Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Enzyme Inhib Med Chem ; 39(1): 2388207, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39140692

ABSTRACT

The crystallographic structure of the FolB enzyme from Mycobacterium tuberculosis (MtFolB), complexed with its inhibitor 8-mercaptoguanine (8-MG), was elucidated at a resolution of 1.95 Å. A novel series of S8-functionalized 8-MG derivatives were synthesised and evaluated as in vitro inhibitors of dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of MtFolB. These compounds exhibited IC50 values in the submicromolar range. Evaluation of the activity for five compounds indicated their inhibition mode and inhibition constants. Molecular docking analyses were performed to determine the enzyme-inhibitor intermolecular interactions and ligand conformations upon complex formation. The inhibitory activities of all compounds against the M. tuberculosis H37Rv strain were evaluated. Compound 3e exhibited a minimum inhibitory concentration in the micromolar range. Finally, Compound 3e showed no apparent toxicity in both HepG2 and Vero cells. The findings presented herein will advance the quest for novel, specific inhibitors targeting MtFolB, an attractive molecular target for TB drug development.


Subject(s)
Aldehyde-Lyases , Antitubercular Agents , Dose-Response Relationship, Drug , Enzyme Inhibitors , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Structure-Activity Relationship , Aldehyde-Lyases/antagonists & inhibitors , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/chemistry , Vero Cells , Molecular Structure , Crystallography, X-Ray , Chlorocebus aethiops , Animals , Guanine/pharmacology , Guanine/chemistry , Guanine/analogs & derivatives , Guanine/chemical synthesis , Molecular Docking Simulation , Hep G2 Cells , Models, Molecular
2.
J Enzyme Inhib Med Chem ; 36(1): 847-855, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33752554

ABSTRACT

The dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of FolB protein is required for the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and glycolaldehyde (GA) in the folate pathway. FolB protein from Mycobacterium tuberculosis (MtFolB) is essential for bacilli survival and represents an important molecular target for drug development. S8-functionalized 8-mercaptoguanine derivatives were synthesised and evaluated for inhibitory activity against MtFolB. The compounds showed IC50 values in the submicromolar range. The inhibition mode and inhibition constants were determined for compounds that exhibited the strongest inhibition. Additionally, molecular docking analyses were performed to suggest enzyme-inhibitor interactions and ligand conformations. To the best of our knowledge, this study describes the first class of MtFolB inhibitors.


Subject(s)
Aldehyde-Lyases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Guanosine/analogs & derivatives , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Thionucleosides/pharmacology , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Guanosine/chemical synthesis , Guanosine/chemistry , Guanosine/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/enzymology , Thionucleosides/chemical synthesis , Thionucleosides/chemistry
3.
Curr Top Med Chem ; 18(5): 397-405, 2018.
Article in English | MEDLINE | ID: mdl-29701141

ABSTRACT

INTRODUCTION: The glycolytic enzyme fructose-1,6-bisphosphate aldolase is a validated molecular target in human African trypanosomiasis (HAT) drug discovery, a neglected tropical disease (NTD) caused by the protozoan Trypanosoma brucei. Herein, a structure-based virtual screening (SBVS) approach to the identification of novel T. brucei aldolase inhibitors is described. Distinct molecular docking algorithms were used to screen more than 500,000 compounds against the X-ray structure of the enzyme. This SBVS strategy led to the selection of a series of molecules which were evaluated for their activity on recombinant T. brucei aldolase. The effort led to the discovery of structurally new ligands able to inhibit the catalytic activity of the enzyme. RESULTS: The predicted binding conformations were additionally investigated in molecular dynamics simulations, which provided useful insights into the enzyme-inhibitor intermolecular interactions. CONCLUSION: The molecular modeling results along with the enzyme inhibition data generated practical knowledge to be explored in further structure-based drug design efforts in HAT drug discovery.


Subject(s)
Aldehyde-Lyases/antagonists & inhibitors , Benzofurans/pharmacology , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Naphthols/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/enzymology , Aldehyde-Lyases/metabolism , Benzofurans/chemical synthesis , Benzofurans/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Kinetics , Models, Molecular , Molecular Structure , Naphthols/chemical synthesis , Naphthols/chemistry
4.
Biochem Biophys Res Commun ; 485(4): 814-819, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28257847

ABSTRACT

An early step of target validation in antimicrobial drug discovery is to prove that a gene coding for a putative target is essential for pathogen's viability. However, little attention has been paid to demonstrate the causal links between gene essentiality and a particular protein function that will be the focus of a drug discovery effort. This should be considered an important step in target validation since a growing number of proteins are found to exhibit multiple and unrelated tasks. Here, we show that the Mycobacterium tuberculosis (Mtb) folB gene is essential and that this essentiality depends on the dihydroneopterin aldolase/epimerase activities of its protein product, the FolB protein from the folate biosynthesis pathway. The wild-type (WT) MtFolB and point mutants K99A and Y54F were cloned, expressed, purified and monitored for the aldolase, epimerase and oxygenase activities using HPLC. In contrast to the WT MtFolB, both mutants have neither aldolase nor epimerase activities in the conditions assayed. We then performed gene knockout experiments and showed that folB gene is essential for Mtb survival under the conditions tested. Moreover, only the WT folB sequence could be used as a rescue copy in gene complementation studies. When the sequences of mutants K99A or Y54F were used for complementation, no viable colonies were obtained, indicating that aldolase and/or epimerase activities are crucial for Mtb survival. These results provide a solid basis for further work aiming to develop new anti-TB agents acting as inhibitors of the aldolase/epimerase activities of MtFolB.


Subject(s)
Aldehyde-Lyases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Discovery/methods , Mycobacterium tuberculosis/drug effects , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Chromatography, High Pressure Liquid , Genes, Essential/genetics , Genetic Complementation Test/methods , Humans , Microbial Viability/drug effects , Microbial Viability/genetics , Molecular Targeted Therapy/methods , Mutation, Missense , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Reproducibility of Results , Substrate Specificity , Tandem Mass Spectrometry , Tuberculosis/drug therapy , Tuberculosis/microbiology
5.
Biochim Biophys Acta ; 1544(1-2): 133-42, 2001 Jan 12.
Article in English | MEDLINE | ID: mdl-11341923

ABSTRACT

We report on experiments pertaining to solution properties of the (S)-hydroxynitrile lyase from Hevea brasiliensis (HbHNL). Small angle X-ray scattering unequivocally established the enzyme to occur in solution as a dimer, presumably of the same structure as in the crystal. The acid induced, irreversible deactivation of HbHNL was examined by electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD) and by measuring the enzyme activity. The deactivation is paralleled by an unfolding of the enzyme. ESI-MS of this 30000 Da per monomer heavy protein demonstrated that unfolding took place in several stages which are paralleled by a decrease in enzyme activity. Unfolding can also be observed by CD spectroscopy, and there is a clear correlation between enzyme activity and unfolding as detected by ESI-MS and CD.


Subject(s)
Aldehyde-Lyases/metabolism , Euphorbiaceae/enzymology , Aldehyde-Lyases/antagonists & inhibitors , Circular Dichroism , Hydrogen-Ion Concentration , Scattering, Radiation , Spectrometry, Mass, Electrospray Ionization , X-Rays
6.
Protein Sci ; 8(10): 1990-2000, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10548044

ABSTRACT

The 3D structures of complexes between the hydroxynitrile lyase from Hevea brasiliensis (Hb-HNL) and several substrate and/or inhibitor molecules, including trichloracetaldehyde, hexafluoracetone, acetone, and rhodanide, were determined by X-ray crystallography. The complex with trichloracetaldehyde showed a covalent linkage between the protein and the inhibitor, which had apparently resulted from nucleophilic attack of the catalytic Ser80-Ogamma. All other complexes showed the substrate or inhibitor molecule merely hydrogen bonded to the protein. In addition, the native crystal structure of Hb-HNL was redetermined at cryo-temperature and at room temperature, eliminating previous uncertainties concerning residual electron density within the active site, and leading to the observation of two conserved water molecules. One of them was found to be conserved in all complex structures and appears to have mainly structural significance. The other water molecule is conserved in all structures except for the complex with rhodanide; it is hydrogen bonded to the imidazole of the catalytic His235 and appears to affect the Hb-HNL catalyzed reaction. The observed 3D structural data suggest implications for the enzyme mechanism. It appears that the enzyme-catalyzed cyanohydrin formation is unlikely to proceed via a hemiacetal or hemiketal intermediate covalently attached to the enzyme, despite the observation of such an intermediate for the complex with trichloracetaldehyde. Instead, the data are consistent with a mechanism where the incoming substrate is activated by hydrogen bonding with its carbonyl oxygen to the Ser80 and Thr11 hydroxy groups. A hydrogen cyanide molecule subsequently replaces a water molecule and is deprotonated presumably by the His235 base. Deprotonation is facilitated by the proximity of the positive charge of the Lys236 side chain.


Subject(s)
Aldehyde-Lyases/chemistry , Euphorbiaceae/enzymology , Aldehyde-Lyases/antagonists & inhibitors , Aldehyde-Lyases/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Models, Molecular , Protein Conformation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL