Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 210: 108569, 2024 May.
Article in English | MEDLINE | ID: mdl-38552261

ABSTRACT

Coexistence impact of pollutants of different nature on halophytes tolerance to metal excess has not been thoroughly examined, and plant functional responses described so far do not follow a clear pattern. Using the Cu-tolerant halophyte Sarcocornia fruticosa as a model species, we conducted a greenhouse experiment to evaluate the impact of two concentration of copper (0 and 12 mM CuSO4) in combination with three nitrate levels (2, 14 and 50 mM KNO3) on plant growth, photosynthetic apparatus performance and ROS-scavenging enzymes system. The results revealed that S. fruticosa was able to grow adequately even when exposed to high concentrations of copper and nitrate. This response was linked to the plant capacity to uptake and retain a large amount of copper in its roots (up to 1500 mg kg-1 Cu), preventing its transport to aerial parts. This control of translocation was further magnified with nitrate concentration increment. Likewise, although Cu excess impaired S. fruticosa carbon assimilation capacity, the plant was able to downregulate its light-harvesting complexes function, as indicated its lowers ETR values, especially at 12 mM Cu + 50 mM NO3. This downregulation would contribute to avoid excess energy absorption and transformation. In addition, this strategy of avoiding excess energy was accompanied by the upregulation of all ROS-scavenging enzymes, a response that was further enhanced by the increase in nitrate concentration. Therefore, we conclude that the coexistence of nitrate would favor S. fruticosa tolerance to copper excess, and this effect is mediated by the combined activation of several tolerance mechanisms.


Subject(s)
Copper , Nitrates , Salt-Tolerant Plants , Copper/metabolism , Copper/toxicity , Nitrates/metabolism , Nitrates/pharmacology , Salt-Tolerant Plants/metabolism , Salt-Tolerant Plants/drug effects , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Aizoaceae/metabolism , Aizoaceae/drug effects , Aizoaceae/physiology , Plant Roots/metabolism , Plant Roots/drug effects
2.
Plant Physiol Biochem ; 143: 212-223, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31518852

ABSTRACT

In this study, we reported on an ASR gene (TtASR) related to salt/drought tolerance from the edible halophyte Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae). A phylogenetic analysis revealed that TtASR was evolutionarily close to other two halophytic glycine-rich ASR members, SbASR-1 (from Salicornia brachiate) and SlASR (from Suaeda liaotungensis), with a typical abscisic acid (ABA)/water-deficit stress (WDS) domain at C-terminal. Quantitative RT-PCR analyses showed that TtASR was expressed in all tested different organs of the T. tetragonoides plant and that expression levels were apparently induced after salt, osmotic stress, and ABA treatments in T. tetragonoides seedlings. An induction of TtASR improved the growth performance of yeast and bacteria more than the control under high salinity, osmotic stress, and oxidative stress. TtASR was not a nuclear-specific protein in plant, and the transcriptional activation assay also demonstrated that TtASR could not activate reporter gene's expression in yeast. TtASR overexpressed Arabidopsis plants exhibited higher tolerance for salt/drought and oxidative stresses and lower ROS accumulation than wild type (WT) plants, accompanied by increased CAT, SOD activities, higher proline content, and lower MDA content in vivo. The results indicated that the TtASR was involved in plant responses to salt and drought, probably by mediating water homeostasis or by acting as ROS scavengers, and that it decreased the membrane damage and improved cellular osmotic adjustment that respond to abiotic stresses in microorganisms and plants.


Subject(s)
Aizoaceae/metabolism , Glycine/chemistry , Plant Proteins/metabolism , Abscisic Acid/metabolism , Aizoaceae/drug effects , Aizoaceae/physiology , Gene Expression Regulation, Plant/drug effects , Oxidative Stress/drug effects , Plant Proteins/genetics , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , Proline/metabolism , Salt Tolerance , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/metabolism , Salt-Tolerant Plants/physiology , Seedlings/drug effects , Seedlings/metabolism , Seedlings/physiology , Sodium Chloride/pharmacology , Stress, Physiological/drug effects
3.
Chemosphere ; 219: 463-471, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30551113

ABSTRACT

Sesuvium portulacastrum, a halophyte with high tolerance to heavy metals like Cd, Pb and Ni is considered for phytoremediation of metal contaminated saline soils. The tolerance to a selected metal ion could, by hypothesis, be stimulated through in vitro adaptation and regeneration of the plant. Seedlings obtained by in vitro micro-propagation, were exposed to 0, 25 and 50 µM Ni, as NiCl2, in agar-based medium for 30 days. Growth parameters, plant water content, the concentration of photosynthetic pigments, proline and malondialdehyde (MDA) concentrations were determined. Nickel and nutrients distribution in leaves was studied by micro-Proton-Induced-X-ray-Emission (µ-PIXE). The results showed that Ni was mainly accumulated in vascular bundles, next in water storage tissues and chlorenchyma. Ni concentrations in chlorenchyma increased with increasing Ni in culturing medium, in direct relation to decrease of photosynthetic pigments and increase of oxidative stress. As compared to control plants, Ni induced substantial increase in MDA and proline accumulation. Plants exposed to 50 µM Ni accumulated up to 650 µg g-1 of Ni in the shoots, exhibiting chlorosis and necrosis and a drastically reduced plant growth. Perturbations in uptake and distribution of nutrients were observed, inducing mineral deficiency, probably through membrane leakage. The mineral nutrient disturbances induced by Ni could be highly implicated in the restriction of S. portulacastrum development under the acute 50 µM Ni level.


Subject(s)
Adaptation, Physiological , Aizoaceae/drug effects , Nickel/pharmacology , Seedlings/drug effects , Aizoaceae/growth & development , Aizoaceae/metabolism , Biodegradation, Environmental , Minerals/metabolism , Nickel/pharmacokinetics , Photosynthesis , Plant Leaves , Salt-Tolerant Plants , Soil Pollutants/pharmacology , Tissue Distribution
4.
Mar Pollut Bull ; 131(Pt A): 416-421, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29886966

ABSTRACT

Sesuvium portulacastrum was treated with mixture of copper, zinc, and cadmium for 60 days, with the concentration of each metal ranging from 0 to 20 mg/L. The tolerance of plants and bioaccumulation of heavy metals were then investigated. The height of S. portulacastrum decreased significantly with increasing heavy metal concentrations from 1 to 20 mg/L. The biomass was adversely impacted when the concentration exceeded 5 mg/L. There were no significant differences in malondialdehyde (MDA) concentration among different treatment groups, while the soluble protein content and superoxide dismutase (SOD) activity decreased with increasing heavy metal concentration. However, the BCF values of the three metals were all higher than 10 and the tolerance in root was up to 1000 mg/kg without causing significant growth inhibition, suggesting that S. portulacastrum should be a potential candidate for phytostabilization for the phytoremediation of polymetallic contaminations in coastal environments.


Subject(s)
Aizoaceae/drug effects , Cadmium/pharmacokinetics , Copper/toxicity , Zinc/pharmacokinetics , Aizoaceae/growth & development , Aizoaceae/metabolism , Biodegradation, Environmental , Biomass , Cadmium/toxicity , China , Malondialdehyde/metabolism , Plant Proteins/metabolism , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/growth & development , Salt-Tolerant Plants/metabolism , Superoxide Dismutase/metabolism , Zinc/toxicity
5.
Ann Bot ; 122(3): 373-385, 2018 08 27.
Article in English | MEDLINE | ID: mdl-29788289

ABSTRACT

Background and Aims: Salinity affects the bioavailability of cadmium (Cd) in soils and Cd accumulation in plants, but the associated mechanisms remain unclear. This study aimed to assess the metabolic response to NaCl and Cd and the relationship between metabolites and Cd accumulation in the halophyte Carpobrotus rossii, which has potential for Cd phytoextraction. Methods: Plants were grown in nutrient solution with 0-400 mm NaCl in the presence of 5 or 15 µm Cd, with varied or constant solution Cd2+ activity. Plant growth and Cd uptake were measured, and the accumulation of peptides, and organic and amino acids in plant tissues were assessed. Key Results: The addition of NaCl to Cd-containing solutions improved plant growth along with 70-87 % less shoot Cd accumulation, resulting from decreases in Cd root uptake and root-to-shoot translocation irrespective of Cd2+ activity in solutions. Moreover, Cd exposure increased the concentration of phytochelatins, which correlated positively with Cd concentrations in plants regardless of NaCl addition. In comparison, Cd inhibited the synthesis of organic acids in shoots and roots in the absence of NaCl, but increased it in shoots in the presence of NaCl. While Cd increased the concentrations of amino acids in plant shoots, the effect of NaCl on the synthesis of amino acids was inconsistent. Conclusions: Our data provide the first evidence that NaCl decreased Cd shoot accumulation in C. rossii by decreasing Cd root uptake and root-to-shoot translocation even under constant Cd2+ activity. The present study also supports the important role of peptides and organic acids, particular of phytochelatins, in Cd tolerance and accumulation although the changes of those metabolites was not the main reason for the decreased Cd accumulation.


Subject(s)
Aizoaceae/drug effects , Cadmium/metabolism , Sodium Chloride/pharmacology , Aizoaceae/physiology , Biodegradation, Environmental , Biological Transport , Cadmium/toxicity , Carboxylic Acids/metabolism , Glutathione/metabolism , Phytochelatins/metabolism , Plant Roots/drug effects , Plant Roots/physiology , Plant Shoots/drug effects , Plant Shoots/physiology , Salinity , Salt-Tolerant Plants , Soil/chemistry
6.
PLoS One ; 13(4): e0193394, 2018.
Article in English | MEDLINE | ID: mdl-29641593

ABSTRACT

Salinity is an important environmental constraint limiting plant productivity. Understanding adaptive responses of halophytes to high saline environments may offer clues to manage and improve salt stress in crop plants. We have studied physiological, biochemical and metabolic changes in a perennial, fast growing halophyte, Sesuvium portulacastrum under 0 mM (control), 150 mM (low salt, LS) and 500 mM (high salt, HS) NaCl treatments. The changes in growth, relative water content, cation, osmolyte accumulation, H2O2 and antioxidant enzyme activity (SOD, CAT and APX) were observed under different treatment conditions. A positive correlation was revealed for sodium ion accumulation with malondialdehyde (r2 = 0.77), proline (r2 = 0.88) and chlorophyll content (r2 = 0.82) under salt treatment while a negative correlation was observed with relative tissue water content (r2 = -0.73). The roots and leaves showed contrasting accumulation of potassium and sodium ions under LS treatment. Temporal and spatial study of sodium and potassium ion content indicated differential accumulation pattern in roots and leaves, and, high potassium levels in root. Higher H2O2 content was recorded in roots than leaves and the antioxidant enzyme activities also showed significant induction under salt treatment conditions. Gene expression profiling of sodium transporters, Sodium proton exchanger (NHX3), Vacuolar ATPase (vATPase) and Salt overly sensitive1 (SOS1) showed up regulation under salt stress after 6-24 hr of NaCl treatment. Metabolite changes in the salt stressed leaves showed increased accumulation of flavonoids (3,5-dihydroxy-6,4'-dimethoxy-flavone-7-O-[α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranoside], and3,5-dihydroxy-6,3',4'-trimethoxy-flavone-7-O-[α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranoside] in both LS and HS treatments, while a glycolipid, 1-O-linolenyl-2-O-(palmitoyl)-3-O-galactopyranosyl glycerol, accumulated more in LS over HS treatments and control. The results suggest that differential spatial and temporal cation levels in roots and leaves, and accumulation of flavanoid and glycolipid could be responsible for salt adaptation of S. portulacastrum.


Subject(s)
Aizoaceae/metabolism , Antioxidants/metabolism , Flavonoids/metabolism , Glycolipids/metabolism , Homeostasis/physiology , Salt-Tolerant Plants/metabolism , Aizoaceae/drug effects , Gene Expression/drug effects , Gene Expression Profiling , Homeostasis/drug effects , Ions/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Salt Tolerance/drug effects , Salt Tolerance/genetics , Salt-Tolerant Plants/drug effects , Sodium Chloride/administration & dosage , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Stress, Physiological/drug effects , Stress, Physiological/physiology , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
7.
Ecotoxicol Environ Saf ; 147: 306-312, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28858703

ABSTRACT

In order to investigate the tolerance and bioaccumulation of Cd and Cu in the halophyte Sesuvium portulacastrum, seedlings were hydroponically cultured for 30 days using the modified 1/2 Hoagland nutrient solution with different concentrations of Cd (0, 5, 10, 15, and 20mgL-1) and Cu (0, 2.5, 5, 7.5, and 10mgL-1). Afterwards, the seedling height, leaf area, biomass, and mineral element contents (Fe, Mg, Cu, and Zn) in the roots, stems and leaves were measured, and the tolerance index, bioconcentration factor (BCF), transportation index, and removal rate were calculated. The effects of salinity (0‰-30‰) on the growth and bioaccumulation ability of S. portulacastrum under combined Cu/Cd (5mgL-1) exposure were also determined. The results showed that, with an increasing Cd concentration, the biomass and seedling height of S. portulacastrum initially increased and then decreased. The highest leaf biomass and seedlings height was observed in the 10mgL-1 and 5mgL-1 Cd treatment group, respectively. Salinity did not affect the biomass of S. portulacastrum but decreased Cd concentration in roots and aboveground tissues and Cu concentration in roots of S. portulacastrum. Cu treatment significantly facilitated the absorption of Mg, Cu, and Zn in roots. With an increasing Cu concentration, the Mg and Fe contents increased in the leaves of S. portulacastrum. In comparison to the above-ground portions, the root showed a higher bioaccumulation ability of Cd and Cu, with the BCF of 341.5 and 211.9, respectively. The BCF and translocation factor (TF) values indicated that S. portulacastrum was not a hyperaccumulator for Cd and Cu, but could be used as a phytostablization plant in heavy metal contaminated coastal environments.


Subject(s)
Aizoaceae/drug effects , Cadmium/metabolism , Copper/metabolism , Salt-Tolerant Plants/drug effects , Water Pollutants, Chemical/metabolism , Aizoaceae/growth & development , Biodegradation, Environmental , Biomass , Drug Tolerance , Hydroponics , Salinity , Salt-Tolerant Plants/growth & development
8.
Chemosphere ; 188: 689-696, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28923732

ABSTRACT

Nitrogen fertilization has been shown to improve Cd uptake by plants but there is little information on the effect of N form. This study examined the effects of N form on Cd bioavailability and phytoextraction in two soils differing in pH. Plants of halophytic species Carpobrotus rossii were grown in an acidic Sodosol [pH (CaCl2) 4.9] and a neutral Vertosol (pH 7.2) spiked with 20 mg kg-1 Cd as CdCl2. Three N forms, KNO3, (NH4)2SO4 and (NH2)2CO at a rate of 24 mg N kg-1 were applied at weekly intervals, together with nitrification inhibitor dicyanodiamide. Cadmium availability was measured, and Cd speciation in the rhizosphere analysed using synchrotron-based X-ray absorption spectroscopy. The uptake, translocation and accumulation of Cd in plants were also assessed. The reduced N forms (NH4+ and urea), compared to NO3--N, decreased rhizosphere pH by 0.25 units in Sodosol and 0.72 units in Vertosol, but decreased Cd-phosphate (by 23%) only in the Vertosol. Moreover, the reduced N forms increased the extractable Cd concentration in the rhizosphere of the Vertosol by 92% and of the Sodosol by 14%. They increased root Cd concentration by 70% and Cd uptake per unit root length by 40% in the Vertosol, and increased the translocation of Cd from the roots to the shoots by 76% in the Sodosol. The results suggest that the supply of NH4+-based N favors Cd phytoextraction in C. rossii.


Subject(s)
Aizoaceae/metabolism , Ammonium Compounds/pharmacology , Biodegradation, Environmental , Cadmium/pharmacokinetics , Soil/chemistry , Aizoaceae/drug effects , Cadmium/analysis , Fertilizers , Hydrogen-Ion Concentration , Nitrogen/pharmacology , Plant Roots/drug effects , Rhizosphere , Soil Pollutants/analysis
9.
Plant Physiol Biochem ; 115: 390-399, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28432978

ABSTRACT

It is well known that salinity reduces cadmium toxicity in halophytes. However, the possible interference of Cd with the mechanisms of salt tolerance is poorly explored. The aim of this study was to see whether Cd affects salt tolerance mechanisms in the halophyte Sesuvium portulacastrum. S. portulacastrum plants obtained from cuttings were grown in hydroponics for 3 weeks and then exposed to low (0.09 mM) or moderate (200 mM) NaCl concentrations, alone or in combination with 25 µM CdCl2. Microscopy observation revealed two strategies of salt tolerance: euhalophytism and secretion of salt by bladder cells. Cadmium exposure hardly influenced the total leaf Na+ concentrations. However, Cd supply delayed the salt-induced upregulation of AHA1 (plasma membrane H+-ATPase 1) and SOS1 (plasma membrane Na+ transporter "Salt Overly Sensitive 1"), genes that are essential for salt tolerance. Moreover, Cd induced the activation of BADH, coding for betaine aldehyde dehydrogenase, indicating enhanced osmotic stress due to Cd. Sodium-green fluorescence in protoplasts from plants grown with low or high NaCl, alone or in combination with Cd, revealed higher Na+ concentrations in the cytoplasm of Cd-exposed plants. Taken together the results indicate interference of Cd with salt tolerance mechanisms in S. portulacastrum. This may have consequences for the efficient use of halophytes in phytoremediation of Cd-contaminated saline soils.


Subject(s)
Aizoaceae/drug effects , Aizoaceae/metabolism , Cadmium/toxicity , Biodegradation, Environmental , Plant Proteins/metabolism , Salinity , Salt Tolerance , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/metabolism , Sodium/metabolism , Sodium Chloride/toxicity
10.
Sci Rep ; 6: 36067, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27805014

ABSTRACT

Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization.


Subject(s)
Aizoaceae/drug effects , Biodegradation, Environmental/drug effects , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Aizoaceae/classification , Aizoaceae/genetics , Bacteria/genetics , Cadmium/toxicity , Fungi/genetics , Metals, Heavy/toxicity , Microbiota/drug effects , Microbiota/genetics , Plant Roots/microbiology , Rhizosphere
11.
Plant Physiol Biochem ; 108: 295-303, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27479784

ABSTRACT

It has been shown that halophytes are able to successfully cope with heavy metal toxicity, suggesting their possible use for remediation of metal contaminated soils. In this work, Ni tolerance and accumulation in two halophytes, Sesuvium portulacastrum (L.) L. and Cakile maritima Scop. was investigated. Seedlings of both species were subjected hydroponically during 21 days to 0, 25, 50, and 100 µM of NiCl2. The growth and photosynthesis parameters revealed that S. portulacastrum tolerates Ni better than C. maritima. The photosynthesis activity, chlorophyll content and photosystem II integrity were less impacted in Ni-treated S. portulacastrum as compared to C. maritima, although, Ni accumulated in higher concentrations in the shoots of S. portulacastrum (1050 µg g-1 DW) than in those of C. maritima (550 µg g-1 DW). The subcellular fractionation of Ni in the shoots of both species showed that C. maritima accumulated about 65% of Ni in the soluble fraction, while 28% was associated with the cell walls. In S. portulacastrum 44% of the total cellular Ni was seen in the soluble fraction and 43% was bound to the cell walls. It can be concluded that S. portulacastrum tolerates Ni better than C. maritima, most probably due to a better ability to sequester Ni in the cell walls, restricting its accumulation in the soluble fraction.


Subject(s)
Aizoaceae/drug effects , Brassicaceae/drug effects , Nickel/pharmacokinetics , Nickel/toxicity , Salt-Tolerant Plants/drug effects , Aizoaceae/growth & development , Aizoaceae/metabolism , Brassicaceae/growth & development , Brassicaceae/metabolism , Carotenoids/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Chlorophyll/metabolism , Fluorescence , Salt-Tolerant Plants/metabolism , Species Specificity
12.
J Exp Bot ; 67(17): 5041-50, 2016 09.
Article in English | MEDLINE | ID: mdl-27385767

ABSTRACT

Nitrogen fertilization could improve the efficiency of Cd phytoextraction in contaminated soil and thus shorten the remediation time. However, limited information is available on the effect of N form on Cd phytoextraction and associated mechanisms in plants. This study examined the effect of N form on Cd accumulation, translocation, and speciation in Carpobrotus rossii and Solanum nigrum Plants were grown in nutrient solution with 5-15 µM Cd in the presence of 1000 µM NH4 (+) or NO3 (-) Plant growth and Cd uptake were measured, and Cd speciation was analyzed using synchrotron-based X-ray absorption spectroscopy. Shoot Cd accumulation was 30% greater with NH4 (+) than NO3 (-) supply. Carpobrotus rossii accumulated three times more Cd than S. nigrum. However, Cd speciation in the plants was not influenced by N form, but it did vary with species and tissues. In C. rossii, up to 91% of Cd was bound to S-containing ligands in all tissues except the xylem sap where 87-95% were Cd-OH complexes. Furthermore, the proportion of Cd-S in shoots was substantially lower in S. nigrum (44-69%) than in C. rossii (60-91%). It is concluded that the application of NH4 (+) (instead of NO3 (-)) increased shoot Cd accumulation by increasing uptake and translocation, rather than changing Cd speciation, and is potentially an effective approach for increasing Cd phytoextraction.


Subject(s)
Aizoaceae/metabolism , Ammonium Compounds/pharmacology , Cadmium/metabolism , Oxazines/pharmacology , Solanum nigrum/metabolism , Absorptiometry, Photon , Aizoaceae/chemistry , Aizoaceae/drug effects , Cadmium/analysis , Environmental Restoration and Remediation/methods , Plant Shoots/chemistry , Solanum nigrum/chemistry , Solanum nigrum/drug effects
13.
Planta ; 244(2): 333-46, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27061088

ABSTRACT

MAIN CONCLUSION: NaCl alleviates Cd toxicity in Sesvium portulacastrum by maintaining plant water status and redox balance, protecting chloroplasts structure and inducing some potential Cd (2+) chelators as GSH and proline. It has been demonstrated that NaCl alleviates Cd-induced growth inhibition in the halophyte Sesuvium portulacastrum. However, the processes that mediate this effect are still unclear. In this work we combined physiological, biochemical and ultrastructural studies to highlight the effects of salt on the redox balance and photosynthesis in Cd-stressed plants. Seedlings were exposed to different Cd concentrations (0, 25 and 50 µM Cd) combined with low (0.09 mM) (LS), or high (200 mM) NaCl (HS) in hydroponic culture. Plant-water relations, photosynthesis rate, leaf gas exchange, chlorophyll fluorescence, chloroplast ultrastructure, and proline and glutathione concentrations were analyzed after 1 month of treatment. In addition, the endogenous levels of stress-related hormones were determined in plants subjected to 25 µM Cd combined with both NaCl concentrations. In plants with low salt supply (LS), Cd reduced growth, induced plant dehydration, disrupted chloroplast structure and functioning, decreased net CO2 assimilation rate (A) and transpiration rate (E), inhibited the maximum potential quantum efficiency (Fv/Fm) and the quantum yield efficiency (Φ PSII) of PSII, and enhanced the non-photochemical quenching (NPQ). The addition of 200 mM NaCl (HS) to the Cd-containing medium culture significantly mitigated Cd phytotoxicity. Hence, even at similar internal Cd concentrations, HS-Cd plants were less affected by Cd than LS-Cd ones. Hence, 200 mM NaCl significantly alleviates Cd-induced toxicity symptoms, growth inhibition, and photosynthesis disturbances. The cell ultrastructure was better preserved in HS-Cd plants but affected in LS-Cd plants. The HS-Cd plants showed also higher concentrations of reduced glutathione (GSH), proline and jasmonic acid (JA) than the LS-Cd plants. However, under LS-Cd conditions, plants maintained higher concentration of salicylic acid (SA) and abscisic acid (ABA) than the HS-Cd ones. We conclude that in S. portulacastrum alleviation of Cd toxicity by NaCl is related to the modification of GSH and proline contents as well as stress hormone levels thus protecting redox balance and photosynthesis.


Subject(s)
Aizoaceae/drug effects , Cadmium/toxicity , Photosynthesis/physiology , Salt-Tolerant Plants/drug effects , Sodium Chloride/pharmacology , Stress, Physiological , Abscisic Acid/metabolism , Abscisic Acid/physiology , Aizoaceae/growth & development , Aizoaceae/metabolism , Aizoaceae/ultrastructure , Cadmium/metabolism , Chlorophyll/metabolism , Chloroplasts/drug effects , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Cyclopentanes/metabolism , Glutathione/metabolism , Oxidation-Reduction , Oxylipins/metabolism , Plant Transpiration/drug effects , Proline/metabolism , Salicylic Acid/metabolism , Salt-Tolerant Plants/metabolism , Sodium Chloride/metabolism , Water/metabolism
14.
Environ Sci Pollut Res Int ; 23(13): 13480-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27025219

ABSTRACT

Plants used for phytoextraction of heavy metals from contaminated soils with high levels of salinity should be able to accumulate heavy metals and also be tolerant to salinity. Australian native halophyte species Carpobrotus rossii has recently been shown to tolerate and accumulate multiple heavy metals, especially cadmium (Cd). This study examined the effects of salt type and concentration on phytoextraction of Cd in C. rossii. Plants were grown in contaminated soil for 63 days. The addition of salts increased plant growth and enhanced the accumulation of Cd in shoots up to 162 mg kg(-1) which almost doubled the Cd concentration (87 mg kg(-1)) in plants without salt addition. The increased Cd accumulation was ascribed mainly to increased ionic strength in soils due to the addition of salts and resultantly increased the mobility of Cd. In comparison, the addition of Cl(-) resulted in 8-60 % increase in Cd accumulation in shoots than the addition of SO4 (2-) and NO3 (-). The findings suggest that C. rossii is a promising candidate in phytoextraction of Cd-polluted soils with high salinity levels.


Subject(s)
Aizoaceae , Biodegradation, Environmental/drug effects , Cadmium , Sodium Chloride/pharmacology , Soil Pollutants , Aizoaceae/chemistry , Aizoaceae/drug effects , Aizoaceae/metabolism , Cadmium/chemistry , Cadmium/isolation & purification , Cadmium/metabolism , Soil Pollutants/chemistry , Soil Pollutants/isolation & purification , Soil Pollutants/metabolism
15.
PLoS One ; 10(9): e0137447, 2015.
Article in English | MEDLINE | ID: mdl-26340746

ABSTRACT

In plant cells, the plasma membrane Na+/H+ antiporter SOS1 (salt overly sensitive 1) mediates Na+ extrusion using the proton gradient generated by plasma membrane H+-ATPases, and these two proteins are key plant halotolerance factors. In the present study, two genes from Sesuvium portulacastrum, encoding plasma membrane Na+/H+ antiporter (SpSOS1) and H+-ATPase (SpAHA1), were cloned. Localization of each protein was studied in tobacco cells, and their functions were analyzed in yeast cells. Both SpSOS1 and SpAHA1 are plasma membrane-bound proteins. Real-time polymerase chain reaction (PCR) analyses showed that SpSOS1 and SpAHA1 were induced by salinity, and their expression patterns in roots under salinity were similar. Compared with untransformed yeast cells, SpSOS1 increased the salt tolerance of transgenic yeast by decreasing the Na+ content. The Na+/H+ exchange activity at plasma membrane vesicles was higher in SpSOS1-transgenic yeast than in the untransformed strain. No change was observed in the salt tolerance of yeast cells expressing SpAHA1 alone; however, in yeast transformed with both SpSOS1 and SpAHA1, SpAHA1 generated an increased proton gradient that stimulated the Na+/H+ exchange activity of SpSOS1. In this scenario, more Na+ ions were transported out of cells, and the yeast cells co-expressing SpSOS1 and SpAHA1 grew better than the cells transformed with only SpSOS1 or SpAHA1. These findings demonstrate that the plasma membrane Na+/H+ antiporter SpSOS1 and H+-ATPase SpAHA1 can function in coordination. These results provide a reference for developing more salt-tolerant crops via co-transformation with the plasma membrane Na+/H+ antiporter and H+-ATPase.


Subject(s)
Aizoaceae/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Proton-Translocating ATPases/genetics , Salt Tolerance/genetics , Sodium-Hydrogen Exchangers/genetics , Aizoaceae/classification , Aizoaceae/drug effects , Aizoaceae/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Genetic Complementation Test , Phylogeny , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sodium Chloride/pharmacology , Sodium-Hydrogen Exchangers/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Transgenes
16.
Environ Sci Pollut Res Int ; 22(14): 10769-77, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25758421

ABSTRACT

It has previously been shown that certain halophytes can grow and produce biomass despite of the contamination of their saline biotopes with toxic metals. This suggests that these plants are able to cope with both salinity and heavy metal constraints. NaCl is well tolerated by halophytes and apparently can modulate their responses to Cd. However, the underlying mechanisms remain unclear. This study explores the impact of NaCl on growth, Cd accumulation, and Cd speciation in tissues of the halophyte Sesuvium portulacastrum. Seedlings of S. portulacastrum were exposed during 1 month to 0, 25, and 50 µM Cd combined with low salinity (LS, 0.09 mM NaCl) or high salinity (HS, 200 mM NaCl) levels. Growth parameters and total tissue Cd concentrations were determined, in leaves, stems, and root. Moreover, Cd speciation in these organs was assessed by specific extraction procedures. Results showed that, at LS, Cd induced chlorosis and necrosis and drastically reduced plant growth. However, addition of 200 mM NaCl to Cd containing medium alleviated significantly Cd toxicity symptoms and restored plant growth. NaCl reduced the concentration of Cd in the shoots; nevertheless, due to maintenance of higher biomass under HS, the quantity of accumulated Cd was not modified. NaCl modified the chemical form of Cd in the tissues by increasing the proportion of Cd bound to pectates, proteins, and chloride suggesting that this change in speciation is involved in the positive impact of NaCl on Cd tolerance. We concluded that the tolerance of S. portulacastrum to Cd was enhanced by NaCl. This effect is rather governed by the modification of the speciation of the accumulated Cd than by the reduction of Cd absorption and translocation.


Subject(s)
Aizoaceae/metabolism , Cadmium/toxicity , Sodium Chloride/pharmacology , Soil Pollutants/toxicity , Aizoaceae/drug effects , Biodegradation, Environmental , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Salinity , Salt-Tolerant Plants/metabolism , Seedlings/drug effects , Seedlings/metabolism
17.
Environ Sci Pollut Res Int ; 21(12): 7607-15, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24604274

ABSTRACT

The low bioavailability of Pb and low number of Pb-tolerant plant species represent an important limitation for Pb phytoextraction. It was recently suggested that halophyte plant species may be a promising material for this purpose, especially in polluted salt areas while Pb mobility may be improved by synthetic chelating agents. This study aims to evaluate Pb extraction by the halophyte Sesuvium portulacastrum in relation to the impact of EDTA application. Seedling were cultivated during 60 days on Pb artificially contaminated soil (200, 400, and 800 ppm Pb) in the presence or in the absence of EDTA (3 g kg(-1) soil). Results showed that upon to 400 ppm, Pb had no impact on plant growth. However, exogenous Pb induce a decrease in shoot K(+) while it increased shoot Mg(2+) and had no impact on shoot Ca(2+) concentrations. Lead concentration in the shoots increased with increasing external Pb doses reaching 1,390 ppm in the presence of 800 ppm lead in soil. EDTA addition had no effect on plant growth but strongly increased Pb accumulation in the shoot which increased from 1,390 ppm in the absence of EDTA to 3,772 ppm in EDTA-amended plants exposed to 800 ppm exogenous Pb. Both Pb absorption and translocation from roots to shoots were significantly enhanced by EDTA application, leading to an increase in the total amounts of extracted Pb per plant. These data suggest that S. portulacastrum is very promising species for decontamination of Pb(2+)-contaminated soil and that its phytoextraction potential was significantly enhanced by addition of EDTA to the polluted soil.


Subject(s)
Aizoaceae/metabolism , Biodegradation, Environmental , Edetic Acid/pharmacology , Lead/metabolism , Salt-Tolerant Plants/metabolism , Soil Pollutants/metabolism , Aizoaceae/drug effects , Chelating Agents/pharmacology , Plant Roots/drug effects , Plant Roots/metabolism , Salt-Tolerant Plants/drug effects , Seedlings/drug effects , Seedlings/metabolism
18.
Plant Physiol Biochem ; 51: 53-62, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22153240

ABSTRACT

Soil salinity is contributed largely by NaCl but some halophytes such as Sesuvium portulacastrum have evolved to adapt salinity environment and demonstrate optimal development under moderate salinity. To elucidate the detail mechanisms of the great salt tolerance and determine the respective contributions of Na(+), K(+) and Cl(-) on the development of S. portulacastrum, morphological and physiological analysis were performed using plants supplied with 200 mM of different ions including cations (Na(+), K(+), Li(+)) and anions (Cl(-), NO(3)(-), Ac(-)) respectively. The results revealed that the salt-treated plants accumulated large amounts of sodium in both leaf and stem. There was a greater shoot growth in presence of external Na(+) compared to K(+) and Cl(-). Na(+) was found more effective than K(+) and Cl(-) in cell expansion, leaf succulence, and shoot development. Flame emission and X-Ray microanalysis revealed the relative Na(+) content was much higher than K(+) and Cl(-) in both leaf and stem of well developed S. portulacastrum, leading to a higher Na(+)/K(+) ratio. The effects of different ions on the development of S. portulacastrum were listed as the following: Na(+) > NO(3)(-) > CK > Cl(-) > K(+) > Ac(-) > Li(+). These results demonstrated NaCl toxicity is attributable largely to the effect of Cl(-) but rarely to Na(+), and thus sodium is concluded as a more important macronutrient than potassium and chloride for improving leaf succulence and shoot development of halophyte S. portulacastrum.


Subject(s)
Aizoaceae/drug effects , Chlorides/metabolism , Plant Leaves/physiology , Plant Shoots/physiology , Potassium/metabolism , Sodium/metabolism , Aizoaceae/anatomy & histology , Aizoaceae/physiology , Electron Probe Microanalysis , Ions/metabolism , Plant Leaves/drug effects , Plant Leaves/ultrastructure , Plant Shoots/drug effects , Plant Stems/drug effects , Plant Stems/physiology , Plant Stems/ultrastructure , Salt-Tolerant Plants/anatomy & histology , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/physiology , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Water/metabolism
19.
Chemosphere ; 82(4): 529-34, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21074240

ABSTRACT

Sesuvium portulacastrum (L.) L., a facultative halophyte, is considered a suitable candidate for the phytoremediation of metals. An investigation of As accumulation and tolerance was conducted in Sesuvium plants upon exposure to As(V) (100-1000 µM) for 30 d. Plants demonstrated a good growth even after prolonged exposure (30 d) to high As(V) concentrations (1000 µM) and a significant As accumulation (155 µg g⁻¹ dry weight) with a bioaccumulation factor of more than ten at each concentration. The results of shoot and root dry weight, malondialdehyde accumulation, photosynthetic pigments, and total soluble proteins demonstrated that plants did not experience significant toxicity even at 1000 µM As(V) after 30 d. However, metabolites (total non-protein thiols and cysteine) and enzymes (serine acetyltransferase, cysteine synthase and γ-glutamylcysteine synthetase) of thiol metabolism, in general, remained either unaffected or showed slight decline. Hence, plants tolerated high As(V) concentrations without an involvement of thiol metabolism as a major component. Taken together, the results indicate that plants are potential As accumulator and may find application in the re-vegetation of As contaminated sites.


Subject(s)
Aizoaceae/metabolism , Arsenic/metabolism , Carcinogens, Environmental/metabolism , Soil Pollutants/metabolism , Aizoaceae/drug effects , Aizoaceae/growth & development , Arsenic/analysis , Arsenic/toxicity , Biodegradation, Environmental , Carcinogens, Environmental/toxicity , India , Malondialdehyde/metabolism , Photosynthesis/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Soil Pollutants/analysis , Soil Pollutants/toxicity
20.
J Hazard Mater ; 183(1-3): 609-15, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20708335

ABSTRACT

Lead phytoextraction from salty soils is a difficult task because this process needs the use of plants which are able to tolerate salt and accumulate Pb(2+) within in their shoots. It has recently been suggested that salt-tolerant plants are more suitable for heavy metals extraction than salt-sensitive ones commonly used in this approach. The aim of this study was to investigate Pb-phytoextraction potential of the halophyte Sesuvium portulacastrum in comparison with Brassica juncea commonly used in Pb-phytoextraction. Seedlings of both species were exposed in nutrient solution to 0, 200, 400, 800 and 1000 µM Pb(2+) for 21 days. Lead strongly inhibited growth in B. juncea but had no impact on S. portulacastrum. Exogenous Pb(2+) reduced nutrients uptake mainly in B. juncea as compared to S. portulacastrum. Lead was preferentially accumulated in roots in both species. S. portulacastrum accumulated more Pb(2+) in the shoot than B. juncea. Hence, the amounts of Pb(2+) translocated at 1000 µM Pb(2+) were 3400 µg g(-1) DW and 2200 µg g(-1) DW in S. portulacastrum and B. juncea, respectively. These results suggest that S. portulacastrum is more efficient to extract Pb(2+) than B. juncea.


Subject(s)
Aizoaceae/metabolism , Biodegradation, Environmental , Lead/pharmacokinetics , Mustard Plant/metabolism , Aizoaceae/drug effects , Aizoaceae/growth & development , Dose-Response Relationship, Drug , Mustard Plant/drug effects , Mustard Plant/growth & development , Plants , Salt-Tolerant Plants/metabolism , Seedlings
SELECTION OF CITATIONS
SEARCH DETAIL
...