Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Clin Neurol Neurosurg ; 240: 108261, 2024 05.
Article in English | MEDLINE | ID: mdl-38599043

ABSTRACT

This report presents a case of Alexander disease showing clinical characteristics mimicking progressive supranuclear palsy (PSP). A 67-year-old woman complaining of motor disturbance exhibited severe atrophy of medulla, spinal cord, and midbrain tegmentum, as well as periventricular hyperintensity on cerebral MRI. Genetic analysis identified a novel in-frame deletion/insertion mutation in the exon 3 of the GFAP gene. Interestingly, neurological findings and decreased striatal uptake in dopamine transporter SPECT were suggestive of PSP. A novel GFAP gene mutation found in the present case may cause the unique clinical phenotype, which should be differentiated from PSP.


Subject(s)
Alexander Disease , Glial Fibrillary Acidic Protein , Magnetic Resonance Imaging , Supranuclear Palsy, Progressive , Humans , Alexander Disease/genetics , Alexander Disease/diagnostic imaging , Alexander Disease/diagnosis , Female , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/diagnostic imaging , Aged , Glial Fibrillary Acidic Protein/genetics , Diagnosis, Differential , Tomography, Emission-Computed, Single-Photon , Brain/diagnostic imaging , Brain/pathology , Mutagenesis, Insertional/genetics
2.
Genes (Basel) ; 15(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38540409

ABSTRACT

INTRODUCTION: Alexander disease (AxD) is a rare neurodegenerative condition that represents the group of leukodystrophies. The disease is caused by GFAP mutation. Symptoms usually occur in the infantile age with macrocephaly, developmental deterioration, progressive quadriparesis, and seizures as the most characteristic features. In this case report, we provide a detailed clinical description of the neonatal type of AxD. METHOD: Next-Generation Sequencing (NGS), including a panel of 49 genes related to Early Infantile Epileptic Encephalopathy (EIEE), was carried out, and then Whole Exome Sequencing (WES) was performed on the proband's DNA extracted from blood. CASE DESCRIPTION: In the first weeks of life, the child presented with signs of increased intracranial pressure, which led to ventriculoperitoneal shunt implementation. Recurrent focal-onset motor seizures with secondary generalization occurred despite phenobarbital treatment. Therapy was modified with multiple anti-seizure medications. In MRI contrast-enhanced lesions in basal ganglia, midbrain and cortico-spinal tracts were observed. During the diagnostic process, GLUT-1 deficiency, lysosomal storage disorders, organic acidurias, and fatty acid oxidation defects were excluded. The NGS panel of EIEE revealed no abnormalities. In WES analysis, GFAP missense heterozygous variant NM_002055.5: c.1187C>T, p.(Thr396Ile) was detected, confirming the diagnosis of AxD. CONCLUSION: AxD should be considered in the differential diagnosis in all neonates with progressive, intractable seizures accompanied by macrocephaly.


Subject(s)
Alexander Disease , Bone Diseases , Demyelinating Diseases , Drug Resistant Epilepsy , Hyponatremia , Lysosomal Storage Diseases , Megalencephaly , Spasms, Infantile , Child , Infant, Newborn , Humans , Alexander Disease/genetics , Alexander Disease/pathology , Glial Fibrillary Acidic Protein/genetics , Megalencephaly/genetics
3.
Intern Med ; 63(2): 309-313, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37197954

ABSTRACT

A 57-year-old man whose mother had been pathologically diagnosed with Alexander disease (ALXDRD), presented with cerebellar ataxia, pyramidal signs, and mild dysarthria. Brain magnetic resonance imaging revealed typical ALXDRD alterations, such as atrophy of the medulla oblongata (MO) and cervical spinal cord, a reduced sagittal diameter of the MO, and garland-like hyperintensity signals along the lateral ventricular walls. A genetic analysis of GFAP by Sanger sequencing revealed a single heterozygous mutation of Glu to Lys at codon 332 (c.994G>A) in the GFAP gene. Our results newly confirmed that p.E332K alone is the pathogenic causative mutation for adult-onset ALXDRD.


Subject(s)
Alexander Disease , Humans , Male , Middle Aged , Alexander Disease/diagnostic imaging , Alexander Disease/genetics , Codon/genetics , Glial Fibrillary Acidic Protein/genetics , Magnetic Resonance Imaging/methods , Medulla Oblongata/diagnostic imaging , Medulla Oblongata/pathology , Mutation
7.
Neurogenetics ; 24(4): 303-310, 2023 10.
Article in English | MEDLINE | ID: mdl-37658208

ABSTRACT

Alexander disease (AxD) is a rare autosomal dominant leukodystrophy caused by heterozygous mutations in the glial fibrillary acid protein (GFAP) gene. The age of symptoms onset ranges from infancy to adulthood, with variable clinical and radiological manifestations. Adult-onset AxD manifests as a chronic and progressive condition, characterized by bulbar, motor, cerebellar, and other clinical signs and symptoms. Neuroradiological findings typically involve the brainstem and cervical spinal cord. Adult-onset AxD has been described in diverse populations but is rare in Israel. We present a series of patients diagnosed with adult-onset AxD from three families, all of Jewish Syrian descent. Five patients (4 females) were diagnosed with adult-onset AxD due to the heterozygous mutation c.219G > A, p.Met73Ile in GFAP. Age at symptoms onset ranged from 48 to 61 years. Clinical characteristics were typical and involved progressive bulbar and gait disturbance, followed by pyramidal and cerebellar impairment, dysautonomia, and cognitive decline. Imaging findings included medullary and cervical spinal atrophy and mostly infratentorial white matter hyperintensities. A newly recognized cluster of adult-onset AxD in Jews of Syrian origin is presented. This disorder should be considered in differential diagnosis in appropriate circumstances. Genetic counselling for family members is required in order to discuss options for future family planning.


Subject(s)
Alexander Disease , Female , Humans , Adult , Middle Aged , Alexander Disease/diagnostic imaging , Alexander Disease/genetics , Jews/genetics , Syria , Glial Fibrillary Acidic Protein/genetics , Mutation , Atrophy
9.
Pract Neurol ; 23(5): 414-417, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37474302

ABSTRACT

Leukodystrophies are a group of genetic diseases with diverse clinical features and prominent involvement of the central nervous system white matter. We describe a 27-year-old man who presented with a progressive neurological disease, and striking involvement of the brainstem and symmetrical white matter lesions on MR scanning. Having excluded several other causes of leukodystrophy, we confirmed Alexander disease when a genetic panel showed a probable pathogenic variant in GFAP: p.Leu359Pro. Clinicians should suspect Alexander disease in people with a progressive neurological motor decline who has pyramidal and bulbar signs and compatible neuroimaging.


Subject(s)
Alexander Disease , Cervical Cord , Male , Humans , Adult , Alexander Disease/complications , Alexander Disease/diagnostic imaging , Alexander Disease/genetics , Glial Fibrillary Acidic Protein/genetics , Cervical Cord/pathology , Brain Stem/diagnostic imaging , Brain Stem/pathology , Magnetic Resonance Imaging/methods
10.
Pediatr Radiol ; 53(10): 2149-2153, 2023 09.
Article in English | MEDLINE | ID: mdl-37455276

ABSTRACT

Alexander disease is a leukodystrophy caused by mutations in the GFAP gene, primarily affecting the astrocytes. This report describes the prenatal and post-mortem neuroimaging findings in a case of genetically confirmed, fetal-onset Alexander disease with pathological correlation after termination of pregnancy. The additional value of fetal brain magnetic resonance imaging in the third trimester as a complementary evaluation tool to neurosonography is shown for suspected cases of fetal-onset Alexander disease. Diffuse signal abnormalities of the periventricular white matter in association with thickening of the fornix and optic chiasm can point towards the diagnosis. Furthermore, the presence of atypical imaging findings such as microcephaly and cortical folding abnormalities in this case broadens our understanding of the phenotypic variability of Alexander disease.


Subject(s)
Alexander Disease , Pregnancy , Female , Humans , Alexander Disease/diagnostic imaging , Alexander Disease/genetics , Alexander Disease/pathology , Glial Fibrillary Acidic Protein/genetics , Cerebral Ventricles/pathology , Radiography , Mutation , Magnetic Resonance Imaging
11.
Cells ; 12(7)2023 03 23.
Article in English | MEDLINE | ID: mdl-37048051

ABSTRACT

Alexander disease (AxD) is caused by mutations in the gene for glial fibrillary acidic protein (GFAP), an intermediate filament expressed by astrocytes in the central nervous system. AxD-associated mutations cause GFAP aggregation and astrogliosis, and GFAP is elevated with the astrocyte stress response, exacerbating mutant protein toxicity. Studies in mouse models suggest disease severity is tied to Gfap expression levels, and signal transducer and activator of transcription (STAT)-3 regulates Gfap during astrocyte development and in response to injury and is activated in astrocytes in rodent models of AxD. In this report, we show that STAT3 is also activated in the human disease. To determine whether STAT3 contributes to GFAP elevation, we used a combination of genetic approaches to knockout or reduce STAT3 activation in AxD mouse models. Conditional knockout of Stat3 in cells expressing Gfap reduced Gfap transactivation and prevented protein accumulation. Astrocyte-specific Stat3 knockout in adult mice with existing pathology reversed GFAP accumulation and aggregation. Preventing STAT3 activation reduced markers of reactive astrocytes, stress-related transcripts, and microglial activation, regardless of disease stage or genetic knockout approach. These results suggest that pharmacological inhibition of STAT3 could potentially reduce GFAP toxicity and provide a therapeutic benefit in patients with AxD.


Subject(s)
Alexander Disease , Glial Fibrillary Acidic Protein , STAT3 Transcription Factor , Animals , Humans , Mice , Alexander Disease/genetics , Alexander Disease/metabolism , Alexander Disease/pathology , Astrocytes/metabolism , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Intermediate Filaments/metabolism , Mutation , STAT3 Transcription Factor/metabolism
12.
J Hist Neurosci ; 32(4): 399-422, 2023.
Article in English | MEDLINE | ID: mdl-37000960

ABSTRACT

In 1949, William Stewart Alexander (1919-2013), a young pathologist from New Zealand working in London, reported the neuropathological findings in a 15-month-old boy who had developed normally until the age of seven months, but thereafter had progressive enlargement of his head and severe developmental delay. The most striking neuropathological abnormality was the presence of numerous Rosenthal fibers in the brain. The distribution of these fibers suggested to Alexander that the primary pathological change involved astrocytes. In the next 15 years, five similar patients were reported, and in 1964 Friede recognized these cases reflected a single disease process and coined the eponym "Alexander's disease" to describe the disorder. In the 1960s, electron microscopy confirmed that Rosenthal fibers were localized to astrocytes. In 2001, it was shown that Alexander disease is caused by mutations in the gene encoding glial fibrillary acidic protein, the major intermediate filament protein in astrocytes. Although the clinical, imaging, and pathological manifestations of Alexander disease are now well known, few people are familiar with Alexander's career. Although he did not make a further contribution to the literature on Alexander disease, his observations and accurate interpretation of the neuropathology have justified the continued use of the eponym "Alexander disease."


Subject(s)
Alexander Disease , Male , Humans , Infant , Alexander Disease/genetics , Alexander Disease/metabolism , Alexander Disease/pathology , Eponyms , Brain/pathology , Mutation , Astrocytes/metabolism , Astrocytes/pathology
13.
Mol Genet Metab ; 138(3): 107540, 2023 03.
Article in English | MEDLINE | ID: mdl-36804850

ABSTRACT

BACKGROUND AND OBJECTIVES: Alexander disease (AxD) is a rare progressive leukodystrophy caused by autosomal dominant mutations in the Glial Fibrillary Acidic Protein (GFAP) gene. Three main disease classifications are currently in use, the traditional one defined by the age of onset, and two other based on clinical features at onset and brain MRI findings. Recently, we proposed a new classification, which is based on taking into consideration not only the presenting features, but also data related to the clinical course. In this study, we tried to apply this modified classification system to the cases of pediatric-onset AxD described in literature. METHODS: A literature review was conducted in PubMed for articles published between 1949 to date. Articles that reported no patient's medical history and the articles about Adult-onset AxD were excluded. We included patients with a confirmed diagnosis of pediatric-onset AxD and of whom information about age and symptoms at onset, developmental milestones and loss of motor and language skills was available. RESULTS: Clinical data from 205 patients affected with pediatric-onset AxD were retrospectively reviewed. Among these, we identified 65 patients, of whom we had enough information about the clinical course and developmental milestones, and we assessed their disease evolutionary trajectories over time. DISCUSSION: Our results confirm that patients with Type I AxD might be classified into four subgroups (Ia, Ib, Ic, Id) basing on follow up data. In fact, despite the great variability of phenotypes in AxD, there are some shared trajectories of the disease evolution over time.


Subject(s)
Alexander Disease , Humans , Alexander Disease/diagnosis , Alexander Disease/genetics , Glial Fibrillary Acidic Protein/genetics , Retrospective Studies , Phenotype , Mutation , Disease Progression
16.
Eur J Med Res ; 27(1): 174, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36088400

ABSTRACT

BACKGROUND: Alexander disease (AxD) is a rare leukodystrophy with an autosomal dominant inheritance mode. Variants in GFAP lead to this disorder and it is classified into three distinguishable subgroups: infantile, juvenile, and adult-onset types. OBJECTIVE: The aim of this study is to report a novel variant causing AxD and collect all the associated variants with juvenile and adult-onset as well. METHODS: We report a 2-year-old female with infantile AxD. All relevant clinical and genetic data were evaluated. Search strategy for all AxD types was performed on PubMed. The extracted data include total recruited patients, number of patients carrying a GFAP variant, nucleotide and protein change, zygosity and all the clinical symptoms. RESULTS: A novel de novo variant c.217A > G: p. Met73Val was found in our case by whole-exome sequencing. In silico analysis categorized this variant as pathogenic. Totally 377 patients clinically diagnosed with juvenile or adult-onset forms were recruited in these articles, among them 212 patients were affected with juvenile or adult-onset form carrier of an alteration in GFAP. A total of 98 variants were collected. Among these variants c.262C > T 11/212 (5.18%), c.1246C > T 9/212 (4.24%), c.827G > T 8/212 (3.77%), c.232G > A 6/212 (2.83%) account for the majority of reported variants. CONCLUSION: This study highlighted the role of genetic in AxD diagnosing. It also helps to provide more information in order to expand the genetic spectrum of Iranian patients with AxD. Our literature review is beneficial in defining a better genotype-phenotype correlation of AxD disorder.


Subject(s)
Alexander Disease , Alexander Disease/diagnosis , Alexander Disease/genetics , Alexander Disease/pathology , Female , Glial Fibrillary Acidic Protein/genetics , Humans , Iran , Exome Sequencing
18.
BMC Pediatr ; 22(1): 412, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831840

ABSTRACT

BACKGROUND: Alexander disease (AxD) is classified into AxD type I (infantile) and AxD type II (juvenile and adult form). We aimed to determine the potential genetic cause(s) contributing to the AxD type II manifestations in a 9-year-old male who presented area postrema-like syndrome and his vomiting and weight loss improved after taking prednisolone. CASE PRESENTATION: A normal cognitive 9-year-old boy with persistent nausea, vomiting, and a significant weight loss at the age of 6 years was noticed. He also experienced an episode of status epilepticus with generalized atonic seizures. He showed non-febrile infrequent multifocal motor seizures at the age of 40 days which were treated with phenobarbital. He exhibited normal physical growth and neurologic developmental milestones by the age of six. Occasionally vomiting unrelated to feeding was reported. Upon examination at 9 years, a weak gag reflex, prominent drooling, exaggerated knee-deep tendon reflexes (3+), and nasal tone speech was detected. All gastroenterological, biochemical, and metabolic assessments were normal. Brain magnetic resonance imaging (MRI) revealed bifrontal confluent deep and periventricular white matter signal changes, fine symmetric frontal white matter and bilateral caudate nucleus involvements with garland changes, and a hyperintense tumefactive-like lesion in the brain stem around the floor of the fourth ventricle and area postrema with contrast uptake in post-contrast T1-W images. Latter MRI at the age of 8 years showed enlarged area postrema lesion and bilateral middle cerebellar peduncles and dentate nuclei involvements. Due to clinical and genetic heterogeneities, whole-exome sequencing was performed and the candidate variant was confirmed by Sanger sequencing. A de novo heterozygous mutation, NM_001242376.1:c.262 C > T;R88C in exon 1 of the GFAP (OMIM: 137,780) was verified. Because of persistent vomiting and weight loss of 6.0 kg, prednisolone was prescribed which brought about ceasing vomiting and led to weight gaining of 3.0 kg over the next 3 months after treatment. Occasional attempts to discontinue prednisolone had been resulting in the reappearance of vomiting. CONCLUSIONS: This study broadens the spectrum of symptomatic treatment in leukodystrophies and also shows that R88C mutation may lead to a broad range of phenotypes in AxD type II patients.


Subject(s)
Alexander Disease , Alexander Disease/genetics , Alexander Disease/pathology , Area Postrema/pathology , Glial Fibrillary Acidic Protein/genetics , Humans , Male , Prednisolone/therapeutic use , Seizures , Vomiting , Weight Loss
19.
Mol Biol Cell ; 33(8): ar69, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35511821

ABSTRACT

Alexander disease is a primary genetic disorder of astrocytes caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP). How single-amino-acid changes can lead to cytoskeletal catastrophe and brain degeneration remains poorly understood. In this study, we have analyzed 14 missense mutations located in the GFAP rod domain to investigate how these mutations affect in vitro filament assembly. Whereas the internal rod mutants assembled into filaments that were shorter than those of wild type, the rod end mutants formed structures with one or more of several atypical characteristics, including short filament length, irregular width, roughness of filament surface, and filament aggregation. When transduced into primary astrocytes, GFAP mutants with in vitro assembly defects usually formed cytoplasmic aggregates, which were more resistant to biochemical extraction. The resistance of GFAP to solubilization was also observed in brain tissues of patients with Alexander disease, in which a significant proportion of insoluble GFAP were accumulated in Rosenthal fiber fractions. These findings provide clinically relevant evidence that link GFAP assembly defects to disease pathology at the tissue level and suggest that altered filament assembly and properties as a result of GFAP mutation are critical initiating factors for the pathogenesis of Alexander disease.


Subject(s)
Alexander Disease , Glial Fibrillary Acidic Protein/metabolism , Alexander Disease/genetics , Alexander Disease/metabolism , Astrocytes/metabolism , Glial Fibrillary Acidic Protein/genetics , Humans , Intermediate Filaments/metabolism , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...