Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
1.
J Agric Food Chem ; 72(28): 15765-15777, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970495

ABSTRACT

Konjac glucomannan (KGM), high-viscosity dietary fiber, is utilized in weight management. Previous investigations on the appetite-suppressing effects of KGM have centered on intestinal responses to nutrients and gastric emptying rates, with less focus on downstream hypothalamic neurons of satiety hormones. In our studies, the molecular mechanisms through which KGM and its degradation products influence energy homeostasis via the adipocyte-hypothalamic axis have been examined. It was found that high-viscosity KGM more effectively stimulates enteroendocrine cells to release glucagon-like peptide-1 (GLP-1) and reduces ghrelin production, thereby activating hypothalamic neurons and moderating short-term satiety. Conversely, low-viscosity DKGM has been shown to exhibit stronger anti-inflammatory properties in the hypothalamus, enhancing hormone sensitivity and lowering the satiety threshold. Notably, both KGM and DKGM significantly reduced leptin signaling and fatty acid signaling in adipose tissue and activated brown adipose tissue thermogenesis to suppress pro-opiomelanocortin (POMC) expression and activate agouti-related protein (AgRP) expression, thereby reducing food intake and increasing energy expenditure. Additionally, high-viscosity KGM has been found to activate the adipocyte-hypothalamus axis more effectively than DKGM, thereby promoting greater daily energy expenditure. These findings provide novel insights into the adipocyte-hypothalamic axis for KGM to suppress appetite and reduce weight.


Subject(s)
Adipocytes , Appetite Regulation , Diet, High-Fat , Energy Metabolism , Hypothalamus , Mice, Inbred C57BL , Animals , Mice , Energy Metabolism/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , Diet, High-Fat/adverse effects , Male , Appetite Regulation/drug effects , Adipocytes/metabolism , Adipocytes/drug effects , Humans , Glucagon-Like Peptide 1/metabolism , Ghrelin/metabolism , Leptin/metabolism , Agouti-Related Protein/metabolism , Agouti-Related Protein/genetics , Thermogenesis/drug effects , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Obesity/metabolism , Obesity/physiopathology , Obesity/diet therapy , Mannans
2.
Nat Commun ; 15(1): 5439, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937485

ABSTRACT

Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing 'hunger' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.


Subject(s)
Agouti-Related Protein , Feeding Behavior , Neuronal Plasticity , Neuropeptide Y , Septal Nuclei , Starvation , Animals , Neuropeptide Y/metabolism , Neuropeptide Y/genetics , Neuronal Plasticity/physiology , Agouti-Related Protein/metabolism , Agouti-Related Protein/genetics , Feeding Behavior/physiology , Septal Nuclei/metabolism , Septal Nuclei/physiology , Mice , Starvation/metabolism , Male , Amygdala/metabolism , Amygdala/physiology , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neurons/physiology , GABAergic Neurons/metabolism , Eating/physiology , Fasting/physiology , Anxiety/metabolism , Anxiety/physiopathology , Hunger/physiology
3.
Neuromolecular Med ; 26(1): 18, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691185

ABSTRACT

Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.


Subject(s)
Agouti-Related Protein , Energy Metabolism , GTP-Binding Protein gamma Subunits , Homeostasis , Hypothalamus , Mice, Knockout , Pro-Opiomelanocortin , Rosiglitazone , Animals , Mice , Hypothalamus/metabolism , Energy Metabolism/drug effects , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/biosynthesis , Agouti-Related Protein/genetics , GTP-Binding Protein gamma Subunits/genetics , Rosiglitazone/pharmacology , Male , Neuroinflammatory Diseases/etiology , Mice, Inbred C57BL , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Neuropeptides/genetics , Neuropeptides/deficiency , Gene Expression Regulation/drug effects
4.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38815068

ABSTRACT

The growth hormone secretagogue receptor (GHSR), primarily known as the receptor for the hunger hormone ghrelin, potently controls food intake, yet the specific Ghsr-expressing cells mediating the orexigenic effects of this receptor remain incompletely characterized. Since Ghsr is expressed in gamma-aminobutyric acid (GABA)-producing neurons, we sought to investigate whether the selective expression of Ghsr in a subset of GABA neurons is sufficient to mediate GHSR's effects on feeding. First, we crossed mice that express a tamoxifen-dependent Cre recombinase in the subset of GABA neurons that express glutamic acid decarboxylase 2 (Gad2) enzyme (Gad2-CreER mice) with reporter mice, and found that ghrelin mainly targets a subset of Gad2-expressing neurons located in the hypothalamic arcuate nucleus (ARH) and that is predominantly segregated from Agouti-related protein (AgRP)-expressing neurons. Analysis of various single-cell RNA-sequencing datasets further corroborated that the primary subset of cells coexpressing Gad2 and Ghsr in the mouse brain are non-AgRP ARH neurons. Next, we crossed Gad2-CreER mice with reactivable GHSR-deficient mice to generate mice expressing Ghsr only in Gad2-expressing neurons (Gad2-GHSR mice). We found that ghrelin treatment induced the expression of the marker of transcriptional activation c-Fos in the ARH of Gad2-GHSR mice, yet failed to induce food intake. In contrast, food deprivation-induced refeeding was higher in Gad2-GHSR mice than in GHSR-deficient mice and similar to wild-type mice, suggesting that ghrelin-independent roles of GHSR in a subset of GABA neurons is sufficient for eliciting full compensatory hyperphagia in mice.


Subject(s)
Arcuate Nucleus of Hypothalamus , Food Deprivation , GABAergic Neurons , Ghrelin , Glutamate Decarboxylase , Hyperphagia , Receptors, Ghrelin , Animals , Male , Mice , GABAergic Neurons/metabolism , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Hyperphagia/metabolism , Ghrelin/metabolism , Ghrelin/pharmacology , Arcuate Nucleus of Hypothalamus/metabolism , Food Deprivation/physiology , Glutamate Decarboxylase/metabolism , Glutamate Decarboxylase/genetics , Mice, Transgenic , Agouti-Related Protein/metabolism , Agouti-Related Protein/genetics , Mice, Inbred C57BL
5.
Nat Commun ; 15(1): 4646, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821928

ABSTRACT

AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.


Subject(s)
Hunger , Interferon Regulatory Factor-3 , Leptin , Neurons , Animals , Male , Mice , Agouti-Related Protein/metabolism , Agouti-Related Protein/genetics , Arcuate Nucleus of Hypothalamus/metabolism , Chromatin , Epigenesis, Genetic , Fasting , Gene Expression Regulation , Hunger/physiology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Leptin/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Signal Transduction , Transcriptome
6.
Mol Autism ; 15(1): 14, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570876

ABSTRACT

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Subject(s)
Autistic Disorder , Animals , Mice , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Hypothalamus/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Mitogen-Activated Protein Kinase 14/metabolism
7.
Nat Commun ; 15(1): 2131, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459068

ABSTRACT

AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.


Subject(s)
Hunger , MicroRNAs , Animals , Mice , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Hunger/physiology , Hypothalamus/metabolism , MicroRNAs/metabolism , Neurons/metabolism , Obesity/metabolism
8.
Brain Res Bull ; 208: 110898, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360152

ABSTRACT

The involvement of androgens in the regulation of energy metabolism has been demonstrated. The main objective of the present research was to study the involvement of androgens in both the programming of energy metabolism and the regulatory peptides associated with feeding. For this purpose, androgen receptors and the main metabolic pathways of testosterone were inhibited during the first five days of postnatal life in male and female Wistar rats. Pups received a daily s.c. injection from the day of birth, postnatal day (P) 1, to P5 of Flutamide (a competitive inhibitor of androgen receptors), Letrozole (an aromatase inhibitor), Finasteride (a 5-alpha-reductase inhibitor) or vehicle. Body weight, food intake and fat pads were measured. Moreover, hypothalamic Agouti-related peptide (AgRP), neuropeptide Y (NPY), orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay. The inhibition of androgenic activity during the first five days of life produced a significant decrease in body weight in females at P90 but did not affect this parameter in males. Moreover, the inhibition of aromatase decreased hypothalamic AgRP mRNA levels in males while the inhibition of 5α-reductase decreased hypothalamic AgRP and orexin mRNA levels in female rats. Finally, food intake and visceral fat, but not subcutaneous fat, were affected in both males and females depending on which testosterone metabolic pathway was inhibited. Our results highlight the differential involvement of androgens in the programming of energy metabolism as well as the AgRP and orexin systems during development in male and female rats.


Subject(s)
Androgens , Receptors, Androgen , Rats , Animals , Male , Female , Orexins/metabolism , Androgens/pharmacology , Androgens/metabolism , Rats, Wistar , Agouti-Related Protein/genetics , Receptors, Androgen/metabolism , Body Weight/physiology , Hypothalamus/metabolism , Pro-Opiomelanocortin/genetics , RNA, Messenger/metabolism , Testosterone/pharmacology , Oxidoreductases/metabolism
9.
Cell Rep ; 43(2): 113675, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38224492

ABSTRACT

Rapid gut-brain communication is critical to maintain energy balance and is disrupted in diet-induced obesity. In particular, the role of carbohydrate overconsumption in the regulation of interoceptive circuits in vivo requires further investigation. Here, we report that an obesogenic high-sucrose diet (HSD) selectively blunts silencing of hunger-promoting agouti-related protein (AgRP) neurons following intragastric delivery of glucose, whereas we previously showed that overconsumption of a high-fat diet (HFD) selectively attenuates lipid-induced neural silencing. By contrast, both HSD and HFD reversibly dampen rapid AgRP neuron inhibition following chow presentation and promote intake of more palatable foods. Our findings reveal that excess sugar and fat pathologically modulate feeding circuit activity in both macronutrient-dependent and -independent ways and thus may additively exacerbate obesity.


Subject(s)
Neurons , Sucrose , Humans , Agouti-Related Protein/genetics , Obesity , Eating
10.
Mol Metab ; 80: 101886, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246589

ABSTRACT

OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.


Subject(s)
Hypothalamus , Melanocortins , Mice , Animals , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Hypothalamus/metabolism , Mice, Transgenic , Melanocortins/metabolism , Rhombencephalon/metabolism , Mammals/metabolism
11.
Aging Cell ; 23(2): e14047, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37994388

ABSTRACT

Orexigenic neurons expressing agouti-related protein (AgRP) and neuropeptide Y in the arcuate nucleus (ARC) of the hypothalamus are activated in response to dynamic variations in the metabolic state, including exercise. We previously observed that carnitine palmitoyltransferase 1a (CPT1A), a rate-limiting enzyme of mitochondrial fatty acid oxidation, is a key factor in AgRP neurons, modulating whole-body energy balance and fluid homeostasis. However, the effect of CPT1A in AgRP neurons in aged mice and during exercise has not been explored yet. We have evaluated the physical and cognitive capacity of adult and aged mutant male mice lacking Cpt1a in AgRP neurons (Cpt1a KO). Adult Cpt1a KO male mice exhibited enhanced endurance performance, motor coordination, locomotion, and exploration compared with control mice. No changes were observed in anxiety-related behavior, cognition, and muscle strength. Adult Cpt1a KO mice showed a reduction in gastrocnemius and tibialis anterior muscle mass. The cross-sectional area (CSA) of these muscles were smaller than those of control mice displaying a myofiber remodeling from type II to type I fibers. In aged mice, changes in myofiber remodeling were maintained in Cpt1a KO mice, avoiding loss of physical capacity during aging progression. Additionally, aged Cpt1a KO mice revealed better cognitive skills, reduced inflammation, and oxidative stress in the hypothalamus and hippocampus. In conclusion, CPT1A in AgRP neurons appears to modulate health and protects against aging. Future studies are required to clarify whether CPT1A is a potential antiaging candidate for treating diseases affecting memory and physical activity.


Subject(s)
Carnitine O-Palmitoyltransferase , Healthy Aging , Animals , Male , Mice , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Hypothalamus/metabolism , Neurons/metabolism
12.
Physiol Genomics ; 56(3): 265-275, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38145289

ABSTRACT

Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.


Subject(s)
Agouti-Related Protein , Kruppel-Like Factor 4 , Neurons , Animals , Mice , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Obesity/genetics , Obesity/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
13.
PLoS Biol ; 21(8): e3002252, 2023 08.
Article in English | MEDLINE | ID: mdl-37594983

ABSTRACT

It is well known that the neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons increase appetite and decrease thermogenesis. Previous studies demonstrated that optogenetic and/or chemogenetic manipulations of NPY/AgRP neuronal activity alter food intake and/or energy expenditure (EE). However, little is known about intrinsic molecules regulating NPY/AgRP neuronal excitability to affect long-term metabolic function. Here, we found that the G protein-gated inwardly rectifying K+ (GIRK) channels are key to stabilize NPY/AgRP neurons and that NPY/AgRP neuron-selective deletion of the GIRK2 subunit results in a persistently increased excitability of the NPY/AgRP neurons. Interestingly, increased body weight and adiposity observed in the NPY/AgRP neuron-selective GIRK2 knockout mice were due to decreased sympathetic activity and EE, while food intake remained unchanged. The conditional knockout mice also showed compromised adaptation to coldness. In summary, our study identified GIRK2 as a key determinant of NPY/AgRP neuronal excitability and driver of EE in physiological and stress conditions.


Subject(s)
Adiposity , Agouti-Related Protein , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Obesity , Animals , Mice , Agouti-Related Protein/genetics , Body Weight , Mice, Knockout , Neurons , Peptides , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics
14.
Int J Mol Sci ; 24(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569904

ABSTRACT

TTF-1 stimulates appetite by regulating the expression of agouti-related peptide (AgRP) and proopiomelanocortin (POMC) genes in the hypothalamus of starving animals. However, the mechanism underlying TTF-1's response to decreased energy levels remains elusive. Here, we provide evidence that the NAD+-dependent deacetylase, sirtuin1 (Sirt1), activates TTF-1 in response to energy deficiency. Energy deficiency leads to a twofold increase in the expression of both Sirt1 and TTF-1, leading to the deacetylation of TTF-1 through the interaction between the two proteins. The activation of Sirt1, induced by energy deficiency or resveratrol treatment, leads to a significant increase in the deacetylation of TTF-1 and promotes its nuclear translocation. Conversely, the inhibition of Sirt1 prevents these Sirt1 effects. Notably, a point mutation in a lysine residue of TTF-1 significantly disrupts its deacetylation and thus nearly completely hinders its ability to regulate AgRP and POMC gene expression. These findings highlight the importance of energy-deficiency-induced deacetylation of TTF-1 in the control of AgRP and POMC gene expression.


Subject(s)
Pro-Opiomelanocortin , Sirtuin 1 , Animals , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Hypothalamus/metabolism
15.
Diabetes ; 72(10): 1384-1396, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37478284

ABSTRACT

Eukaryotic translation initiation factor 2α (eIF2α) is a key mediator of the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR). In mammals, eIF2α is phosphorylated by overnutrition-induced ER stress and is related to the development of obesity. Here, we studied the function of phosphorylated eIF2α (p-eIF2α) in agouti-related peptide (AgRP) neurons using a mouse model (AgRPeIF2αA/A) with an AgRP neuron-specific substitution from Ser 51 to Ala in eIF2α, which impairs eIF2α phosphorylation in AgRP neurons. These AgRPeIF2αA/A mice had decreases in starvation-induced AgRP neuronal activity and food intake and an increased responsiveness to leptin. Intriguingly, impairment of eIF2α phosphorylation produced decreases in the starvation-induced expression of UPR and autophagy genes in AgRP neurons. Collectively, these findings suggest that eIF2α phosphorylation regulates AgRP neuronal activity by affecting intracellular responses such as the UPR and autophagy during starvation, thereby participating in the homeostatic control of whole-body energy metabolism. ARTICLE HIGHLIGHTS: This study examines the impact of eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, triggered by an energy deficit, on hypothalamic AgRP neurons and its subsequent influence on whole-body energy homeostasis. Impaired eIF2α phosphorylation diminishes the unfolded protein response and autophagy, both of which are crucial for energy deficit-induced activation of AgRP neurons. This study highlights the significance of eIF2α phosphorylation as a cellular marker indicating the availability of energy in AgRP neurons and as a molecular switch that regulates homeostatic feeding behavior.


Subject(s)
Eukaryotic Initiation Factor-2 , eIF-2 Kinase , Animals , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , eIF-2 Kinase/metabolism , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/metabolism , Feeding Behavior , Mammals/metabolism , Neurons/metabolism , Peptides/metabolism , Phosphorylation , Mice
16.
Nat Metab ; 5(6): 1045-1058, 2023 06.
Article in English | MEDLINE | ID: mdl-37277610

ABSTRACT

Hypothalamic AgRP/NPY neurons are key players in the control of feeding behaviour. Ghrelin, a major orexigenic hormone, activates AgRP/NPY neurons to stimulate food intake and adiposity. However, cell-autonomous ghrelin-dependent signalling mechanisms in AgRP/NPY neurons remain poorly defined. Here we show that calcium/calmodulin-dependent protein kinase ID (CaMK1D), a genetic hot spot in type 2 diabetes, is activated upon ghrelin stimulation and acts in AgRP/NPY neurons to mediate ghrelin-dependent food intake. Global Camk1d-knockout male mice are resistant to ghrelin, gain less body weight and are protected against high-fat-diet-induced obesity. Deletion of Camk1d in AgRP/NPY, but not in POMC, neurons is sufficient to recapitulate above phenotypes. In response to ghrelin, lack of CaMK1D attenuates phosphorylation of CREB and CREB-dependent expression of the orexigenic neuropeptides AgRP/NPY in fibre projections to the paraventricular nucleus (PVN). Hence, CaMK1D links ghrelin action to transcriptional control of orexigenic neuropeptide availability in AgRP neurons.


Subject(s)
Diabetes Mellitus, Type 2 , Ghrelin , Mice , Animals , Male , Ghrelin/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Diabetes Mellitus, Type 2/metabolism , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Neurons/metabolism , Obesity/metabolism , Mice, Knockout , Eating , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism
17.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175666

ABSTRACT

Appetite dysregulation is one of the factors contributing to anorexia, bulimia nervosa, obesity, and diabetes. Essential oils or fragrant compounds have been proven to regulate food intake and energy expenditure; hence, this study aimed to summarize their effects on appetite and the underlying mechanisms. The PubMed and Web of Science databases were searched until July 2022. Only two of the 41 studies were performed clinically, and the remaining 39 used animal models. Oral administration was the most common route, and a dosage range of 100-2000 mg/kg for mice or 2-32 mg/kg for rats was applied, with a duration of 12 days to 4 weeks, followed by inhalation (10-6-10-3 mg/cage or 10-9-10-2 mg/cm3 within 1 h). Approximately 11 essential oil samples and 22 fragrant compounds were found to increase appetite, while 12 essential oils and seven compounds decreased appetite. These fragrant components can exert appetite-regulating effects via leptin resistance, the activity of sympathetic/parasympathetic nerves, or the mRNA expression of neuropeptide Y (NPY)/agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART)/proopiomelanocortin (POMC) in the hypothalamus. Fragrance memory and cognitive processes may also play roles in appetite regulation. The findings of this study accentuate the potential of essential oils and fragrant compounds to regulate appetite and eating disorders.


Subject(s)
Appetite , Oils, Volatile , Rats , Mice , Animals , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Nerve Tissue Proteins/metabolism , Neuropeptide Y/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Appetite Regulation , Agouti-Related Protein/genetics , Eating
18.
Thyroid ; 33(7): 867-876, 2023 07.
Article in English | MEDLINE | ID: mdl-37166378

ABSTRACT

Background: Thyrotropin-releasing hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) have been identified as direct regulators of thyrotropin (TSH) and thyroid hormone (TH) levels. They play a significant role in context of negative feedback by TH at the level of TRH gene expression and during fasting when TH levels fall due, in part, to suppression of TRH gene expression. Methods: To test these functions directly for the first time, we used a chemogenetic approach and activated PVN TRH neurons in both fed and fasted mice. Next, to demonstrate the signals that regulate the fasting response in TRH neurons, we activated or inhibited agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus of fed or fasted mice, respectively. To determine if the same TRH neurons responsive to melanocortin signaling mediate negative feedback by TH, we disrupted the thyroid hormone receptor beta (TRß) in all melanocortin 4 receptor (MC4R) neurons in the PVN. Results: Activation of TRH neurons led to increased TSH and TH levels within 2 hours demonstrating the specific role of PVN TRH neurons in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Moreover, activation of PVN TRH neurons prevented the fall in TH levels in fasting mice. Stimulation of AgRP/NPY neurons led to a fall in TH levels despite increasing feeding. Inhibition of these same neurons prevented the fall in TH levels during a fast presumably via their ability to directly regulate PVN TRH neurons via, in part, the MC4R. Surprisingly, TH-mediated feedback was not impaired in mice lacking TRß in MC4R neurons. Conclusions: TRH neurons are major regulators of the HPT axis and the fasting-induced suppression of TH levels. The latter relies, at least in part, on the activation of AgRP/NPY neurons in the arcuate nucleus. Interestingly, present data do not support an important role for TRß signaling in regulating MC4R neurons in the PVN. Thus, it remains possible that different subsets of TRH neurons in the PVN mediate responses to energy balance and to TH feedback.


Subject(s)
Thyrotropin-Releasing Hormone , Thyrotropin , Mice , Animals , Thyrotropin-Releasing Hormone/metabolism , Thyrotropin/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Thyroid Gland/metabolism , Pituitary Hormone-Releasing Hormones/metabolism , Hypothalamus , Thyroid Hormones/metabolism , Paraventricular Hypothalamic Nucleus , Neurons/metabolism
19.
Proc Natl Acad Sci U S A ; 120(16): e2300015120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036983

ABSTRACT

Anorexia nervosa (AN) is a psychiatric illness with the highest mortality. Current treatment options have been limited to psychotherapy and nutritional support, with low efficacy and high relapse rates. Hypothalamic AgRP (agouti-related peptide) neurons that coexpress AGRP and neuropeptide Y (NPY) play a critical role in driving feeding while also modulating other complex behaviors. We have previously reported that genetic ablation of Tet3, which encodes a member of the TET family dioxygenases, specifically in AgRP neurons in mice, activates these neurons and increases the expression of AGRP, NPY, and the vesicular GABA transporter (VGAT), leading to hyperphagia and anxiolytic effects. Bobcat339 is a synthetic small molecule predicted to bind to the catalytic pockets of TET proteins. Here, we report that Bobcat339 is effective in mitigating AN and anxiety/depressive-like behaviors using a well-established mouse model of activity-based anorexia (ABA). We show that treating mice with Bobcat339 decreases TET3 expression in AgRP neurons and activates these neurons leading to increased feeding, decreased compulsive running, and diminished lethality in the ABA model. Mechanistically, Bobcat339 induces TET3 protein degradation while simultaneously stimulating the expression of AGRP, NPY, and VGAT in a TET3-dependent manner both in mouse and human neuronal cells, demonstrating a conserved, previously unsuspected mode of action of Bobcat339. Our findings suggest that Bobcat339 may potentially be a therapeutic for anorexia nervosa and stress-related disorders.


Subject(s)
Anorexia Nervosa , Dioxygenases , Mice , Humans , Animals , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Anorexia Nervosa/drug therapy , Anorexia Nervosa/metabolism , Neurons/metabolism , Hypothalamus/metabolism , Models, Animal , Dioxygenases/metabolism
20.
Biol Sex Differ ; 14(1): 14, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966335

ABSTRACT

BACKGROUND: Fatty acid metabolism in the hypothalamus has an important role in food intake, but its specific role in AgRP neurons is poorly understood. Here, we examined whether carnitinea palmitoyltransferase 1A (CPT1A), a key enzyme in mitochondrial fatty acid oxidation, affects energy balance. METHODS: To obtain Cpt1aKO mice and their control littermates, Cpt1a(flox/flox) mice were crossed with tamoxifen-inducible AgRPCreERT2 mice. Food intake and body weight were analyzed weekly in both males and females. At 12 weeks of age, metabolic flexibility was determined by ghrelin-induced food intake and fasting-refeeding satiety tests. Energy expenditure was analyzed by calorimetric system and thermogenic activity of brown adipose tissue. To study fluid balance the analysis of urine and water intake volumes; osmolality of urine and plasma; as well as serum levels of angiotensin and components of RAAS (renin-angiotensin-aldosterone system) were measured. At the central level, changes in AgRP neurons were determined by: (1) analyzing specific AgRP gene expression in RiboTag-Cpt1aKO mice obtained by crossing Cpt1aKO mice with RiboTag mice; (2) measuring presynaptic terminal formation in the AgRP neurons with the injection of the AAV1-EF1a-DIO-synaptophysin-GFP in the arcuate nucleus of the hypothalamus; (3) analyzing AgRP neuronal viability and spine formations by the injection AAV9-EF1a-DIO-mCherry in the arcuate nucleus of the hypothalamus; (4) analyzing in situ the specific AgRP mitochondria in the ZsGreen-Cpt1aKO obtained by breeding ZsGreen mice with Cpt1aKO mice. Two-way ANOVA analyses were performed to determine the contributions of the effect of lack of CPT1A in AgRP neurons in the sex. RESULTS: Changes in food intake were just seen in male Cpt1aKO mice while only female Cpt1aKO mice increased energy expenditure. The lack of Cpt1a in the AgRP neurons enhanced brown adipose tissue activity, mainly in females, and induced a substantial reduction in fat deposits and body weight. Strikingly, both male and female Cpt1aKO mice showed polydipsia and polyuria, with more reduced serum vasopressin levels in females and without osmolality alterations, indicating a direct involvement of Cpt1a in AgRP neurons in fluid balance. AgRP neurons from Cpt1aKO mice showed a sex-dependent gene expression pattern, reduced mitochondria and decreased presynaptic innervation to the paraventricular nucleus, without neuronal viability alterations. CONCLUSIONS: Our results highlight that fatty acid metabolism and CPT1A in AgRP neurons show marked sex differences and play a relevant role in the neuronal processes necessary for the maintenance of whole-body fluid and energy balance.


Subject(s)
Carnitine O-Palmitoyltransferase , Neurons , Thirst , Animals , Female , Male , Mice , Agouti-Related Protein/genetics , Body Weight , Fatty Acids/metabolism , Carnitine O-Palmitoyltransferase/genetics , Eating , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL