Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.777
Filter
1.
Proc Natl Acad Sci U S A ; 121(20): e2312892121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713622

ABSTRACT

Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus, the two most abundant phototrophs on Earth, thrive in oligotrophic oceanic regions. While it is well known that specific lineages are exquisitely adapted to prevailing in situ light and temperature regimes, much less is known of the molecular machinery required to facilitate occupancy of these low-nutrient environments. Here, we describe a hitherto unknown alkaline phosphatase, Psip1, that has a substantially higher affinity for phosphomonoesters than other well-known phosphatases like PhoA, PhoX, or PhoD and is restricted to clade III Synechococcus and a subset of high light I-adapted Prochlorococcus strains, suggesting niche specificity. We demonstrate that Psip1 has undergone convergent evolution with PhoX, requiring both iron and calcium for activity and likely possessing identical key residues around the active site, despite generally very low sequence homology. Interrogation of metagenomes and transcriptomes from TARA oceans and an Atlantic Meridional transect shows that psip1 is abundant and highly expressed in picocyanobacterial populations from the Mediterranean Sea and north Atlantic gyre, regions well recognized to be phosphorus (P)-deplete. Together, this identifies psip1 as an important oligotrophy-specific gene for P recycling in these organisms. Furthermore, psip1 is not restricted to picocyanobacteria and is abundant and highly transcribed in some α-proteobacteria and eukaryotic algae, suggesting that such a high-affinity phosphatase is important across the microbial taxonomic world to occupy low-P environments.


Subject(s)
Alkaline Phosphatase , Prochlorococcus , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Prochlorococcus/genetics , Prochlorococcus/metabolism , Phosphorus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Synechococcus/genetics , Synechococcus/metabolism , Phylogeny , Seawater/microbiology
2.
RMD Open ; 10(2)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38580346

ABSTRACT

INTRODUCTION: Hypophosphatasia (HPP) is a rare genetic disease caused by loss-of-function mutations in the ALPL gene encoding the tissue non-specific alkaline phosphatase (ALP). Mild HPP is usually misdiagnosed in adult age. While an elevated serum ALP value draws more attention than a low value, low serum ALP should be better recognised and may lead to HPP detection. METHODS: Patients were selected from the records of the biochemistry department of six University Hospitals in France. Patients were hospitalised in the departments of rheumatology and internal medicine between 2007 and 2017. RESULTS: 56 321 hospitalised patients had at least 2 serum ALP dosages and 664 of these patients had at least 2 low serum ALP≤35 UI/L. Among these 664 patients, 482 (72.6%) had fluctuating low values (mean age 62.9 years; 60% of women) and 182 patients (27.4%) had persistent low values below 35 IU/L (mean age 53.4 years; 67% of women). Among patients with persistent hypophosphatasaemia treated with bisphosphonates, 70.8% never had ALP measurement before treatment and 20.8% were treated despite an abnormal decrease of ALP. Genetic testing was performed in 18 patients and was positive in 11. Genetic diagnosis of HPP was at least 6.0% in persistent hypophosphatasaemia and at least 15.9% in patients with at least three symptoms suggestive of HPP. CONCLUSION: In this 10-year retrospective study, 0.32% of adult patients hospitalised in the rheumatology and internal medicine departments had persistently low serum ALP, and among them, 6% had genetically proven HPP. Reported hypophosphatasaemia represented only 3.6% of hospitalised patients.


Subject(s)
Hypophosphatasia , Rheumatology , Adult , Humans , Female , Middle Aged , Hypophosphatasia/diagnosis , Hypophosphatasia/epidemiology , Hypophosphatasia/genetics , Alkaline Phosphatase/genetics , Retrospective Studies , Mutation
3.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 172-180, 2024 Apr 01.
Article in English, Chinese | MEDLINE | ID: mdl-38597077

ABSTRACT

OBJECTIVES: The effect of TiO2 nanotube morphology on the differentiation potency of senescent periodontal ligament stem cells was investigated. METHODS: Two types of titanium sheets with TiO2 nanotube morphology (20V-NT and 70V-NT) were prepared via anodic oxidation at 20 and 70 V separately, and their surface morphology was observed. Young periodontal ligament stem cells were cultivated in an osteogenic induction medium, and the most effective surface morphology in promoting osteogenic differentiation was selected. RO3306 and Nutlin-3a were used to induce the aging of young periodontal ligament stem cells, and senescent periodontal ligament stem cells were obtained. The osteogenic differentiation of senescent periodontal ligament stem cells was induced, and the effect of surface morphology on osteogenic differentiation was observed. RESULTS: Nanotube morphology was achieved on the surfaces of titanium sheets through anodic oxidation, and the diameters of the nanotubes increased with voltage. A significant difference in the effect of nanotube morphology was found among nanotubes with different diameters in the young periodontal ligament stem cells. The surface nanotube morphology of 20V-NT had a more significant effect that promoted osteogenic differentiation. Compared with a smooth titanium sheet, the surface nanotube morphology of 20V-NT increased the number of alkaline phosphatase-positive senescent periodontal ligament stem cells and promoted calcium deposition and the expression of osteogenic marker genes Runt-related transcription factor 2, osteopontin, and osteocalcin. CONCLUSIONS: A special nanotube morphology enhances the differentiation ability of senescent periodontal ligament stem cells, provides an effective method for periodontal regeneration, and further improves the performance of implants.


Subject(s)
Dental Implants , Osteogenesis , Periodontal Ligament/metabolism , Titanium/metabolism , Titanium/pharmacology , Stem Cells , Cell Differentiation , Cell Proliferation , Cells, Cultured , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/pharmacology
4.
Genes (Basel) ; 15(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674342

ABSTRACT

Hypophosphatasia is a rare inherited metabolic disorder caused by the deficiency of tissue-nonspecific alkaline phosphatase. More severe and early onset cases present symptoms of muscle weakness, diminished motor coordination, and epileptic seizures. These neurological manifestations are poorly characterized. Thus, it is urgent to discover novel differentially expressed genes for investigating the genetic mechanisms underlying the neurological manifestations of hypophosphatasia. RNA-sequencing data offer a high-resolution and highly accurate transcript profile. In this study, we apply an empirical Bayes model to RNA-sequencing data acquired from the spinal cord and neocortex tissues of a mouse model, individually, to more accurately estimate the genetic effects without bias. More importantly, we further develop two integration methods, weighted gene approach and weighted Z method, to incorporate two RNA-sequencing data into a model for enhancing the effects of genetic markers in the diagnostics of hypophosphatasia disease. The simulation and real data analysis have demonstrated the effectiveness of our proposed integration methods, which can maximize genetic signals identified from the spinal cord and neocortex tissues, minimize the prediction error, and largely improve the prediction accuracy in risk prediction.


Subject(s)
Alkaline Phosphatase , Bayes Theorem , Hypophosphatasia , Hypophosphatasia/genetics , Animals , Mice , Alkaline Phosphatase/genetics , Sequence Analysis, RNA/methods , Spinal Cord/metabolism , Spinal Cord/pathology , Humans , Disease Models, Animal , Neocortex/metabolism , Neocortex/pathology
5.
PLoS One ; 19(4): e0300890, 2024.
Article in English | MEDLINE | ID: mdl-38578756

ABSTRACT

A correlation has been reported to exist between exposure factors (e.g. liver function) and acute pancreatitis. However, the specific causal relationship remains unclear. This study aimed to infer the causal relationship between liver function and acute pancreatitis using the Mendelian randomisation method. We employed summary data from a genome-wide association study involving individuals of European ancestry from the UK Biobank and FinnGen. Single-nucleotide polymorphisms (SCNPs), closely associated with liver function, served as instrumental variables. We used five regression models for causality assessment: MR-Egger regression, the random-effect inverse variance weighting method (IVW), the weighted median method (WME), the weighted model, and the simple model. We assessed the heterogeneity of the SNPs using Cochran's Q test. Multi-effect analysis was performed using the intercept term of the MR-Egger method and leave-one-out detection. Odds ratios (ORs) were used to evaluate the causal relationship between liver function and acute pancreatitis risk. A total of 641 SNPs were incorporated as instrumental variables. The MR-IVW method indicated a causal effect of gamma-glutamyltransferase (GGT) on acute pancreatitis (OR = 1.180, 95%CI [confidence interval]: 1.021-1.365, P = 0.025), suggesting that GGT may influence the incidence of acute pancreatitis. Conversely, the results for alkaline phosphatase (ALP) (OR = 0.997, 95%CI: 0.992-1.002, P = 0.197) and aspartate aminotransferase (AST) (OR = 0.939, 95%CI: 0.794-1.111, P = 0.464) did not show a causal effect on acute pancreatitis. Additionally, neither the intercept term nor the zero difference in the MR-Egger regression attained statistical significance (P = 0.257), and there were no observable gene effects. This study suggests that GGT levels are a potential risk factor for acute pancreatitis and may increase the associated risk. In contrast, ALP and AST levels did not affect the risk of acute pancreatitis.


Subject(s)
Pancreatitis , Humans , Pancreatitis/genetics , Acute Disease , Genome-Wide Association Study , Causality , Alkaline Phosphatase/genetics , Coloring Agents , Nonoxynol , gamma-Glutamyltransferase , Liver , Mendelian Randomization Analysis
6.
Dev Growth Differ ; 66(3): 256-265, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38439617

ABSTRACT

Xenopus is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of Xenopus embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole Xenopus embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of ß-galactosidase expressed from the lacZ gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in Xenopus embryos.


Subject(s)
Alkaline Phosphatase , Hot Temperature , Animals , Female , Pregnancy , Xenopus laevis , Alkaline Phosphatase/genetics , Alkaline Phosphatase/analysis , Placenta , Animals, Genetically Modified
7.
Biomolecules ; 14(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38397433

ABSTRACT

A strictly aerobic, Gram-stain-negative, rod-shaped, and motile bacterium, designated strain KMM 296, isolated from the coelomic fluid of the mussel Crenomytilus grayanus, was investigated in detail due to its ability to produce a highly active alkaline phosphatase CmAP of the structural family PhoA. A previous taxonomic study allocated the strain to the species Cobetia marina, a member of the family Halomonadaceae of the class Gammaproteobacteria. However, 16S rRNA gene sequencing showed KMM 296's relatedness to Cobetia amphilecti NRIC 0815T. The isolate grew with 0.5-19% NaCl at 4-42 °C and hydrolyzed Tweens 20 and 40 and L-tyrosine. The DNA G+C content was 62.5 mol%. The prevalent fatty acids were C18:1 ω7c, C12:0 3-OH, C18:1 ω7c, C12:0, and C17:0 cyclo. The polar lipid profile was characterized by the presence of phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, and also an unidentified aminolipid, phospholipid, and a few unidentified lipids. The major respiratory quinone was Q-8. According to phylogenomic and chemotaxonomic evidence, and the nearest neighbors, the strain KMM 296 represents a member of the species C. amphilecti. The genome-based analysis of C. amphilecti NRIC 0815T and C. litoralis NRIC 0814T showed their belonging to a single species. In addition, the high similarity between the C. pacifica NRIC 0813T and C. marina LMG 2217T genomes suggests their affiliation to one species. Based on the rules of priority, C. litoralis should be reclassified as a later heterotypic synonym of C. amphilecti, and C. pacifica is a later heterotypic synonym of C. marina. The emended descriptions of the species C. amphilecti and C. marina are also proposed.


Subject(s)
Alkaline Phosphatase , Halomonadaceae , Adolescent , Child , Humans , Alkaline Phosphatase/genetics , RNA, Ribosomal, 16S/genetics , Halomonadaceae/genetics , Fatty Acids/chemistry , Coloring Agents , Phylogeny , DNA, Bacterial/genetics , DNA, Bacterial/chemistry
8.
Protein Expr Purif ; 218: 106446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38395209

ABSTRACT

The small GTPase Rat sarcoma virus proteins (RAS) are key regulators of cell growth and involved in 20-30% of cancers. RAS switches between its active state and inactive state via exchange of GTP (active) and GDP (inactive). Therefore, to study active protein, it needs to undergo nucleotide exchange to a non-hydrolysable GTP analog. Calf intestine alkaline phosphatase bound to agarose beads (CIP-agarose) is regularly used in a nucleotide exchange protocol to replace GDP with a non-hydrolysable analog. Due to pandemic supply problems and product shortages, we found the need for an alternative to this commercially available product. Here we describe how we generated a bacterial alkaline phosphatase (BAP) with an affinity tag bound to an agarose bead. This BAP completely exchanges the nucleotide in our samples, thereby demonstrating an alternative to the commercially available product using generally available laboratory equipment.


Subject(s)
Monomeric GTP-Binding Proteins , Monomeric GTP-Binding Proteins/metabolism , Nucleotides , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Sepharose , Guanosine Triphosphate/metabolism , Guanosine Diphosphate/metabolism
9.
J Cell Physiol ; 239(5): e31211, 2024 May.
Article in English | MEDLINE | ID: mdl-38304971

ABSTRACT

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 1 Subunit , Epithelial Cells , Glucose , Hypoxia-Inducible Factor 1, alpha Subunit , Lens, Crystalline , Osteogenesis , Humans , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Cell Differentiation/drug effects , Osteogenesis/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Glucose/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Osteocalcin/metabolism , Osteocalcin/genetics , Cataract/pathology , Cataract/metabolism , Cataract/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Calcinosis/metabolism , Calcinosis/pathology , Calcinosis/genetics , Hyperglycemia/metabolism , Hyperglycemia/genetics , Hyperglycemia/pathology , Signal Transduction , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Cells, Cultured
10.
Am J Physiol Cell Physiol ; 326(3): C843-C849, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38223929

ABSTRACT

The phosphodiesterase enzymes mediate calcium-phosphate deposition in various tissues, although which enzymes are active in bone mineralization is unclear. Using gene array analysis, we found that a member of ecto-nucleotide pyrophosphatase/phosphodiesterase family, ENPP2, was strongly down-regulated with age in stromal stem cells that produce osteoblasts and make bone. This is in keeping with reduced bone formation in older animals. Thus, we hypothesized that ENPP2 is, at least in part, an early mediator of bone formation and thus may reflect reduced bone formation with age. Since ENPP2 has not previously been shown to have a role in osteoblast differentiation, we studied its effect on bone differentiation from stromal stem cells, verified by flow cytometry for stem cell antigens. In these remarkably uniform osteoblast precursors, we did transfection with ENPP2 DsiRNA, scrambled DsiRNA, or no transfection to make cells with normal or greatly reduced ENPP2 and analyzed osteoblast differentiation and mineralization. Osteoblast differentiation down-regulation was shown by alizarin red binding, silver staining, and alkaline phosphatase activity. Differences were confirmed by real-time PCR for alkaline phosphatase (ALPL), osteocalcin (BGLAP), and ENPP2 and by Western Blot for Enpp2. These were decreased, ∼50%, in osteoblasts transfected with ENPP2 DsiRNA compared with cells transfected with a scrambled DsiRNA or not transfected (control) cells. This finding is the first evidence for the role of ENPP2 in osteoblast differentiation and mineralization.NEW & NOTEWORTHY We report the discovery that the ecto-nucleotide pyrophosphatase/phosphodiesterase, ENPP2, is an important regulator of early differentiation of bone-forming osteoblasts.


Subject(s)
Calcinosis , Osteogenesis , Pyrophosphatases , Animals , Alkaline Phosphatase/genetics , Cell Differentiation , Phosphoric Diester Hydrolases/genetics
11.
J Endocrinol Invest ; 47(3): 739-747, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37752373

ABSTRACT

Hypophosphatasia (HPP) is a rare genetic disorder in which pathogenic variants of the ALPL gene lead to a marked decrease of tissue non-specific alkaline phosphatase (TNSALP) activity. Although HPP is a systemic disorder, its clinical manifestations are more evident on bones, teeth, muscle and central nervous system. The clinical spectrum ranges from severe forms with extreme skeletal deformities, respiratory impairment, seizures, to very mild forms with onset in late adulthood and few clinical signs. The diagnosis can be suspected by measurement of TNSALP activity, but the insufficient awareness among health professionals and the lack of official guidelines are responsible for delayed diagnosis in children with HPP. The purpose of the current document is to provide an expert opinion directed at optimizing the diagnostic pathway of pediatric HPP. From April to December 2022, a multidisciplinary working group of 6 experts including two pediatric endocrinologists, a pediatric neurologist, a pediatric odontologist, a clinical geneticist, and a molecular biologist gathered in a series of periodic meetings to discuss the main issues related to the diagnosis of HPP in children and formalize an Expert Opinion statement. The experts agreed on a diagnostic trail that begins with the recognition of specific clinical signs, leading to biochemical analyses of TNSALP activity and vitamin B6 serum concentration. Very important are the neurological and dental manifestation of the disease that should be thoroughly investigated. The evaluation of TNSALP activity must consider sex and age variability and low activity must be persistent. Repeated blood measurements are thus necessary. The molecular analysis is then mandatory to confirm the diagnosis and for genetic counseling.


Subject(s)
Hypophosphatasia , Respiratory Insufficiency , Humans , Child , Adult , Hypophosphatasia/diagnosis , Hypophosphatasia/genetics , Expert Testimony , Alkaline Phosphatase/genetics , Central Nervous System , Health Personnel , Mutation
12.
Osteoporos Int ; 35(4): 717-725, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37993691

ABSTRACT

Hypophosphatasia (HPP) is a rare bone disease with limited scientific evidence on the tolerability and safety of its novel treatment, Asfotase Alfa (AA). We report 7 HPP patients' heterogenous presentations and the significant improvement in various clinical outcomes attained with AA shedding light on this highly effective and safe therapy. INTRODUCTION: Hypophosphatasia (HPP) is a rare inherited metabolic bone disorder characterized by a deficiency in the tissue non-specific alkaline phosphatase (TNSALP) due to loss of function mutation in the ALPL gene. HPP is associated with impaired skeletal mineralization due to elevations in inorganic pyrophosphate and altered phosphate : pyrophosphate ratio. Asfotase alfa (AA) "enzyme replacement" was approved for treatment of HPP in 2015. We present 7 patients with HPP, 5 with pediatric-onset, and 2 with adult-onset, who have been treated with AA and describe the efficacy and safety in these patients. METHODS: 7 patients (4 females, 3 males) aged 19-68 years with HPP were included in this study. Diagnosis of HPP was confirmed by DNA analysis. AA was administered in doses of 6mg/kg/week with a mean follow-up of 6 months (SD= 5). RESULTS: Subjective improvement in muscle strength, muscle pain, walking ability, and walking distance with a reduction in the use of gait aids was seen "with AA in HPP patients." Muscle strength and pain improved by up to 70% from baseline as quantified subjectively by patients. Walking distance improved by up to 100%. Patients also reported improved cognition, mood, and energy levels, with up to 90% improvement in mood and 75% improvement in energy levels. 4 out of 6 patients first noted clinical signs of improvement after 3 months of being on therapy. 1 out of the 7 patients sustained a toe fracture 10 months from being on AA. AA was well-tolerated with injection site reactions being the most reported adverse effect. CONCLUSION: HPP treatment with AA in individuals with both pediatric and adult-onset forms resulted in significant subjective improvement in musculoskeletal and cognitive manifestations in addition to patients' quality of life. The drug was well tolerated in 6 patients. 1 patient discontinued therapy because of minor adverse effects with myalgias.


Subject(s)
Bone Diseases, Metabolic , Hypophosphatasia , Immunoglobulin G , Recombinant Fusion Proteins , Male , Adult , Female , Humans , Child , Alkaline Phosphatase/therapeutic use , Alkaline Phosphatase/genetics , Hypophosphatasia/drug therapy , Hypophosphatasia/complications , Diphosphates/therapeutic use , Quality of Life , Bone Diseases, Metabolic/complications , Pain/drug therapy
13.
Osteoporos Int ; 35(3): 439-449, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37982856

ABSTRACT

Hypophosphatasia (HPP) is an inborn error of metabolism caused by reduced or absent activity of the tissue non-specific alkaline phosphatase (TNSALP) enzyme, resulting from pathogenic variants in the ALPL gene. Clinical presentation of HPP is highly variable, including lethal and severe forms in neonates and infants, a benign perinatal form, mild forms manifesting in adulthood, and odonto-HPP. Diagnosis of HPP remains a challenge in adults, as signs and symptoms may be mild and non-specific. Disease presentation varies widely; there are no universal signs or symptoms, and the disease often remains underdiagnosed or misdiagnosed, particularly by clinicians who are not familiar with this rare disorder. The absence of diagnosis or a delayed diagnosis may prevent optimal management for patients with this condition. Formal guidelines for the diagnosis of adults with HPP do not exist, complicating efforts for consistent diagnosis. To address this issue, the HPP International Working Group selected 119 papers that explicitly address the diagnosis of HPP in adults through a Medline, Medline In-Process, and Embase search for the terms "hypophosphatasia" and "HPP," and evaluated the pooled prevalence of 17 diagnostic characteristics, initially selected by a group of HPP clinical experts, in eligible studies and in patients included in these studies. Six diagnostic findings showed a pooled prevalence value over 50% and were considered for inclusion as major diagnostic criteria. Based on these results and according to discussion and consideration among members of the Working Group, we finally defined four major diagnostic criteria and five minor diagnostic criteria for HPP in adults. Authors suggested the integrated use of the identified major and minor diagnostic criteria, which either includes two major criteria, or one major criterion and two minor criteria, for the diagnosis of HPP in adults.


Subject(s)
Hypophosphatasia , Infant , Adult , Infant, Newborn , Humans , Hypophosphatasia/diagnosis , Hypophosphatasia/epidemiology , Hypophosphatasia/genetics , Alkaline Phosphatase/genetics , Mutation , Prevalence
14.
Osteoporos Int ; 35(3): 431-438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37982857

ABSTRACT

BACKGROUND: This manuscript provides a summary of the current evidence to support the criteria for diagnosing a child or adult with hypophosphatasia (HPP). The diagnosis of HPP is made on the basis of integrating clinical features, laboratory profile, radiographic features of the condition, and DNA analysis identifying the presence of a pathogenic variant of the tissue nonspecific alkaline phosphatase gene (ALPL). Often, the diagnosis of HPP is significantly delayed in both adults and children, and updated diagnostic criteria are required to keep pace with our evolving understanding regarding the relationship between ALPL genotype and associated HPP clinical features. METHODS: An International Working Group (IWG) on HPP was formed, comprised of a multidisciplinary team of experts from Europe and North America with expertise in the diagnosis and management of patients with HPP. Methodologists (Romina Brignardello-Petersen and Gordon Guyatt) and their team supported the IWG and conducted systematic reviews following the GRADE methodology, and this provided the basis for the recommendations. RESULTS: The IWG completed systematic reviews of the literature, including case reports and expert opinion papers describing the phenotype of patients with HPP. The published data are largely retrospective and include a relatively small number of patients with this rare condition. It is anticipated that further knowledge will lead to improvement in the quality of genotype-phenotype reporting in this condition. CONCLUSION: Following consensus meetings, agreement was reached regarding the major and minor criteria that can assist in establishing a clinical diagnosis of HPP in adults and children.


Subject(s)
Hypophosphatasia , Adult , Child , Humans , Hypophosphatasia/diagnosis , Hypophosphatasia/genetics , Mutation , Retrospective Studies , Alkaline Phosphatase/genetics , Genotype , Phenotype
15.
Osteoporos Int ; 35(1): 1-10, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37982855

ABSTRACT

Hypophosphatasia (HPP) is a rare inborn error of metabolism that presents variably in both age of onset and severity. HPP is caused by pathogenic variants in the ALPL gene, resulting in low activity of tissue nonspecific alkaline phosphatase (TNSALP). Patients with HPP tend have a similar pattern of elevation of natural substrates that can be used to aid in diagnosis. No formal diagnostic guidelines currently exist for the diagnosis of this condition in children, adolescents, or adults. The International HPP Working Group is a comprised of a multidisciplinary team of experts from Europe and North America who have expertise in the diagnosis and management of patients with HPP. This group reviewed 93 papers through a Medline, Medline In-Process, and Embase search for the terms "HPP" and "hypophosphatasia" between 2005 and 2020 and that explicitly address either the diagnosis of HPP in children, clinical manifestations of HPP in children, or both. Two reviewers independently evaluated each full-text publication for eligibility and studies were included if they were narrative reviews or case series/reports that concerned diagnosis of pediatric HPP or included clinical aspects of patients diagnosed with HPP. This review focused on 15 initial clinical manifestations that were selected by a group of clinical experts.The highest agreement in included literature was for pathogenic or likely pathogenic ALPL variant, elevation of natural substrates, and early loss of primary teeth. The highest prevalence was similar, including these same three parameters and including decreased bone mineral density. Additional parameters had less agreement and were less prevalent. These were organized into three major and six minor criteria, with diagnosis of HPP being made when two major or one major and two minor criteria are present.


Subject(s)
Hypophosphatasia , Adult , Child , Humans , Adolescent , Hypophosphatasia/diagnosis , Hypophosphatasia/genetics , Alkaline Phosphatase/genetics , Europe , Prevalence , Mutation
16.
Bone ; 178: 116947, 2024 01.
Article in English | MEDLINE | ID: mdl-37898381

ABSTRACT

BACKGROUND: Hypophosphatasia (HPP) is an inherited multisystem disorder predominantly affecting the mineralization of bones and teeth. HPP is caused by pathogenic variants in ALPL, which encodes tissue non-specific alkaline phosphatase (TNSALP). Variants of uncertain significance (VUS) cause diagnostic delay and uncertainty amongst patients and health care providers. RESULTS: The ALPL gene variant database (https://alplmutationdatabase.jku.at/) is an open-access archive for interpretation of the clinical significance of variants reported in ALPL. The database contains coding and non-coding variants, including single nucleotide variants, insertions/deletions and structural variants affecting coding or non-coding sequences of ALPL. Each variant in the database is displayed with details explaining the corresponding pathogenicity, and all reported genotypes and phenotypes, including references. In 2021, the ALPL gene variant classification project was established to reclassify VUS and continuously assess and update genetic, phenotypic, and functional variant information in the database. For this purpose, the database provides a unique submission system for clinicians, geneticists, genetic counselors, and researchers to submit VUS within ALPL for classification. An international, multidisciplinary consortium of HPP experts has been established to reclassify the submitted VUS using a multi-step process adhering to the stringent ACMG/AMP variant classification guidelines. These steps include a clinical phenotype assessment, deep literature research including artificial intelligence technology, molecular genetic assessment, and in-vitro functional testing of variants in a co-transfection model to measure ALP residual activity. CONCLUSION: This classification project and the ALPL gene variant database will serve the global medical community, widen the genotypic and phenotypic HPP spectrum by reporting and characterizing new ALPL variants based on ACMG/AMP criteria and thus facilitate improved genetic counseling and medical decision-making for affected patients and families. The project may also serve as a gold standard framework for multidisciplinary collaboration for variant interpretation in other rare diseases.


Subject(s)
Alkaline Phosphatase , Hypophosphatasia , Humans , Alkaline Phosphatase/genetics , Alkaline Phosphatase/chemistry , Mutation/genetics , Artificial Intelligence , Delayed Diagnosis , Hypophosphatasia/genetics , Hypophosphatasia/pathology
17.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958888

ABSTRACT

Hypophosphatasia (HPP) is a rare metabolic bone disorder characterized by low levels of tissue non-specific alkaline phosphatase (TNAP) that causes under-mineralization of the bone, leading to bone deformity and fractures. In addition, patients often present with chronic muscle pain, reduced muscle strength, and an altered gait. In this work, we explored dynamic muscle function in a homozygous TNAP knockout mouse model of severe juvenile onset HPP. We found a reduction in skeletal muscle size and impairment in a range of isolated muscle contractile properties. Using histological methods, we found that the structure of HPP muscles was similar to healthy muscles in fiber size, actin and myosin structures, as well as the α-tubulin and mitochondria networks. However, HPP mice had significantly fewer embryonic and type I fibers than wild type mice, and fewer metabolically active NADH+ muscle fibers. We then used oxygen respirometry to evaluate mitochondrial function and found that complex I and complex II leak respiration were reduced in HPP mice, but that there was no disruption in efficiency of electron transport in complex I or complex II. In summary, the severe HPP mouse model recapitulates the muscle strength impairment phenotypes observed in human patients. Further exploration of the role of alkaline phosphatase in skeletal muscle could provide insight into mechanisms of muscle weakness in HPP.


Subject(s)
Bone Diseases, Metabolic , Hypophosphatasia , Humans , Mice , Animals , Hypophosphatasia/genetics , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Disease Models, Animal , Mice, Knockout
18.
Eur J Med Genet ; 66(11): 104856, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758163

ABSTRACT

Osteogenesis imperfecta (OI) and hypophosphatasia (HPP) are rare skeletal disorders caused by mutations in the genes encoding collagen type I (COL1A, COL1A2) and tissue-non-specific isoenzyme of alkaline phosphatase (ALPL), respectively. Both conditions result in skeletal deformities and bone fragility although bone tissue abnormalities differ considerably. Children with OI have low bone mass and hypermineralized matrix, whereas HPP children develop rickets and osteomalacia. We report a family, father and three children, affected with growth retardation, low bone mass and recurrent fractures. None of them had rickets, blue sclera or dentinogenesis imperfecta. ALP serum levels were low and genetics revealed in the four probands heterozygous pathogenic mutations in COL1A2 c.838G > A (p.Gly280Ser) and in ALPL c.1333T > C (p.Ser445Pro). After multidisciplinary meeting, a diagnostic transiliac bone biopsy was indicated for each sibling for therapeutic decision. Bone histology and histomorphometry, as compared to reference values of children with OI type I as well as, to a control pediatric patient harboring the same COL1A2 mutation, revealed similarly decreased trabecular bone volume, increased osteocyte lacunae, but additionally severe osteomalacia. Quantitative backscattered electron imaging demonstrated that bone matrix mineralization was not as decreased as expected for osteomalacia. In summary, we observed within each biopsy samples classical features of OI and classical features of HPP. The apparent nearly normal bone mineralization density distribution results presumably from divergent effects of OI and HPP on matrix mineralization. A combination therapy was initiated with ALP enzyme-replacement and one month later with bisphosphonates. The ongoing treatment led to improved skeletal growth, increased BMD and markedly reduced fracture incidence.


Subject(s)
Calcinosis , Fractures, Multiple , Hypophosphatasia , Osteogenesis Imperfecta , Osteomalacia , Rickets , Child , Humans , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/genetics , Hypophosphatasia/drug therapy , Hypophosphatasia/genetics , Osteomalacia/genetics , Osteomalacia/pathology , Mutation , Alkaline Phosphatase/genetics
19.
Front Immunol ; 14: 1195553, 2023.
Article in English | MEDLINE | ID: mdl-37662902

ABSTRACT

Background: Studies of liver dysfunction in relation to bone and joint-related diseases are scarce, and its causality remains unclear. Our objective was to investigate whether serum liver enzymes are causally associated with bone and joint-related diseases using Mendelian randomization (MR) designs. Methods: Genetic data on serum liver enzymes (alkaline phosphatase (ALP); alanine transaminase (ALT); gamma-glutamyl transferase (GGT)) and six common bone and joint-related diseases (rheumatoid arthritis (RA), osteoporosis, osteoarthritis (OA), ankylosing spondylitis, psoriatic arthritis, and gout) were derived from independent genome-wide association studies of European ancestry. The inverse variance-weighted (IVW) method was applied for the main causal estimate. Complementary sensitivity analyses and reverse causal analyses were utilized to confirm the robustness of the results. Results: Using the IVW method, the positive causality between ALP and the risk of osteoporosis diagnosed by bone mineral density (BMD) at different sites was indicated (femoral neck, lumbar spine, and total body BMD, odds ratio (OR) [95% CI], 0.40 [0.23-0.69], 0.35 [0.19-0.67], and 0.33 [0.22-0.51], respectively). ALP was also linked to a higher risk of RA (OR [95% CI], 6.26 [1.69-23.51]). Evidence of potential harmful effects of higher levels of ALT on the risk of hip and knee OA was acquired (OR [95% CI], 2.48 [1.39-4.41] and 3.07 [1.49-6.30], respectively). No causal relationship was observed between GGT and these bone and joint-related diseases. The study also found that BMD were all negatively linked to ALP levels (OR [95% CI] for TBMD, FN-BMD, and LS-BMD: 0.993 [0.991-0.995], 0.993 [0.988-0.998], and 0.993 [0.989, 0.998], respectively) in the reverse causal analysis. The results were replicated via sensitivity analysis in the validation process. Conclusions: Our study revealed a significant association between liver function and bone and joint-related diseases.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis, Knee , Osteoporosis , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Alanine Transaminase , gamma-Glutamyltransferase , Osteoporosis/genetics , Alkaline Phosphatase/genetics , Coloring Agents , Liver
20.
Biomater Adv ; 154: 213622, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742556

ABSTRACT

Bone homeostasis is predicated by osteoblast and osteoclast cell cycles where gene expressions are responsible for their differentiation from human mesenchymal stem cells (hMSC) and monocytes, respectively. The pro-osteogenic potential of an hMSC-monocyte co-culture can be measured through complementary DNA (mRNA synthesis) within the nucleus, known as quantitative polymerase chain reaction (qPCR). Through this technique, the effects of garlic extract (allicin) release from calcium phosphate bone scaffolds on gene expression of bone forming and bone remodeling cells was explored. Results show this complex biomaterial system enhances hMSC differentiation through the upregulation of bone-forming proteins. Osteoblastic gene markers alkaline phosphatase (ALP) and osteocalcin (BGLAP), are respectively upregulated by 3-fold and 1.6-fold by day 14. These mature osteoblasts then upregulate the receptor activator of nuclear factor-kB ligand (RANKL) which recruits osteoclast cells, as captured by a nearly 2-fold higher osteoclast expression of tartrate-resistance acid-phosphatase (ACP5). This also activates antagonist osteoprotegerin (OPG) expression in osteoblasts, decreasing osteoclast resorption potential and ACP5 expression by day 21. The pro-osteogenic environment with garlic extract release is further quantified by a 4× increase in phosphatase activity and visibly captured in immunofluorescent tagged confocal images. Also corroborated by enhanced collagen formation in a preliminary in vivo rat distal femur model, this work collectively reveals how garlic extract can enhance bioceramic scaffolds for bone tissue regenerative applications.


Subject(s)
Alkaline Phosphatase , Garlic , Rats , Animals , Humans , Alkaline Phosphatase/genetics , Monocytes/metabolism , Coculture Techniques , Garlic/metabolism , Bone and Bones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...