Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.277
Filter
1.
PLoS One ; 19(5): e0302906, 2024.
Article in English | MEDLINE | ID: mdl-38718039

ABSTRACT

Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1ß-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.


Subject(s)
Cartilage, Articular , Chondrocytes , Interleukin-1beta , NF-kappa B , Osteoarthritis , Plant Extracts , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Rats , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Plant Extracts/pharmacology , Prunus/chemistry , Rats, Sprague-Dawley , Down-Regulation/drug effects , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Collagen Type II/metabolism , Mitogen-Activated Protein Kinases/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Fruit/chemistry , Aggrecans/metabolism , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Cells, Cultured , Male , MAP Kinase Signaling System/drug effects
2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 562-569, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38752242

ABSTRACT

Objective: To explore the early effectiveness and influence on cartilage of local injection of multimodal drug cocktail (MDC) during anterior cruciate ligament reconstruction (ACLR). Methods: Between February 2022 and August 2023, patients undergone arthroscopic ACLR using autologous hamstring tendons were selected as the study subjects. Among them, 90 patients met the selection criteria and were randomly divided into 3 groups ( n=30) according to the different injection drugs after ligament reconstruction. There was no significant difference in baseline data such as gender, age, body mass index, surgical side, disease duration, preoperative thigh circumference, and preoperative levels of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), IL-1, matrix metalloproteinase 3 (MMP-3), MMP-13, and aggrecan (ACAN) in synovial fluid between groups ( P>0.05). After the ligament reconstruction during operation, corresponding MDC (consisting of ropivacaine, tranexamic acid, and betamethasone in group A, and ropivacaine, betamethasone, and saline in group B) or saline (group C) were injected into the joint and tendon site, respectively. The length of hospital stay, postoperative tramadol injection volume, incidence of complications, degree of knee joint swelling and range of motion, visual analogue scale (VAS) score, International Knee Documentation Committee (IKDC) score, Lyshlom score, and Hospital for Special Surgery (HSS) score were recorded and compared between groups. The T2 * values in different cartilage regions were detected by MRI examination and the levels of TNF-α, IL-6, IL-1, MMP-3, MMP-13, and ACAN in synovial fluid were detected by ELISA method. Results: The patients in group A, B, and C were followed up (12.53±3.24), (13.14±2.87), and (12.82±3.32) months, respectively. All incisions healed by first intention. Compared with group C, group A and group B had shorter length of hospital stay, less tramadol injection volume, and lower incidence of complications, showing significant differences ( P<0.05); there was no significant difference between group A and group B ( P>0.05). The degree of knee swelling in group A was significantly less than that in group B and group C ( P<0.05), but there was no significant difference between group B and group C ( P>0.05). At 3, 6, 12, 24, and 48 hours after operation, VAS scores of group A and group B were significantly lower than those of group C ( P<0.05); at 72 hours after operation, there was no significant difference among the three groups ( P>0.05). At 3 days, 14 days, and 1 month after operation, the range of motion of knee joint in group A were significantly better than those in group C ( P<0.05), and there was no significant difference between the other groups ( P>0.05). At 1 month after operation, the IKDC score of group A and group B was significantly higher than that of group C ( P<0.05); there was no significant difference among the three groups at other time points ( P>0.05). There was no significant difference in Lyshlom score and HSS score among the three groups at each time point ( P>0.05). At 14 days after operation, the levels of IL-1 and IL-6 in the synovial fluid in groups A and B were significantly lower than those in group C ( P<0.05). There was no significant difference in the levels of TNF-α, MMP-3, MMP-13, and ACAN between groups A and B ( P>0.05). At 1 month after operation, there was no significant difference in the above indicators among the three groups ( P>0.05). At 3, 6, and 12 months after operation, there was no significant difference in the T2 * values of different cartilage regions among the three groups ( P>0.05). Conclusion: Injecting MDC (ropivacaine, tranexamic acid, betamethasone) into the joint and tendon site during ACLR can achieve good early effectiveness without significant impact on cartilage.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Betamethasone , Ropivacaine , Humans , Anterior Cruciate Ligament Reconstruction/methods , Ropivacaine/administration & dosage , Male , Betamethasone/administration & dosage , Female , Adult , Matrix Metalloproteinase 3/metabolism , Anesthetics, Local/administration & dosage , Arthroscopy , Anterior Cruciate Ligament Injuries/surgery , Aggrecans/metabolism , Matrix Metalloproteinase 13/metabolism , Anterior Cruciate Ligament/surgery , Treatment Outcome , Tendons/transplantation , Cartilage/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Am J Physiol Cell Physiol ; 326(5): C1384-C1397, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690917

ABSTRACT

Metabolic dysfunction of the extracellular matrix (ECM) is one of the primary causes of intervertebral disc degeneration (IVDD). Previous studies have demonstrated that the transcription factor Brachyury (Bry) has the potential to promote the synthesis of collagen II and aggrecan, while the specific mechanism is still unknown. In this study, we used a lipopolysaccharide (LPS)-induced model of nucleus pulposus cell (NPC) degeneration and a rat acupuncture IVDD model to elucidate the precise mechanism through which Bry affects collagen II and aggrecan synthesis in vitro and in vivo. First, we confirmed Bry expression decreased in degenerated human nucleus pulposus (NP) cells (NPCs). Knockdown of Bry exacerbated the decrease in collagen II and aggrecan expression in the lipopolysaccharide (LPS)-induced NPCs degeneration in vitro model. Bioinformatic analysis indicated that Smad3 may participate in the regulatory pathway of ECM synthesis regulated by Bry. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays demonstrated that Bry enhances the transcription of Smad3 by interacting with a specific motif on the promoter region. In addition, Western blot and reverse transcription-qPCR assays demonstrated that Smad3 positively regulates the expression of aggrecan and collagen II in NPCs. The following rescue experiments revealed that Bry-mediated regulation of ECM synthesis is partially dependent on Smad3 phosphorylation. Finally, the findings from the in vivo rat acupuncture-induced IVDD model were consistent with those obtained from in vitro assays. In conclusion, this study reveals that Bry positively regulates the synthesis of collagen II and aggrecan in NP through transcriptional activation of Smad3.NEW & NOTEWORTHY Mechanically, in the nucleus, Bry enhances the transcription of Smad3, leading to increased expression of Smad3 protein levels; in the cytoplasm, elevated substrate levels further lead to an increase in the phosphorylation of Smad3, thereby regulating collagen II and aggrecan expression. Further in vivo experiments provide additional evidence that Bry can alleviate IVDD through this mechanism.


Subject(s)
Aggrecans , Extracellular Matrix , Fetal Proteins , Intervertebral Disc Degeneration , Nucleus Pulposus , Rats, Sprague-Dawley , Smad3 Protein , T-Box Domain Proteins , Smad3 Protein/metabolism , Smad3 Protein/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Animals , Extracellular Matrix/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Humans , Rats , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Aggrecans/metabolism , Aggrecans/genetics , Male , Fetal Proteins/genetics , Fetal Proteins/metabolism , Collagen Type II/metabolism , Collagen Type II/genetics , Gene Expression Regulation , Female , Adult , Middle Aged , Cells, Cultured , Transcription, Genetic
4.
Curr Protoc ; 4(5): e1053, 2024 May.
Article in English | MEDLINE | ID: mdl-38752927

ABSTRACT

The recombinant human proteoglycan aggrecan-G1 domain (rhG1)-induced arthritis (GIA) mouse model is a complex model of rheumatoid arthritis (RA). In GIA, autoimmune arthritis is induced by repeated intraperitoneal immunization of genetically susceptible BALB/c mice with the rhG1 antigen emulsified in the adjuvant dimethyldioctadecylammonium (DDA). This article describes the steps for producing and purifying the rhG1 antigen, the immunization protocol, methods for following the clinical picture of arthritis, and the evaluation of relevant laboratory parameters. In this model, the autoimmune arthritis develops stepwise, similar to RA: First is the preclinical stage (after the first immunization, days 0-20) with no sign of inflammation but detectable T and B cell activation; next, the stage of early arthritis (after the second immunization, days 21-41), where the first definitive signs of arthritis appear together with autoantibody production; and then the severe late-stage arthritis (after the third immunization, after day 42), which presents with massive inflammation of the limbs, leading to cartilage and bone destruction and finally ankylosis. The protocols described here provide sufficient information for investigators to use the GIA model to study different aspects of autoimmune arthritis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Induction of recombinant human proteoglycan aggrecan-G1 domain (rhG1)-induced arthritis (GIA) Support Protocol 1: Production of rhG1-Xa-mFc2a fusion protein with CHOK1 mammalian expression system Support Protocol 2: Purification of the rhG1-Xa-mFc2a fusion protein by affinity chromatography Support Protocol 3: Preparation of DDA adjuvant Support Protocol 4: Clinical assessment of arthritis Support Protocol 5: Measurement of serum antibody levels and cytokines Support Protocol 6: Measurement of rhG1-induced proliferation and cytokine production in spleen cell culture Support Protocol 7: Histological assessment of arthritic limbs Support Protocol 8: Evaluation of arthritis with micro-computed tomography.


Subject(s)
Aggrecans , Disease Models, Animal , Mice, Inbred BALB C , Recombinant Proteins , Animals , Aggrecans/metabolism , Mice , Humans , Arthritis, Rheumatoid/immunology , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology
5.
ACS Biomater Sci Eng ; 10(5): 3242-3254, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38632852

ABSTRACT

Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.


Subject(s)
Chondrocytes , Chondroitin Sulfates , Hyaluronic Acid , Hydrogels , Inflammation , Hydrogels/chemistry , Hydrogels/pharmacology , Chondrocytes/drug effects , Chondrocytes/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/chemistry , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cytokines/metabolism , Aggrecans/metabolism , Tissue Engineering/methods , Osteoarthritis/pathology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism
6.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673933

ABSTRACT

The aim of this study was to provide a comprehensive understanding of similarities and differences in mRNAs, lncRNAs, and circRNAs within cartilage for Kashin-Beck disease (KBD) compared to osteoarthritis (OA). We conducted a comparison of the expression profiles of mRNAs, lncRNAs, and circRNAs via whole-transcriptome sequencing in eight KBD and ten OA individuals. To facilitate functional annotation-enriched analysis for differentially expressed (DE) genes, DE lncRNAs, and DE circRNAs, we employed bioinformatic analysis utilizing Gene Ontology (GO) and KEGG. Additionally, using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), we validated the expression levels of four cartilage-related genes in chondrocytes. We identified a total of 43 DE mRNAs, 1451 DE lncRNAs, and 305 DE circRNAs in KBD cartilage tissue compared to OA (q value < 0.05; |log2FC| > 1). We also performed competing endogenous RNA network analysis, which identified a total of 65 lncRNA-mRNA interactions and 4714 miRNA-circRNA interactions. In particular, we observed that circRNA12218 had binding sites for three miRNAs targeting ACAN, while circRNA12487 had binding sites for seven miRNAs targeting COL2A1. Our results add a novel set of genes and non-coding RNAs that could potentially serve as candidate diagnostic biomarkers or therapeutic targets for KBD patients.


Subject(s)
Kashin-Beck Disease , Osteoarthritis , RNA, Circular , RNA, Long Noncoding , RNA, Messenger , Transcriptome , Humans , Kashin-Beck Disease/genetics , RNA, Long Noncoding/genetics , Male , Female , Middle Aged , RNA, Circular/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics , Osteoarthritis/genetics , Gene Expression Profiling/methods , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Aged , Knee Joint/pathology , Knee Joint/metabolism , MicroRNAs/genetics , Collagen Type II/genetics , Collagen Type II/metabolism , Computational Biology/methods , Chondrocytes/metabolism , Aggrecans/genetics , Aggrecans/metabolism , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/metabolism , Gene Expression Regulation , Gene Ontology , Adult
7.
Int J Biol Macromol ; 266(Pt 2): 131259, 2024 May.
Article in English | MEDLINE | ID: mdl-38574937

ABSTRACT

This study presents an alginate-collagen interpenetrating network (IPN) matrix of incorporating collagen fibrils into an alginate hydrogel by physical mixing and controlled gelation. The resulting matrix closely mimics the physiological and pathological stiffness range of the chondrocyte pericellular matrix (PCM). Chondrocytes were cultured within three-dimensional (3D) alginate-collagen IPN matrices with varying stiffness, namely Firm, Medium, and Soft. Alginate lyase was introduced to study the effects of the changes in stiffness of the Firm on chondrocyte response by in situ softening. The developed alginate-collagen IPN matrix displayed good cell-biocompatibility. Compared with stiffer tissue culture plastic (TCP), chondrocytes grown within Firm displayed a stabilized differentiated phenotype characterized by higher expression levels of aggrecan, collagen II, and SOX-9. Moreover, the developed alginate-collagen IPN matrix exhibited a gradually increased percentage of propidium iodide (PI)-positive dead cells with decreasing stiffness. Softer matrices directed cells towards higher proliferation rates and spherical morphologies while stimulating chondrocyte cluster formation. Furthermore, reducing Firm stiffness by in situ softening decreased aggrecan expression, contributing to matrix degradation similar to that seen in osteoarthritis (OA). Hence, the 3D alginate-collagen IPN constructs hold significant potential for in vitro replicating PCM stiffness changes observed in OA cartilage.


Subject(s)
Alginates , Chondrocytes , Collagen , Osteoarthritis , Alginates/chemistry , Chondrocytes/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Collagen/metabolism , Collagen/chemistry , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Hydrogels/chemistry , Animals , Humans , Tissue Scaffolds/chemistry , Cell Proliferation , Cells, Cultured , Aggrecans/metabolism , Aggrecans/genetics , Tissue Engineering/methods
8.
BMC Musculoskelet Disord ; 25(1): 249, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561725

ABSTRACT

BACKGROUND: This study investigated the role of Galectin-3 in the degeneration of intervertebral disc cartilage. METHODS: The patients who underwent lumbar spine surgery due to degenerative disc disease were recruited and divided into Modic I, Modic II, and Modic III; groups. HE staining was used to detect the pathological changes in endplates. The changes of Galectin-3, MMP3, Aggrecan, CCL3, and Col II were detected by immunohistochemistry, RT-PCR, and Western blot. MTT and flow cytometry were used to detect cartilage endplate cell proliferation, cell cycle, and apoptosis. RESULTS: With the progression of degeneration (from Modic I to III), the chondrocytes and density of the cartilage endplate of the intervertebral disc decreased, and the collagen arrangement of the cartilage endplate of the intervertebral disc was broken and calcified. Meanwhile, the expressions of Aggrecan, Col II, Galectin-3, Aggrecan, and CCL3 gradually decreased. After treatment with Galectin-3 inhibitor GB1107, the proliferation of rat cartilage end plate cells was significantly reduced (P < 0.05). GB1107 (25 µmol/L) also significantly promoted the apoptosis of cartilage endplate cells (P < 0.05). Moreover, the percentage of cartilage endplate cells in the G1 phase was significantly higher, while that in the G2 and S phases was significantly lower (P < 0.05). Additionally, the mRNA and protein expression levels of MMP3, CCL3, and Aggrecan in rat cartilage end plate cells were lower than those in the control group. CONCLUSIONS: Galectin-3 decreases with the progression of the cartilage endplate degeneration of the intervertebral disc. Galectin-3 may affect intervertebral disc degeneration by regulating the degradation of the extracellular matrix.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Humans , Rats , Aggrecans/genetics , Aggrecans/metabolism , Cartilage/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Matrix Metalloproteinase 3
9.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542192

ABSTRACT

Osteoarthritis is a widespread chronic degenerative disease marked by the deterioration of articular cartilage, modifications in subchondral bone, and a spectrum of symptoms, including pain, stiffness, and disability. Ultimately, this condition impairs the patient's quality of life. This study aimed to evaluate the therapeutic efficacy of standardized Boswellia serrata gum resin extract (BSRE) in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis. A total of 60 rats were allocated into six groups: normal control group (NC), osteoarthritis control (injected with MIA, OC), O + B50 (injected with MIA and treated with 50 mg/kg body weight (BW) BSRE), O + B75 (injected with MIA and treated with 75 mg/kg BW BSRE), O + B100 (injected with MIA and treated with 100 mg/kg BW BSRE), and O + M (injected with MIA and treated with 150 mg/kg BW methyl sulfonyl methane). Several parameters, including knee joint swelling, histopathological changes, and the expression of collagen type II alpha 1 (COL2A1) and aggrecan, were comprehensively assessed. Concurrently, the serum levels and mRNA expression of inflammatory mediators, cytokines, and matrix metalloproteinases (MMPs) were analyzed in both the serum and knee joint synovium. The results demonstrated that BSRE significantly mitigated knee joint swelling, cartilage destruction, and tissue deformation. Notably, BSRE administration markedly upregulated the expression of COL2A1 and aggrecan while concurrently reducing levels of nitric oxide, prostaglandin E2, leukotriene B4, interleukin (IL)-6, and tumor necrosis factor (TNF)-α. Furthermore, a substantial decrease was observed in the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, 5-lipoxygenase, IL-6, TNF-α and MMP-3 and -13, thereby indicating promising therapeutic implications for osteoarthritis. In conclusion, BSRE exhibited anti-inflammatory properties and inhibited cartilage matrix degradation in a rat model of MIA-induced osteoarthritis, with the O + B100 group showing significant reductions in swelling and notable improvements in joint cartilage damage. These findings illuminate the preventive and therapeutic potential of BSRE for osteoarthritis treatment, emphasizing the criticality of exhaustive evaluation of novel compounds.


Subject(s)
Boswellia , Cartilage, Articular , Osteoarthritis , Rats , Humans , Animals , Boswellia/metabolism , Aggrecans/metabolism , Quality of Life , Disease Models, Animal , Osteoarthritis/metabolism , Inflammation/metabolism , Knee Joint/pathology , Iodoacetic Acid/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , RNA, Messenger/metabolism , Cartilage, Articular/metabolism
10.
Stem Cell Res Ther ; 15(1): 75, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475906

ABSTRACT

BACKGROUND: Annulus fibrosis (AF) defects have been identified as the primary cause of disc herniation relapse and subsequent disc degeneration following discectomy. Stem cell-based tissue engineering offers a promising approach for structural repair. Menstrual blood-derived mesenchymal stem cells (MenSCs), a type of adult stem cell, have gained attention as an appealing source for clinical applications due to their potential for structure regeneration, with ease of acquisition and regardless of ethical issues. METHODS: The differential potential of MenSCs cocultured with AF cells was examined by the expression of collagen I, SCX, and CD146 using immunofluorescence. Western blot and ELISA were used to examine the expression of TGF-ß and IGF-I in coculture system. An AF defect animal model was established in tail disc of Sprague-Dawley rats (males, 8 weeks old). An injectable gel containing MenSCs (about 1*106/ml) was fabricated and transplanted into the AF defects immediately after the animal model establishment, to evaluate its repairment properties. Disc degeneration was assessed via magnetic resonance (MR) imaging and histological staining. Immunohistochemical analysis was performed to assess the expression of aggrecan, MMP13, TGF-ß and IGF-I in discs with different treatments. Apoptosis in the discs was evaluated using TUNEL, caspase3, and caspase 8 immunofluorescence staining. RESULTS: Coculturing MenSCs with AF cells demonstrated ability to express collagen I and biomarkers of AF cells. Moreover, the coculture system presented upregulation of the growth factors TGF-ß and IGF-I. After 12 weeks, discs treated with MenSCs gel exhibited significantly lower Pffirrmann scores (2.29 ± 0.18), compared to discs treated with MenSCs (3.43 ± 0.37, p < 0.05) or gel (3.71 ± 0.29, p < 0.01) alone. There is significant higher MR index in disc treated with MenSCs gel than that treated with MenSCs (0.51 ± 0.05 vs. 0.24 ± 0.04, p < 0.01) or gel (0.51 ± 0.05 vs. 0.26 ± 0.06, p < 0.01) alone. Additionally, MenSCs gel demonstrated preservation of the structure of degenerated discs, as indicated by histological scoring (5.43 ± 0.43 vs. 9.71 ± 1.04 in MenSCs group and 10.86 ± 0.63 in gel group, both p < 0.01), increased aggrecan expression, and decreased MMP13 expression in vivo. Furthermore, the percentage of TUNEL and caspase 3-positive cells in the disc treated with MenSCs Gel was significantly lower than those treated with gel alone and MenSCs alone. The expression of TGF-ß and IGF-I was higher in discs treated with MenSCs gel or MenSCs alone than in those treated with gel alone. CONCLUSION: MenSCs embedded in collagen I gel has the potential to preserve the disc structure and prevent disc degeneration after discectomy, which was probably attributed to the paracrine of growth factors of MenSCs.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Mesenchymal Stem Cells , Male , Rats , Animals , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/pathology , Insulin-Like Growth Factor I/metabolism , Matrix Metalloproteinase 13 , Aggrecans/metabolism , Rats, Sprague-Dawley , Diskectomy , Mesenchymal Stem Cells/metabolism , Collagen Type I/metabolism , Transforming Growth Factor beta/metabolism
11.
Biomed Pharmacother ; 174: 116501, 2024 May.
Article in English | MEDLINE | ID: mdl-38554527

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease, characterized by degenerative destruction of articular cartilage. Chondrocytes, the unique cell type in cartilage, mediate the metabolism of extracellular matrix (ECM), which is mainly constituted by aggrecan and type II collagen. A disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5) is an aggrecanase responsible for the degradation of aggrecan in OA cartilage. CCAAT/enhancer binding protein ß (C/EBPß), a transcription factor in the C/EBP family, has been reported to mediate the expression of ADAMTS5. Our previous study showed that 5,7,3',4'-tetramethoxyflavone (TMF) could activate the Sirt1/FOXO3a signaling in OA chondrocytes. However, whether TMF protected against ECM degradation by down-regulating C/EBPß expression was unknown. In this study, we found that aggrecan expression was down-regulated, and ADAMTS5 expression was up-regulated. Knockdown of C/EBPß could up-regulate aggrecan expression and down-regulate ADAMTS5 expression in IL-1ß-treated C28/I2 cells. TMF could compromise the effects of C/EBPß on OA chondrocytes by activating the Sirt1/FOXO3a signaling. Conclusively, TMF exhibited protective activity against ECM degradation by mediating the Sirt1/FOXO3a/C/EBPß pathway in OA chondrocytes.


Subject(s)
ADAMTS5 Protein , CCAAT-Enhancer-Binding Protein-beta , Chondrocytes , Extracellular Matrix , Osteoarthritis , Signal Transduction , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Humans , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Signal Transduction/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Osteoarthritis/metabolism , Osteoarthritis/pathology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Male , Sirtuin 1/metabolism , Aggrecans/metabolism , Flavonoids/pharmacology , Interleukin-1beta/metabolism , Cell Line , Forkhead Box Protein O3/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/drug effects , Middle Aged , Aged , Down-Regulation/drug effects
12.
Acta Cir Bras ; 39: e390924, 2024.
Article in English | MEDLINE | ID: mdl-38324802

ABSTRACT

PURPOSE: Osteoarthritis (OA) is a degenerative joint disease which is categorized via destruction of joint cartilage and it also affects the various joints, especially knees and hips. Sinomenine active phytoconstituents isolated from the stem of Sinomenium acutum and already proof anti-inflammatory effect against the arthritis model of rodent. In this experimental protocol, we scrutinized the anti-osteoarthritis effect of sinomenine against monosodium iodoacetate (MIA) induced OA in rats. METHODS: MIA (3 mg/50 µL) was used for inducing the OA in the rats, and rats received the oral administration of sinomenine (2.5, 5 and 7.5 mg/kg body weight) up to the end of the experimental study (four weeks). The body and organs weight were estimated. Aggrecan, C-terminal cross-linked telopeptide of type II collagen (CTX-II), glycosaminoglycans (GCGs), monocyte chemoattractant protein-1 (MCP-1), Interferon gamma (IFN-γ), antioxidant, inflammatory cytokines, inflammatory mediators and matrix metalloproteinases (MMP) were analyzed. RESULTS: Sinomenine significantly (P < 0.001) boosted the body weight and reduced the heart weight, but the weight of spleen and kidney remain unchanged. Sinomenine significantly (P < 0.001) reduced the level of nitric oxide, MCP-1 and improved the level of aggrecan, IFN-γ and GCGs. Sinomenine remarkably upregulated the level of glutathione, superoxide dismutase and suppressed the level of malonaldehyde. It effectually modulated the level of inflammatory cytokines and inflammatory mediators and significantly (P < 0.001) reduced the level of MMPs, like MMP-1, 2, 3, 9 and 13. CONCLUSIONS: Sinomenine is a beneficial active agent for the treatment of OA disease.


Subject(s)
Cartilage, Articular , Morphinans , Osteoarthritis , Rats , Animals , Iodoacetic Acid/metabolism , Iodoacetic Acid/pharmacology , Osteoarthritis/metabolism , Aggrecans/metabolism , Aggrecans/pharmacology , Disease Models, Animal , Cartilage, Articular/metabolism , Matrix Metalloproteinases/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Body Weight
13.
Am J Sports Med ; 52(4): 1075-1087, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38419462

ABSTRACT

BACKGROUND: Bioengineered cartilage is a developing therapeutic to repair cartilage defects. The matrix must be rich in collagen type II and aggrecan and mechanically competent, withstanding compressive and shearing loads. Biomechanical properties in native articular cartilage depend on the zonal architecture consisting of 3 zones: superficial, middle, and deep. The superficial zone chondrocytes produce lubricating proteoglycan-4, whereas the deep zone chondrocytes produce collagen type X, which allows for integration into the subchondral bone. Zonal and chondrogenic expression is lost after cell number expansion. Current cell-based therapies have limited capacity to regenerate the zonal structure of native cartilage. HYPOTHESIS: Both passaged superficial and deep zone chondrocytes at high density can form bioengineered cartilage that is rich in collagen type II and aggrecan; however, only passaged superficial zone-derived chondrocytes will express superficial zone-specific proteoglycan-4, and only passaged deep zone-derived chondrocytes will express deep zone-specific collagen type X. STUDY DESIGN: Controlled laboratory study. METHODS: Superficial and deep zone chondrocytes were isolated from bovine joints, and zonal subpopulations were separately expanded in 2-dimensional culture. At passage 2, superficial and deep zone chondrocytes were seeded, separately, in scaffold-free 3-dimensional culture within agarose wells and cultured in redifferentiation media. RESULTS: Monolayer expansion resulted in loss of expression for proteoglycan-4 and collagen type X in passaged superficial and deep zone chondrocytes, respectively. By passage 2, superficial and deep zone chondrocytes had similar expression for dedifferentiated molecules collagen type I and tenascin C. Redifferentiation of both superficial and deep zone chondrocytes led to the expression of collagen type II and aggrecan in both passaged chondrocyte populations. However, only redifferentiated deep zone chondrocytes expressed collagen type X, and only redifferentiated superficial zone chondrocytes expressed and secreted proteoglycan-4. Additionally, redifferentiated deep zone chondrocytes produced a thicker and more robust tissue compared with superficial zone chondrocytes. CONCLUSION: The recapitulation of the primary phenotype from passaged zonal chondrocytes introduces a novel method of functional bioengineering of cartilage that resembles the zone-specific biological properties of native cartilage. CLINICAL RELEVANCE: The recapitulation of the primary phenotype in zonal chondrocytes could be a possible method to tailor bioengineered cartilage to have zone-specific expression.


Subject(s)
Cartilage, Articular , Chondrocytes , Humans , Animals , Cattle , Chondrocytes/metabolism , Aggrecans/metabolism , Collagen Type II/metabolism , Collagen Type X/metabolism , Cell Differentiation , Cells, Cultured , Tissue Engineering/methods
14.
J Orthop Res ; 42(6): 1314-1325, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38225869

ABSTRACT

Known to be involved in bone-cartilage metabolism, Vitamin D (VD) may play a role in human's disc pathophysiology. Given that postmenopausal women are prone to suffer VD deficiency and intervertebral disc degeneration (IDD), this study is intended to investigate whether VD can delay IDD in ovariectomized rats by improving bone microstructure and antioxidant stress. Female Sprague-Dawley rats were randomly allocated into four groups: sham, oophorectomy (OVX)+VD deficiency (VDD), OVX, and OVX+VD supplementation (VDS). In vivo, after a 6-month intervention, imaging and pathology slice examinations showed that IDD induced by OVX was significantly alleviated in VDS and deteriorated by VDD. The expressions of aggrecan and Collagen II in intervertebral disc were reduced by OVX and VDD, and elevated by VDS. Compared with the OVX+VDD and OVX group vertebrae, OVX+VDS group vertebrae showed significantly improved endplate porosity and lumbar bone mineral density with increased percent bone volume and trabecular thickness. Furthermore, 1α,25(OH)2D3 restored the redox balance (total antioxidant capacity, ratio of oxidized glutathione/glutathione) in the disc. The cocultivation of 1α,25(OH)2D3 and nucleus pulposus cells (NPCs) was conducted to observe its potential ability to resist excessive oxidative stress damage induced by H2O2. In vitro experiments revealed that 1α,25(OH)2D3 reduced the senescence, apoptosis, and extracellular matrix degradation induced by H2O2 in NPCs. In conclusion, VDS exhibits protective effects in OVX-induced IDD, partly by regulating the redox balance and preserving the microstructure of endplate. This finding provides a new idea for the prevention and treatment of IDD.


Subject(s)
Intervertebral Disc Degeneration , Ovariectomy , Rats, Sprague-Dawley , Vitamin D , Animals , Female , Intervertebral Disc Degeneration/prevention & control , Intervertebral Disc Degeneration/metabolism , Vitamin D/therapeutic use , Vitamin D/pharmacology , Bone Density/drug effects , Vitamin D Deficiency/complications , Rats , Aggrecans/metabolism , Oxidative Stress/drug effects
15.
Toxicol Lett ; 393: 14-23, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211732

ABSTRACT

Prednisone is frequently used to treat rheumatoid diseases in pregnant women because of its high degree of safety. Whether prenatal prednisone exposure (PPE) negatively impacts fetal articular cartilage development is unclear. In this study, we simulated a clinical prednisone treatment regimen to examine the effects of different timings and doses of PPE on cartilage development in female and male fetal mice. Prednisone doses (0.25, 0.5, and 1 mg/kg/d) was administered to Kunming mice at different gestational stages (0-9 gestational days, GD0-9), mid-late gestation (GD10-18), or during the entire gestation (GD0-18) by oral gavage. The amount of matrix aggrecan (ACAN) and collagen type II a1(COL2a1), and expression of transforming growth factor ß1 (TGFß1) signaling pathway also demonstrated that the chondrocyte count and ACAN and COL2a1 expression reduced in fetal mice with early and mid-late PPE, with the reduction being more significant in the mice with early PPE than that in those with PPE at other stages. Prenatal exposure to different prednisone doses prevented the reduction of TGFß signaling pathway-related genes [TGFßR1, SMAD family member 3 (Smad3), SRY-box9 (SOX9)] as well as ACAN and COL2a1 mRNA expression levels in fetal mouse cartilage, with the most significant decrease after 1 mg/kg·d PPE. In conclusion, PPE can inhibit/restrain fetal cartilage development, with the greatest effect at higher clinical dose (1 mg/kg·d) and early stage of pregnancy (GD0-9), and the mechanism may be related to TGFß signaling pathway inhibition. The result of this study provide a theoretical and experimental foundation for the rational clinical use of prednisone.


Subject(s)
Cartilage, Articular , Humans , Mice , Female , Male , Pregnancy , Animals , Prednisone/toxicity , Prednisone/metabolism , Aggrecans/metabolism , Fetus/metabolism , Chondrocytes , Transforming Growth Factor beta/metabolism , Collagen Type II/genetics , Collagen Type II/toxicity , Collagen Type II/metabolism
16.
J Bone Miner Metab ; 42(1): 1-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38055109

ABSTRACT

INTRODUCTION: Osteoarthritis (OA) compromises patients' quality of life and requires further study. Although miR-92a-3p was reported to possess chondroprotective effects, the underlying mechanism requires further clarification. The objectives of this study were to elucidate the mechanism by which miR-92a-3p alleviates OA and to examine the efficacy of shRNA-92a-3p, which was designed based on mature miR-92a-3p. MATERIALS AND METHODS: TargetScan and luciferase reporter assay were used to predict the target of miR-92a-3p. Adipose-derived stem cells (ADSCs) were transfected with miR-92a-3p/miR-NC mimic for the analysis of chondrogenic biomarkers and SMAD proteins. ADSCs and osteoarthritic chondrocytes were transduced with shRNA-92a-3p for the analysis of chondrogenic biomarkers and SMAD proteins. OA was surgically induced in C57BL/6JJcl mice, and ADSCs with/without shRNA-92a-3p transduction were intra-articularly injected for the assessment of cartilage damage. RESULTS: SMAD6 and SMAD7 were predicted as direct targets of miR-92a-3p by TargetScan and luciferase reporter assay. Transfection of the miR-92a-3p mimic resulted in a decrease in SMAD6 and SMAD7 levels and an increase in phospho-SMAD2/3, phospho-SMAD1/5/9, SOX9, collagen type II, and aggrecan levels in ADSCs. Furthermore, shRNA-92a-3p decreased SMAD6 and SMAD7 levels, and increased phospho-SMAD2/3, phospho-SMAD1/5/9, SOX9, collagen type II, and aggrecan levels in ADSCs and osteoarthritic chondrocytes. Additionally, ADSC-shRNA-92a-3p-EVs reduced the rate of decrease of SOX9, collagen type II, and aggrecan in osteoarthritic chondrocytes. In mice with surgically induced OA, shRNA-92a-3p-treated ADSCs alleviated cartilage damage more effectively than nontreated ADSCs. CONCLUSIONS: miR-92a-3p and shRNA-92a-3p exhibit therapeutic effects in treating OA by targeting SMAD6 and SMAD7, thereby enhancing TGF-ß signaling.


Subject(s)
MicroRNAs , Osteoarthritis , Humans , Animals , Mice , Chondrocytes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Collagen Type II/metabolism , Aggrecans/metabolism , Quality of Life , Mice, Inbred C57BL , Osteoarthritis/genetics , Osteoarthritis/therapy , Osteoarthritis/metabolism , Smad Proteins/metabolism , Biomarkers/metabolism , Luciferases/metabolism , Luciferases/pharmacology , Smad6 Protein/metabolism , Smad6 Protein/pharmacology
17.
Mol Neurobiol ; 61(1): 411-422, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37615879

ABSTRACT

Anxiety disorder is one of the most common mental disorders worldwide, affecting nearly 30% of adults. However, its underlying molecular mechanisms are still unclear. Here we subjected mice to chronic restraint stress (CRS), a paradigm known to induce anxiety-like behavior in mice. CRS mice exhibited anxiety-like behavior and reduced synaptic transmission in the medial prefrontal cortex (mPFC). Notably, Wisteria Floribunda agglutinin (WFA) staining showed a reduction of perineuronal nets (PNNs) expression in the mPFC of CRS mice. And the mRNA and protein levels of aggrecan (ACAN), a core component of PNNs, were also reduced. Parallelly, enzymatic digestion of PNNs in the mPFC by injecting Chondroitinase ABC (chABC) resulted in anxiety-like behavior in mice. Fluoxetine (FXT) is a clinically prescribed antidepressant/anxiolytic drug. FXT treatment in CRS mice not only ameliorated their deficits in behavior and synaptic transmissions, but also prevented CRS-induced reduction of PNNs and ACAN expressions. This study demonstrates that proper PNNs level is critical to brain functions, and their decline may serve as a pathological mechanism of anxiety disorders.


Subject(s)
Extracellular Matrix , Parvalbumins , Humans , Adult , Mice , Animals , Parvalbumins/metabolism , Extracellular Matrix/metabolism , Aggrecans/metabolism , Anxiety , Synaptic Transmission
18.
J Orthop Res ; 42(5): 973-984, 2024 May.
Article in English | MEDLINE | ID: mdl-38041209

ABSTRACT

Rotator cuff tendinopathy has a multifactorial etiology, with both aging and external compression found to influence disease progression. However, tendon's response to these factors is still poorly understood and in vivo animal models make it difficult to decouple these effects. Therefore, we developed an explant culture model that allows us to directly apply compression to tendons and then observe their biological responses. Using this model, we applied a single acute compressive injury to C57BL/6J flexor digitorum longus tendon explants and observed changes in viability, metabolic activity, matrix composition, matrix biosynthesis, matrix structure, gene expression, and mechanical properties. We hypothesized that a single acute compressive load would result in an injury response in tendon and that this effect would be amplified in aged tendons. We found that young tendons had increased matrix turnover with a decrease in small leucine-rich proteoglycans, increase in compression-resistant proteoglycan aggrecan, increase in collagen synthesis, and an upregulation of collagen-degrading MMP-9. Aged tendons lacked any of these adaptive responses and instead had decreased metabolic activity and collagen synthesis. This implies that aged tendons lack the adaptation mechanisms required to return to homeostasis, and therefore are at greater risk for compression-induced injury. Overall, we present a novel compressive injury model that demonstrates lasting age-dependent changes and has the potential to examine the long-term response of tendon to a variety of compressive loading conditions.


Subject(s)
Rotator Cuff , Tendons , Animals , Tendons/physiology , Proteoglycans/metabolism , Collagen/metabolism , Aggrecans/metabolism
19.
J Cell Mol Med ; 28(2): e18054, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38009813

ABSTRACT

This present study is aimed to investigate the role of microRNA-365 (miR-365) in the development of intervertebral disc degeneration (IDD). Nucleus pulposus (NP) cells were transfected by miR-365 mimic and miR-365 inhibitor, respectively. Concomitantly, the transfection efficiency and the expression level of miRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Meanwhile, NP cells apoptosis was measured through propidium iodide (PI)-AnnexinV-fluorescein isothiocyanate (FITC) apoptosis detection kit. Subsequently, immunofluorescence (IF) staining was performed to assess the expression of collagen II, aggrecan and matrix metalloproteinase 13 (MMP-13). In addition, bioinformatic prediction and Luciferase reporter assay were used to reveal the target gene of miR-365. Finally, we isolated the primary NP cells from rats and injected NP-miR-365 in rat IDD models. The results showed that overexpression of miR-365 could effectively inhibit NP cells apoptosis and MMP-13 expression and upregulate the expression of collagen II and aggrecan. Conversely, suppression of miR-365 enhanced NP cell apoptosis and elevated MMP-13 expression, but decreased the expression of collagen II and aggrecan. Moreover, the further data demonstrated that miR-365 mediated NP cell degradation through targeting ephrin-A3 (EFNA3). In addition, the cells apoptosis and catabolic markers were increased in NP cells when EFNA3 upregulated. More importantly, the vivo data supported that miR-365-NP cells injection ameliorated IDD in rats models. miR-365 could alleviate the development of IDD by regulating NP cell apoptosis and ECM degradation, which is likely mediated by targeting EFNA3. Therefore, miR-365 may be a promising therapeutic avenue for treatment IDD through EFNA3.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , MicroRNAs , Nucleus Pulposus , Rats , Animals , MicroRNAs/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Ephrin-A3 , Aggrecans/genetics , Aggrecans/metabolism , Extracellular Matrix/metabolism , Apoptosis/genetics , Collagen/metabolism , Intervertebral Disc/metabolism
20.
J Orthop Res ; 42(6): 1326-1334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38153697

ABSTRACT

Intervertebral disc herniation is a common spinal disorder that is often treated with discectomy when conservative measures fail. To devise therapeutic strategies for tears in the annulus fibrosus (AF), the regenerative capability of AF cells under spinal loading needs to be addressed. We hypothesized that the compressive loading associated with deformation in AF cells reduces synthetic and degradative activities in extracellular matrix and cell proliferation. We evaluated expression of key matrix molecules and cell proliferation by RT-PCR and immunohistochemistry by inner and outer bovine AF cells incubated under hydrostatic pressure (HP), arc-bending strain (Strain), and combined HP and Strain (HP/Strain) mimicking spinal loading. Inner AF cells showed significantly increased levels of aggrecan core protein, chondroitin sulfate N-acetylgalactosaminyltransferase-1, and tissue inhibitor of metalloproteinases-2 by 6 days under HP (p < 0.05), with a tendency toward increased matrix metalloproteinase-13. Outer AF cells demonstrated a significant decline in collagen type-2 under Strain and HP/Strain (p < 0.05) and a tendency toward suppression of collagen type-1 and elastin expression compared to HP and unloaded control. On the other hand, proliferating cell nucleus antigen increased significantly under Strain and HP/Strain in inner AF and declined under unloaded and HP in outer AF (p < 0.05). Immunohistology findings supported reductions in gene expressions of matrix molecules. Thus, changes in HP/Strain in AF appear to diminish synthetic and degradative activities while increasing cell proliferation. To promote regeneration, continuous overloading should be avoided, as it converts the synthetic activity to a state in which tissue repair is limited.


Subject(s)
Annulus Fibrosus , Cell Proliferation , Extracellular Matrix , Hydrostatic Pressure , Animals , Cattle , Annulus Fibrosus/metabolism , Extracellular Matrix/metabolism , Cells, Cultured , Aggrecans/metabolism , Stress, Mechanical , Tissue Inhibitor of Metalloproteinase-2/metabolism , Collagen Type II/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...