Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Publication year range
1.
In. Cardellá Rosales, Lidia. Bioquímica Médica. Tomo I. La Habana, Ecimed, 2013. , graf, tab.
Monography in Spanish | CUMED | ID: cum-55950
2.
An Acad Bras Cienc ; 79(4): 649-63, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18066434

ABSTRACT

Trypanosoma cruzi is highly sensitive to oxidative stress caused by reactive oxygen species. Trypanothione, the parasite's major protection against oxidative stress, is kept reduced by trypanothione reductase, using NADPH; the major source of the reduced coenzyme seems to be the pentose phosphate pathway. Its seven enzymes are present in the four major stages in the parasite's biological cycle; we have cloned and expressed them in Escherichia coli as active proteins. Glucose 6-phosphate dehydrogenase, which controls glucose flux through the pathway by its response to the NADP/NADPH ratio, is encoded by a number of genes per haploid genome, and is induced up to 46-fold by hydrogen peroxide in metacyclic trypomastigotes. The genes encoding 6-phosphogluconolactonase, 6-phosphogluconate dehydrogenase, transaldolase and transketolase are present in the CL Brener clone as a single copy per haploid genome. 6-phosphogluconate dehydrogenase is very unstable, but was stabilized introducing two salt bridges by site-directed mutagenesis. Ribose-5-phosphate isomerase belongs to Type B; genes encoding Type A enzymes, present in mammals, are absent. Ribulose-5-phosphate epimerase is encoded by two genes. The enzymes of the pathway have a major cytosolic component, although several of them have a secondary glycosomal localization, and also minor localizations in other organelles.


Subject(s)
Pentose Phosphate Pathway/genetics , Trypanosoma cruzi/enzymology , Aldehyde-Ketone Transferases/genetics , Aldehyde-Ketone Transferases/metabolism , Amino Acid Sequence , Animals , Chagas Disease/drug therapy , Hydrolases/genetics , Hydrolases/metabolism , Isomerases/genetics , Isomerases/metabolism , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Sequence Alignment , Trypanosoma cruzi/genetics
3.
An. acad. bras. ciênc ; 79(4): 649-663, Dec. 2007. ilus, graf
Article in English | LILACS | ID: lil-470038

ABSTRACT

Trypanosoma cruzi is highly sensitive to oxidative stress caused by reactive oxygen species. Trypanothione, the parasite's major protection against oxidative stress, is kept reduced by trypanothione reductase, using NADPH; the major source of the reduced coenzyme seems to be the pentose phosphate pathway. Its seven enzymes are present in the four major stages in the parasite's biological cycle; we have cloned and expressed them in Escherichia coli as active proteins. Glucose 6-phosphate dehydrogenase, which controls glucose flux through the pathway by its response to the NADP/NADPH ratio, is encoded by a number of genes per haploid genome, and is induced up to 46-fold by hydrogen peroxide in metacyclic trypomastigotes. The genes encoding 6-phosphogluconolactonase, 6-phosphogluconate dehydrogenase, transaldolase and transketolase are present in the CL Brener clone as a single copy per haploid genome. 6-phosphogluconate dehydrogenase is very unstable, but was stabilized introducing two salt bridges by site-directed mutagenesis. Ribose-5-phosphate isomerase belongs to Type B; genes encoding Type A enzymes, present in mammals, are absent. Ribulose-5-phosphate epimerase is encoded by two genes. The enzymes of the pathway have a major cytosolic component, although several of them have a secondary glycosomal localization, and also minor localizations in other organelles.


Trypanosoma cruzi é altamente sensível ao estresse oxidativo causado por espécies reativas do oxigênio. Tripanotiona, o principal protetor do parasita contra o estresse oxidativo, é mantido reduzido pela tripanotiona redutase, pela presença deNADPH; a principal fonte da coenzima reduzida parece ser a via da pentose fosfato. As sete enzimas dessa via estão presentes nos quatro principais estágios do ciclo biológico do parasita; nós clonamos e expressamos as enzimas em Escherichia coli como proteínas ativas. Glucose 6-fosfato desidrogenase, que controla o fluxo da glucose da via em resposta à relação NADP/NADPH, é codificada por um número de genes por genoma haplóide e é induzida até 46-vezes por peróxido de hidrogênio em trypomastigotas metacíclicos. Os genes que codificam 6-fosfogluconolactonase, 6-fosfogluconato desidrogenase, transaldolase e transcetolase estão presentes no clone CL Brener como cópia única por genoma haplóide. 6-fosfogluconato desidrogenase é muito instável, mas foi estabilizada introduzindo duas pontes salinas por mutagênese sítio-dirigida. A Ribose-5-fosfato isomerase pertence ao Tipo B; genes que codificam enzimas Tipo A, presentes em mamíferos estão ausentes. A Ribulose-5-fosfato epimerase é codificada por dois genes. As enzimas da via têm um componente citosólico principal, embora várias delas tenham uma localização glicosomal secundária e também, localizações em menor número em outras organelas.


Subject(s)
Animals , Pentose Phosphate Pathway/genetics , Trypanosoma cruzi/enzymology , Amino Acid Sequence , Aldehyde-Ketone Transferases/genetics , Aldehyde-Ketone Transferases/metabolism , Chagas Disease/drug therapy , Hydrolases/genetics , Hydrolases/metabolism , Isomerases/genetics , Isomerases/metabolism , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Sequence Alignment , Trypanosoma cruzi/genetics
SELECTION OF CITATIONS
SEARCH DETAIL