Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 391, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910188

ABSTRACT

Metal cofactors are essential for catalysis and enable countless conversions in nature. Interestingly, the metal cofactor is not always static but mobile with movements of more than 4 Å. These movements of the metal can have different functions. In the case of the xylose isomerase and medium-chain dehydrogenases, it clearly serves a catalytic purpose. The metal cofactor moves during substrate activation and even during the catalytic turnover. On the other hand, in class II aldolases, the enzymes display resting states and active states depending on the movement of the catalytic metal cofactor. This movement is caused by substrate docking, causing the metal cofactor to take the position essential for catalysis. As these metal movements are found in structurally and mechanistically unrelated enzymes, it has to be expected that this metal movement is more common than currently perceived. KEY POINTS: • Metal ions are essential cofactors that can move during catalysis. • In class II aldolases, the metal cofactors can reside in a resting state and an active state. • In MDR, the movement of the metal cofactor is essential for substrate docking.


Subject(s)
Coenzymes , Metals , Metals/metabolism , Coenzymes/metabolism , Aldose-Ketose Isomerases/metabolism , Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/genetics , Catalysis , Oxidoreductases/metabolism , Oxidoreductases/chemistry
2.
EMBO J ; 43(13): 2636-2660, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778156

ABSTRACT

During infection viruses hijack host cell metabolism to promote their replication. Here, analysis of metabolite alterations in macrophages exposed to poly I:C recognises that the antiviral effector Protein Kinase RNA-activated (PKR) suppresses glucose breakdown within the pentose phosphate pathway (PPP). This pathway runs parallel to central glycolysis and is critical to producing NADPH and pentose precursors for nucleotides. Changes in metabolite levels between wild-type and PKR-ablated macrophages show that PKR controls the generation of ribose 5-phosphate, in a manner distinct from its established function in gene expression but dependent on its kinase activity. PKR phosphorylates and inhibits the Ribose 5-Phosphate Isomerase A (RPIA), thereby preventing interconversion of ribulose- to ribose 5-phosphate. This activity preserves redox control but decreases production of ribose 5-phosphate for nucleotide biosynthesis. Accordingly, the PKR-mediated immune response to RNA suppresses nucleic acid production. In line, pharmacological targeting of the PPP during infection decreases the replication of the Herpes simplex virus. These results identify an immune response-mediated control of host cell metabolism and suggest targeting the RPIA as a potential innovative antiviral treatment.


Subject(s)
Macrophages , Pentose Phosphate Pathway , Ribosemonophosphates , eIF-2 Kinase , Animals , Ribosemonophosphates/metabolism , Mice , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Aldose-Ketose Isomerases/metabolism , Aldose-Ketose Isomerases/genetics , RNA/metabolism , RNA/genetics , Poly I-C/pharmacology , Nucleic Acids/metabolism , Nucleic Acids/immunology , Virus Replication , Phosphorylation
3.
Biomolecules ; 14(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38672412

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative olfactory disorder affecting millions of people worldwide. Alterations in the hexosamine- or glucose-related pathways have been described through AD progression. Specifically, an alteration in glucosamine 6 phosphate isomerase 2 (GNPDA2) protein levels has been observed in olfactory areas of AD subjects. However, the biological role of GNPDA2 in neurodegeneration remains unknown. Using mass spectrometry, multiple GNPDA2 interactors were identified in human nasal epithelial cells (NECs) mainly involved in intraciliary transport. Moreover, GNPDA2 overexpression induced an increment in NEC proliferation rates, accompanied by transcriptomic alterations in Type II interferon signaling or cellular stress responses. In contrast, the presence of beta-amyloid or mutated Tau-P301L in GNPDA2-overexpressing NECs induced a slowdown in the proliferative capacity in parallel with a disruption in protein processing. The proteomic characterization of Tau-P301L transgenic zebrafish embryos demonstrated that GNPDA2 overexpression interfered with collagen biosynthesis and RNA/protein processing, without inducing additional changes in axonal outgrowth defects or neuronal cell death. In humans, a significant increase in serum GNPDA2 levels was observed across multiple neurological proteinopathies (AD, Lewy body dementia, progressive supranuclear palsy, mixed dementia and amyotrophic lateral sclerosis) (n = 215). These data shed new light on GNPDA2-dependent mechanisms associated with the neurodegenerative process beyond the hexosamine route.


Subject(s)
Aldose-Ketose Isomerases , Alzheimer Disease , Amyloid beta-Peptides , Zebrafish , tau Proteins , Animals , Humans , Aldose-Ketose Isomerases/metabolism , Aldose-Ketose Isomerases/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals, Genetically Modified , Cell Proliferation , Epithelial Cells/metabolism , Proteomics , tau Proteins/metabolism , tau Proteins/genetics , Zebrafish/metabolism
4.
Bioorg Chem ; 145: 107189, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350272

ABSTRACT

6-Deoxy-l-sorbose (6-DLS) is an imperative rare sugar employed in food, agriculture, pharmaceutical and cosmetic industeries. However, it is a synthetic and very expensive rare sugars, previously synthesized by chemo-enzymatic methods through a long chain of chemical processes. Recently, enzymatic synthesis of rare sugars has attracted a lot of attention due to its advantages over synthetic methods. In this work, a promising approach for the synthesis of 6-DLS from an inexpensive sugar l-fucose was identified. The genes for l-fucose isomerase from Paenibacillus rhizosphaerae (Pr-LFI) and genes for d-tagatose-3-epimerase from Caballeronia fortuita (Cf-DTE) have been used for cloning and co-expression in Escherichia coli, developed a recombinant plasmid harboring pANY1-Pr-LFI/Cf-DTE vector. The recombinant co-expression system exhibited an optimum activity at 50 °C of temperature and pH 6.5 in the presence of Co2+ metal ion which inflated the catalytic activity by 6.8 folds as compared to control group with no metal ions. The recombinant co-expressed system was stable up to more than 50 % relative activity after 12 h and revealed a melting temperature (Tm) of 63.38 °C exhibiting half-life of 13.17 h at 50 °C. The co-expression system exhibited, 4.93, 11.41 and 16.21 g/L of 6-DLS production from initial l-fucose concentration of 30, 70 and 100 g/L, which equates to conversion yield of 16.44 %, 16.30 % and 16.21 % respectively. Generally, this study offers a promising strategy for the biological production of 6-DLS from an inexpensive substrate l-fucose in slightly acidic conditions with the aid of co-expression system harboring Pr-LFI and CF-DTE genes.


Subject(s)
Aldose-Ketose Isomerases , Hexoses , Sorbose , Fucose , Racemases and Epimerases/genetics , Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/chemistry , Sugars , Hydrogen-Ion Concentration , Recombinant Proteins/genetics
5.
Chinese Journal of Biotechnology ; (12): 1107-1118, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970426

ABSTRACT

L-arabinose isomerase (L-AI) is the key enzyme that isomerizes D-galactose to D-tagatose. In this study, to improve the activity of L-arabinose isomerase on D-galactose and its conversion rate in biotransformation, an L-arabinose isomerase from Lactobacillus fermentum CGMCC2921 was recombinantly expressed and applied in biotransformation. Moreover, its substrate binding pocket was rationally designed to improve the affinity and catalytic activity on D-galactose. We show that the conversion of D-galactose by variant F279I was increased 1.4 times that of the wild-type enzyme. The Km and kcat values of the double mutant M185A/F279I obtained by superimposed mutation were 530.8 mmol/L and 19.9 s-1, respectively, and the catalytic efficiency was increased 8.2 times that of the wild type. When 400 g/L lactose was used as the substrate, the conversion rate of M185A/F279I reached a high level of 22.8%, which shows great application potential for the enzymatic production of tagatose from lactose.


Subject(s)
Galactose/metabolism , Limosilactobacillus fermentum/genetics , Lactose , Hexoses/metabolism , Aldose-Ketose Isomerases/genetics , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL