for use as an auxiliary tool in clinical diagnosis. Single-cell analysis confirmed the specific expression of gut microbiota-associated macrophage genes in macrophages. Clinical samples substantiated the high expression of PLEK in unstable atherosclerotic plaques. Conclusion: Gut microbiota-associated macrophage genes (PLEK, IRF8, CD68, CCR1, and BTK) may be implicated in the pathogenesis of atherosclerotic plaques and could serve as diagnostic markers to aid patients with atherosclerosis.


Subject(s)
Algorithms , Atherosclerosis , Biomarkers , Gastrointestinal Microbiome , Machine Learning , Macrophages , Plaque, Atherosclerotic , Receptors, CCR1 , Single-Cell Analysis , Humans , Macrophages/metabolism , Macrophages/microbiology , Plaque, Atherosclerotic/microbiology , Biomarkers/metabolism , Single-Cell Analysis/methods , Receptors, CCR1/metabolism , Receptors, CCR1/genetics , Atherosclerosis/microbiology , Atherosclerosis/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Gene Expression Profiling , Gene Regulatory Networks , CD68 Molecule , Interferon Regulatory Factors
3.
J Gene Med ; 26(5): e3687, 2024 May.
Article in English | MEDLINE | ID: mdl-38690623

ABSTRACT

BACKGROUND: Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS: Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS: miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS: miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Cell Differentiation , Cell Movement , Mice, Knockout , MicroRNAs , Osteoclasts , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoclasts/metabolism , Osteoclasts/cytology , Cell Differentiation/genetics , Cell Movement/genetics , Mice , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/genetics , Cell Proliferation/genetics , Gene Expression Regulation , Macrophages/metabolism , Signal Transduction , Osteogenesis/genetics
4.
J Med Chem ; 67(9): 7245-7259, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38635563

ABSTRACT

Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead. Further investigation of the prototypical BTK inhibitor ibrutinib also revealed potent inhibition of the largely unstudied NUDIX hydrolase family member NUDT14. By exploring structure-activity relationships (SARs) around the core scaffold, we identify a potent, noncovalent, and cell-active dual NUDT5/14 inhibitor. Cocrystallization experiments yielded new insights into the NUDT14 hydrolase active site architecture and inhibitor binding, thus providing a basis for future chemical probe design.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Pyrophosphatases , Humans , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Structure-Activity Relationship , Crystallography, X-Ray , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/metabolism , Piperidines/chemical synthesis , Drug Discovery , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Adenine/metabolism , Models, Molecular , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
5.
Acta Neuropathol ; 147(1): 75, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656399

ABSTRACT

In multiple sclerosis (MS), persisting disability can occur independent of relapse activity or development of new central nervous system (CNS) inflammatory lesions, termed chronic progression. This process occurs early and it is mostly driven by cells within the CNS. One promising strategy to control progression of MS is the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of both B cells and myeloid cells, such as macrophages and microglia. The benefit of BTK inhibition by evobrutinib was shown as we observed reduced pro-inflammatory activation of microglia when treating chronic experimental autoimmune encephalomyelitis (EAE) or following the adoptive transfer of activated T cells. Additionally, in a model of toxic demyelination, evobrutinib-mediated BTK inhibition promoted the clearance of myelin debris by microglia, leading to an accelerated remyelination. These findings highlight that BTK inhibition has the potential to counteract underlying chronic progression of MS.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Encephalomyelitis, Autoimmune, Experimental , Microglia , Myelin Sheath , Piperidines , Pyrimidines , Animals , Female , Mice , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Biphenyl Compounds/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice, Inbred C57BL , Microglia/pathology , Microglia/drug effects , Microglia/metabolism , Myelin Sheath/pathology , Myelin Sheath/metabolism , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Remyelination/physiology , Remyelination/drug effects
6.
J Chem Inf Model ; 64(8): 3488-3502, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38546820

ABSTRACT

Covalent inhibitors represent a promising class of therapeutic compounds. Nonetheless, rationally designing covalent inhibitors to achieve a right balance between selectivity and reactivity remains extremely challenging. To better understand the covalent binding mechanism, a computational study is carried out using the irreversible covalent inhibitor of Bruton tyrosine kinase (BTK) ibrutinib as an example. A multi-µs classical molecular dynamics trajectory of the unlinked inhibitor is generated to explore the fluctuations of the compound associated with the kinase binding pocket. Then, the reaction pathway leading to the formation of the covalent bond with the cysteine residue at position 481 via a Michael addition is determined using the string method in collective variables on the basis of hybrid quantum mechanical-molecular mechanical (QM/MM) simulations. The reaction pathway shows a strong correlation between the covalent bond formation and the protonation/deprotonation events taking place sequentially in the covalent inhibition reaction, consistent with a 3-step reaction with transient thiolate and enolates intermediate states. Two possible atomistic mechanisms affecting deprotonation/protonation events from the thiolate to the enolate intermediate were observed: a highly correlated direct pathway involving proton transfer to the Cα of the acrylamide warhead from the cysteine involving one or a few water molecules and a more indirect pathway involving a long-lived enolate intermediate state following the escape of the proton to the bulk solution. The results are compared with experiments by simulating the long-time kinetics of the reaction using kinetic modeling.


Subject(s)
Adenine , Molecular Dynamics Simulation , Piperidines , Protein-Tyrosine Kinases , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/chemistry , Piperidines/chemistry , Piperidines/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Quantum Theory
7.
Cell Rep Med ; 5(4): 101484, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38554704

ABSTRACT

The use of Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib achieves a remarkable clinical response in mantle cell lymphoma (MCL). Acquired drug resistance, however, is significant and affects long-term survival of MCL patients. Here, we demonstrate that DNA methyltransferase 3A (DNMT3A) is involved in ibrutinib resistance. We find that DNMT3A expression is upregulated upon ibrutinib treatment in ibrutinib-resistant MCL cells. Genetic and pharmacological analyses reveal that DNMT3A mediates ibrutinib resistance independent of its DNA-methylation function. Mechanistically, DNMT3A induces the expression of MYC target genes through interaction with the transcription factors MEF2B and MYC, thus mediating metabolic reprogramming to oxidative phosphorylation (OXPHOS). Targeting DNMT3A with low-dose decitabine inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting DNMT3A-mediated metabolic reprogramming to OXPHOS with decitabine provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory MCL.


Subject(s)
Adenine/analogs & derivatives , Lymphoma, Mantle-Cell , Piperidines , Protein-Tyrosine Kinases , Humans , Animals , Mice , Adult , Agammaglobulinaemia Tyrosine Kinase/metabolism , Drug Resistance, Neoplasm/genetics , DNA Methyltransferase 3A , Oxidative Phosphorylation , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Decitabine/metabolism , Decitabine/therapeutic use
8.
Curr Opin Neurol ; 37(3): 237-244, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38533819

ABSTRACT

PURPOSE OF REVIEW: Despite availability of high-efficacy therapies for multiple sclerosis (MS), many patients experience significant disability worsening due to limited effects of currently available drugs on central nervous system (CNS)-compartmentalized inflammation. Bruton tyrosine kinase (BTK) is an intracellular signaling molecule involved in regulation of maturation, survival, migration, and activation of B cells and microglia, which are central players in the immunopathogenesis of progressive MS. Therefore, CNS-penetrant BTK inhibitors may better prevent disease progression by targeting immune cells on both sides of the blood-brain barrier. This review gives an overview on the preliminary results of clinical trials. RECENT FINDINGS: Currently, the efficacy and safety of six BTK inhibitors are being evaluated in clinical trials in patients with relapsing and progressive MS. Evobrutinib, tolebrutinib and fenebrutinib have shown efficacy and safety in relapsing MS in phase 2 studies, and evobrutinib and tolebrutinib in their extension studies up to 3-5 years. However, evobrutinib failed to distinguish itself from the comparator drug teriflunomide in reduction of relapse rate (primary end point) in two phase 3 studies in relapsing MS. SUMMARY: Inhibition of BTK has emerged as a promising therapeutic approach to target the CNS-compartmentalized inflammation. Results from phase 3 clinical trials will shed light on differences in efficacy and safety of BTK inhibitors and its potential role in the future MS landscape.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Multiple Sclerosis , Protein Kinase Inhibitors , Humans , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Protein Kinase Inhibitors/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology
9.
Science ; 383(6682): eadi5798, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38301010

ABSTRACT

Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Drug Resistance, Neoplasm , Ikaros Transcription Factor , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Proteolysis , Humans , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Ikaros Transcription Factor/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , Proteolysis/drug effects , Drug Resistance, Neoplasm/drug effects
10.
J Clin Oncol ; 42(4): 467-480, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38079587

ABSTRACT

PURPOSE: A genetic classifier termed LymphGen accurately identifies diffuse large B-cell lymphoma (DLBCL) subtypes vulnerable to Bruton's tyrosine kinase inhibitors (BTKis), but is challenging to implement in the clinic and fails to capture all DLBCLs that benefit from BTKi-based therapy. Here, we developed a novel CD5 gene expression signature as a biomarker of response to BTKi-based therapy in DLBCL. METHODS: CD5 immunohistochemistry (IHC) was performed on 404 DLBCLs to identify CD5 IHC+ and CD5 IHC- cases, which were subsequently characterized at the molecular level through mutational and transcriptional analyses. A 60-gene CD5 gene expression signature (CD5sig) was constructed using genes differentially expressed between CD5 IHC+ and CD5 IHC- non-germinal center B-cell-like (non-GCB DLBCL) DLBCLs. This CD5sig was applied to external DLBCL data sets, including pretreatment biopsies from patients enrolled in the PHOENIX study (n = 584) to define the extent to which the CD5sig could identify non-GCB DLBCLs that benefited from the addition of ibrutinib to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). RESULTS: CD5 expression was observed in 12% of non-GCB DLBCLs. CD5+ DLBCLs displayed transcriptional features of B-cell receptor (BCR) activation and were enriched for BCR-activating mutations known to correlate with BTKi sensitivity. However, most CD5+ DLBCLs lacked canonical BCR-activating mutations or were LymphGen-unclassifiable (LymphGen-Other). The CD5sig recapitulated these findings in multiple independent data sets, indicating its utility in identifying DLBCLs with genetic and nongenetic bases for BCR dependence. Supporting this notion, CD5sig+ DLBCLs derived a selective survival advantage from the addition of ibrutinib to R-CHOP in the PHOENIX study, independent of LymphGen classification. CONCLUSION: CD5sig is a useful biomarker to identify DLBCLs vulnerable to BTKi-based therapies and complements current biomarker approaches by identifying DLBCLs with genetic and nongenetic bases for BTKi sensitivity.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , B-Lymphocytes/pathology , Rituximab/therapeutic use , Vincristine/therapeutic use , Biomarkers , Doxorubicin/therapeutic use , Cyclophosphamide/therapeutic use , Prednisone/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Prognosis
11.
Mol Biol Cell ; 35(1): ar5, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37910189

ABSTRACT

The interaction between aggregated low-density lipoprotein (agLDL) and macrophages in arteries plays a major role in atherosclerosis. Macrophages digest agLDL and generate free cholesterol in an extracellular, acidic, hydrolytic compartment known as the lysosomal synapse. Macrophages form a tight seal around agLDL through actin polymerization and deliver lysosomal contents into this space in a process termed digestive exophagy. Our laboratory has identified TLR4 activation of MyD88/Syk as critical for digestive exophagy. Here we use pharmacological agents and siRNA knockdown to characterize signaling pathways downstream of Syk that are involved in digestive exophagy. Syk activates Bruton's tyrosine kinase (BTK) and phospholipase Cγ2 (PLCγ2). We show that PLCγ2 and to a lesser extent BTK regulate digestive exophagy. PLCγ2 cleaves PI(4,5)P2 into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Soluble IP3 activates release of Ca2+ from the endoplasmic reticulum (ER). We demonstrate that Ca2+ release from the ER is upregulated by agLDL and plays a key role in digestive exophagy. Both DAG and Ca2+ activate protein kinase Cα (PKCα). We find that PKCα is an important regulator of digestive exophagy. These results expand our understanding of the mechanisms of digestive exophagy, which could be useful in developing therapeutic interventions to slow development of atherosclerosis.


Subject(s)
Atherosclerosis , Protein Kinase C-alpha , Humans , Protein Kinase C-alpha/metabolism , Phospholipase C gamma/metabolism , Macrophages/metabolism , Signal Transduction , Lipoproteins, LDL/metabolism , Agammaglobulinaemia Tyrosine Kinase/metabolism , Atherosclerosis/metabolism , Digestion
12.
Neurol Clin ; 42(1): 155-163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37980113

ABSTRACT

Multiple sclerosis (MS) can cause significant disability to patients via relapse-associated worsening and progression independent of relapses. The causes of neuronal and myelin damage can include lymphocyte-mediated inflammation and microglial activation. Bruton's tyrosine kinase (BTK) is an enzyme that mediates B cell activation and the proinflammatory phenotype of microglia. Inhibiting BTK provides a novel therapeutic target for MS but also has a complicated pharmacology based on binding specificity, CNS penetration, half-life, and enzyme inhibition characteristics. Multiple agents are being studied in phase 3 trials, and each agent will have unique efficacy and safety profiles that must be considered individually.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism
13.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139452

ABSTRACT

In the microenvironment, cell interactions are established between different cell types to regulate their migration, survival and activation. ß-Catenin is a multifunctional protein that stabilizes cell-cell interactions and regulates cell survival through its transcriptional activity. We used chronic lymphocytic leukemia (CLL) cells as a cellular model to study the role of ß-catenin in regulating the adhesion of tumor cells to their microenvironment, which is necessary for tumor cell survival and accumulation. When co-cultured with a stromal cell line (HS-5), a fraction of the CLL cells adhere to stromal cells in a dynamic fashion regulated by the different levels of ß-catenin expression. In non-adherent cells, ß-catenin is stabilized in the cytosol and translocates into the nucleus, increasing the expression of cyclin D1. In adherent cells, the level of cytosolic ß-catenin is low but membrane ß-catenin helps to stabilize the adhesion of CLL to stromal cells. Indeed, the overexpression of ß-catenin enhances the interaction of CLL with HS-5 cells, suggesting that this protein behaves as a regulator of cell adhesion to the stromal component and of the transcriptional regulation of cell survival. Inhibitors that block the stabilization of ß-catenin alter this equilibrium and effectively disrupt the support that CLL cells receive from the cross-talk with the stroma.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Leukemia, Lymphocytic, Chronic, B-Cell , beta Catenin , Humans , beta Catenin/genetics , beta Catenin/metabolism , Cell Communication , Cell Line, Tumor , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Stromal Cells/metabolism , Tumor Microenvironment , Agammaglobulinaemia Tyrosine Kinase/metabolism
14.
Molecules ; 28(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38138527

ABSTRACT

Bruton tyrosine kinase (BTK) is an essential enzyme in the signaling pathway of the B-cell receptor (BCR) and is vital for the growth and activation of B-cells. Dysfunction of BTK has been linked to different types of B-cell cancers, autoimmune conditions, and inflammatory ailments. Therefore, focusing on BTK has become a hopeful approach in the field of therapeutics. Small-molecule inhibitors of BTK have been developed to selectively inhibit its activity and disrupt B-cell signaling pathways. These inhibitors bind to the active site of BTK and prevent its phosphorylation, leading to the inhibition of downstream signaling cascades. Regulatory authorities have granted approval to treat B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), with multiple small-molecule BTK inhibitors. This review offers a comprehensive analysis of the synthesis and clinical application of conventional small-molecule BTK inhibitors at various clinical stages, as well as presents promising prospects for the advancement of new small-molecule BTK inhibitors.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Protein-Tyrosine Kinases , Humans , Adult , Agammaglobulinaemia Tyrosine Kinase/metabolism , B-Lymphocytes/metabolism , Signal Transduction , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
15.
J Neuroinflammation ; 20(1): 309, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129902

ABSTRACT

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory autoimmune disease of the central nervous system that involves B-cell receptor signaling as well as astrocyte-microglia interaction, which both contribute to evolution of NMOSD lesions. MAIN BODY: Through transcriptomic and flow cytometry analyses, we found that Bruton's tyrosine kinase (BTK), a crucial protein of B-cell receptor was upregulated both in the blood and cerebrospinal fluid of NMOSD patients. Blockade of BTK with zanubrutinib, a highly specific BTK inhibitor, mitigated the activation and maturation of B cells and reduced production of causal aquaporin-4 (AQP4) autoantibodies. In a mouse model of NMO, we found that both BTK and pBTK expression were significantly increased in microglia. Transmission electron microscope scan demonstrated that BTK inhibitor ameliorated demyelination, edema, and axonal injury in NMO mice. In the same mice colocalization of GFAP and Iba-1 immunofluorescence indicated a noticeable increase of astrocytes-microglia interaction, which was alleviated by zanubrutinib. The smart-seq analysis demonstrated that treatment with BTK inhibitor instigated microglial transcriptome changes including downregulation of chemokine-related genes and genes involved in the top 5 biological processes related to cell adhesion and migration, which are likely responsible for the reduced crosstalk of microglia and astrocytes. CONCLUSIONS: Our results show that BTK activity is enhanced both in B cells and microglia and BTK inhibition contributes to the amelioration of NMOSD pathology. These data collectively reveal the mechanism of action of BTK inhibition and corroborate BTK as a viable therapeutic target.


Subject(s)
Neuromyelitis Optica , Animals , Humans , Mice , Agammaglobulinaemia Tyrosine Kinase/metabolism , Aquaporin 4 , B-Lymphocytes/metabolism , Microglia/metabolism , Neuromyelitis Optica/pathology , Receptors, Antigen, B-Cell/metabolism
16.
Genes (Basel) ; 14(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38137005

ABSTRACT

Bruton's tyrosine kinase (BTK) plays a key role in the B-cell receptor (BCR) signaling pathway and confers anti-apoptotic and proliferative properties to malignant B-cells in chronic lymphocytic leukemia (CLL). Small molecule BTK inhibitors were designed to bind BTK's active site and block downstream signaling. These drugs have now been used in the treatment of thousands of patients with CLL, the most common form of leukemia in the western hemisphere. However, adverse effects of early generations of BTK inhibitors and resistance to treatment have led to the development of newer, more selective and non-covalent BTK inhibitors. As the use of these newer generation BTK inhibitors has increased, novel BTK resistance mutations have come to light. This review aims to discuss previously known and novel BTK mutations, their mechanisms of resistance, and their relationship with patient treatment. Also discussed here are future studies that are needed to investigate the underlying cause allowing these mutations to occur and how they incite resistance. New treatments on the horizon that attempt to maneuver around these resistance mutations can be met with new resistance mutations, creating an unmet need for patients with CLL. Novel therapies and combinations that address all forms of resistance are discussed.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Signal Transduction
17.
Article in English | MEDLINE | ID: mdl-38018179

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the joints, leading to pain, swelling, and joint deformity. Effective management of RA involves the use of disease-modifying drugs that can slow down disease progression and alleviate symptoms. Among the potential targets for RA treatment is Bruton's tyrosine kinase (BTK), which plays a crucial role in B-cell signalling and contributes to the pathogenesis of RA. AIMS: QSARINS (QSAR-INSUBRIA) is software used for the development and validation of Quantitative Structure-Activity Relationship (QSAR) analysis. In the present work, this software was explored for pharmacophore optimization of the pyrrolo-pyrimidine nucleus for anti-rheumatoid activity. METHODS: A series of pyrrolo-pyrimidine derivatives were used to build the QSAR models. These models were generated to identify structural features that correlate significantly with the activity. We followed the assessment of statistical parameters to ensure thorough validation of all the QSAR models. The QSAR models demonstrating better statistical performance were selected, and descriptors of these models were analysed. RESULTS: The results showed that the QSAR models were highly statistically robust and exhibited a strong external predictive ability. Their structural features were also deduced. CONCLUSION: This QSAR study provided crucial information about the specific molecular features that can be used for the optimization of the pharmacophores. This research provides valuable insights into the structural features essential for BTK inhibition and paves the way for the design and development of novel anti-rheumatic agents targeting BTK in RA.


Subject(s)
Arthritis, Rheumatoid , Quantitative Structure-Activity Relationship , Humans , Agammaglobulinaemia Tyrosine Kinase/metabolism , Arthritis, Rheumatoid/drug therapy , Amines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrimidines/chemistry
18.
Front Immunol ; 14: 1264128, 2023.
Article in English | MEDLINE | ID: mdl-38022591

ABSTRACT

Background: Inhibition of Bruton's tyrosine kinase (BTK) is an emerging multiple sclerosis (MS) therapy. BTK inhibitors (BTKi) cross the blood-brain barrier and modulate B cells and microglia, major cellular players in active and chronic active lesions. Objective: To assess potential lesional and cellular targets of BTKi, we examined BTK expression in different type of MS white matter (WM) lesions, in unmanipulated CNS resident cells, and in a degenerative MS model associated with microglia activation in vivo. Methods: We examined BTK expression by next-generation RNA-sequencing in postmortem 25 control WM, 19 NAWM, 6 remyelinating, 18 active, 13 inactive and 17 chronic active lesions. Presence of B cells and microglia were examined by immunohistochemistry. CNS resident cells were isolated from the mouse brain by magnetic sorting. BTK expression was examined by quantitative PCR in isolated cells and dissected corpus callosum from mice treated with cuprizone (CPZ). Results: BTK expression was significantly increased in active and chronic active lesions with upregulated complement receptors and Fcγ receptors. Active lesions contained high number of perivascular B cells, microglia, and macrophages. Chronic active lesions were characterized by microglia/macrophages in the rim. Microglia expressed BTK at high level (120-fold) in contrast to other CNS cell types (2-4-fold). BTK expression was increasing during CPZ treatment reaching significance after stopping CPZ. Conclusion: Considering BTK expression in MS lesions and resident cells, BTKi may exert effect on B cells, microglia/macrophages in active lesions, and limit microglia activation in chronic active lesions, where tissue damage propagates.


Subject(s)
Multiple Sclerosis , Animals , Humans , Mice , Agammaglobulinaemia Tyrosine Kinase/metabolism , Corpus Callosum , Cuprizone/pharmacology , Macrophages/metabolism , Microglia/metabolism , Multiple Sclerosis/metabolism
19.
J Am Chem Soc ; 145(48): 26202-26212, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37987622

ABSTRACT

The covalent inhibition of a target protein has gained widespread attention in the field of drug discovery. Most of the current covalent drugs utilize the high reactivity of cysteines toward modest electrophiles. However, there is a growing need for warheads that can target lysine residues to expand the range of covalently druggable proteins and to deal with emerging proteins with mutations resistant to cysteine-targeted covalent drugs. We have recently developed an N-acyl-N-alkyl sulfonamide (NASA) as a lysine-targeted electrophile. Despite its successful application, this NASA warhead suffered from instability in physiological environments, such as serum-containing medium, because of its high intrinsic reactivity. In this study, we sought to modify the structure of the NASA warhead and found that N-acyl-N-aryl sulfonamides (ArNASAs) are promising electrophiles for use in a lysine-targeted covalent inhibition strategy. We prepared a focused library of ArNASA derivatives with diverse structures and reactivity and identified several warhead candidates with suppressed hydrolysis-mediated inactivation and reduced nonspecific reactions with off-target proteins, without sacrificing the reactivity toward the target. These reaction properties enabled the improved covalent inhibition of intracellular heat shock protein 90 (HSP90) in the presence of serum and the development of the first irreversible inhibitor for ibrutinib-resistant Bruton's tyrosine kinase (BTK) bearing the C481S mutation. This study clearly demonstrated the use of a set of ArNASA warheads to create highly potent covalent drugs and highlighted the importance of enriching the current arsenal of lysine-reactive warheads.


Subject(s)
Lysine , Piperidines , Lysine/chemistry , Agammaglobulinaemia Tyrosine Kinase/metabolism , Piperidines/pharmacology , Cysteine/chemistry , Sulfanilamide , Sulfonamides/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
20.
Redox Biol ; 68: 102960, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979447

ABSTRACT

C-X-C chemokine receptor type 4 (CXCR4) is critical for homeostasis of the adaptive and innate immune system in some CNS diseases. Bruton's tyrosine kinase (BTK) is an essential kinase that regulates inflammation in immune cells through multiple signaling pathways. This study aims to explore the effect of CXCR4 and BTK on neuroinflammation in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Our results showed that the expression of CXCR4 and p-BTK increased significantly at 24 h after SAH in vivo and in vitro. Ibrutinib improved neurological impairment, BBB disruption, cerebral edema, lipid peroxidation, neuroinflammation and neuronal death at 24 h after SAH. Inhibition of BTK phosphorylation promoted the in vitro transition of hemin-treated proinflammatory microglia to the anti-inflammatory state, inhibited the p-P65 expression and microglial pyroptosis. NLRP3 deficiency can significantly reduce pyroptosis in SAH mice. Moreover, CXCR4 inhibition can suppress NLRP3-mediated pyroptosis, NF-κB activation and NOX2 expression in vitro, and ibrutinib can abolish CXCR4-aggravated BBB damage and pyroptosis in EBI after SAH. The levels of CXCR4 in CSF of SAH patients is significantly increased, and it is positively correlated with GSDMD and IL-1ß levels, and have a moderate diagnostic value for outcome at 6-month follow-up. Our findings revealed the effect of CXCR4 and P-BTK on NLRP3-mediated pyroptosis and lipid peroxidation after SAH in vivo and in vitro, and the potential diagnostic role of CXCR4 in CSF of SAH patients. Inhibition of CXCR4-BTK axis can significantly attenuate NLRP3-mediated pyroptosis and lipid peroxidation by regulating NF-κB activation in EBI after SAH.


Subject(s)
Brain Injuries , Subarachnoid Hemorrhage , Rats , Humans , Mice , Animals , NF-kappa B/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Agammaglobulinaemia Tyrosine Kinase/metabolism , Lipid Peroxidation , Subarachnoid Hemorrhage/metabolism , Neuroinflammatory Diseases , Rats, Sprague-Dawley , Brain Injuries/etiology , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...