Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.478
Filter
1.
Molecules ; 29(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39124999

ABSTRACT

Research studies on plant secondary metabolites have increased over the last decades as a consequence of the growing consumer demand for natural products in pharmaceutics and therapeutics, as well as in perfumery and cosmetics. In this perspective, many Mediterranean plant species could be an appreciated source of bioactive compounds with pharmacological and health-promoting properties, including antioxidant, antimicrobial, antiviral, anti-inflammatory, and antitumor ones. Calendula officinalis and Foeniculum vulgare are commercially important plants of the Mediterranean flora, with great therapeutic use in the treatment of many disorders since ancient times, and are now listed in several world pharmacopoeias and drug agencies. The present review offers an overview of the main phytochemicals, phenols, terpenes, and alkaloids, biosynthesized in C. officinalis and F. vulgare, both species endemic to the Mediterranean region. Further, all current knowledge and scientific data on taxonomic classification, botanical description, traditional uses, pharmacological studies, and potential toxicity of both species were reported. The principal aim of this review is to point out the prospective use of C. officinalis and F. vulgare as valuable reservoirs of beneficial plant-derived products with interesting biological properties, also providing suggestions and future challenges for the full exploitation of these two Mediterranean species for human life improvement.


Subject(s)
Calendula , Foeniculum , Phytochemicals , Phytochemicals/chemistry , Phytochemicals/pharmacology , Calendula/chemistry , Mediterranean Region , Humans , Foeniculum/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phenols/chemistry , Phenols/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Terpenes/chemistry , Terpenes/pharmacology , Terpenes/isolation & purification , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification
2.
Sci Rep ; 14(1): 18181, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107323

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks an actionable target with limited treatment options beyond conventional chemotherapy. Therapeutic failure is often encountered due to inherent or acquired resistance to chemotherapy. Previous studies implicated PI3K/Akt/mTOR signaling pathway in cancer stem cells (CSCs) enrichment and hence chemoresistance. The present study aimed at investigating the potential effect of piperine (PIP), an amide alkaloid isolated from Piper nigrum, on enhancing the sensitivity of TNBC cells to doxorubicin (DOX) in vitro on MDA-MB-231 cell line and in vivo in an animal model of Ehrlich ascites carcinoma solid tumor. Results showed a synergistic interaction between DOX and PIP on MDA-MB-231 cells. In addition, the combination elicited enhanced suppression of PI3K/Akt/mTOR signaling that paralleled an upregulation in this pathway's negative regulator, PTEN, along with a curtailment in the levels of the CSCs surrogate marker, aldehyde dehydrogenase-1 (ALDH-1). Meanwhile, in vivo investigations demonstrated the potential of the combination regimen to enhance necrosis while downregulating PTEN and curbing PI3K levels as well as p-Akt, mTOR, and ALDH-1 immunoreactivities. Notably, the combination failed to change cleaved poly-ADP ribose polymerase levels suggesting a pro-necrotic rather than pro-apoptotic mechanism. Overall, these findings suggest a potential role of PIP in decreasing the resistance to DOX in vitro and in vivo, likely by interfering with the PI3K/Akt/mTOR pathway and CSCs.


Subject(s)
Alkaloids , Benzodioxoles , Doxorubicin , Neoplastic Stem Cells , Phosphatidylinositol 3-Kinases , Piperidines , Polyunsaturated Alkamides , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Triple Negative Breast Neoplasms , Doxorubicin/pharmacology , Polyunsaturated Alkamides/pharmacology , Piperidines/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Humans , Alkaloids/pharmacology , Benzodioxoles/pharmacology , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Female , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , Drug Synergism , Mice , Drug Resistance, Neoplasm/drug effects , Apoptosis/drug effects
3.
Prog Chem Org Nat Prod ; 124: 57-183, 2024.
Article in English | MEDLINE | ID: mdl-39101984

ABSTRACT

Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.


Subject(s)
Alkaloids , Biological Products , Plants , Terpenes , Biological Products/chemistry , Biological Products/pharmacology , Plants/chemistry , Terpenes/chemistry , Alkaloids/chemistry , Phenols/chemistry
4.
Medicine (Baltimore) ; 103(32): e39243, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121267

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) or seasonal allergy characterized by sneezing, nasal congestion, nasal itching, and nasal discharge, triggered by immune reactions to environmental allergens. Present day customers also monitor the personal improvements in the area of Evidence-Based natural medicines/supplements. METHODS: A randomized, double-blind, placebo-controlled study was conducted on 65 participants aged 18 to 60 years having 2 or more allergic symptoms like sneezing, rhinorrhoea, nasal obstruction, and nasal itching for a cumulative period greater than 1 hour per day. The study participants received a capsule of NSO (250 mg) with 2.5 mg piperine (BioPerine) as a bioavailability enhancer or a placebo, twice a day, after food for 15 days. The primary objectives were evaluated by mean change in Total Nasal Symptom Score and the duration of AR symptoms per day from baseline to Day 15. Secondary endpoints were changes in Total Ocular Symptoms Score, AR symptom frequency and severity, serum Immunoglobulin E levels, and Patient Global Impression of Change scale. Adverse events were monitored throughout the study. RESULTS: Sixty-five patients were enrolled and all of them completed the study, N = 33 in NSO and N = 32 in placebo. A significant reduction in Total Nasal Symptom Score and Total Ocular Symptoms Score was observed in the NSO group compared to the placebo, highlighting the potential of NSO in alleviating AR symptoms. The episodes of AR symptoms per day and the frequency of symptoms in 24 hours reduced significantly in 15 days in both groups, but the extent of improvement was significantly higher in NSO compared to placebo. Improvement in Patient Global Impression of Change was also significantly better in NSO compared to the placebo. Serum Immunoglobulin E levels decreased in NSO but were not significantly different from placebo. No clinically significant changes were observed in vital signs, liver and renal function, lipid profile, hematology, fasting blood sugar, or urine analysis at the end of the study. CONCLUSION: The result of the study demonstrates that NSO 250 mg with 2.5 mg piperine is an effective and well-tolerated supplement for the management of AR symptoms.


Subject(s)
Benzoquinones , Plant Oils , Rhinitis, Allergic, Seasonal , Humans , Double-Blind Method , Adult , Male , Female , Middle Aged , Plant Oils/therapeutic use , Plant Oils/administration & dosage , Benzoquinones/therapeutic use , Benzoquinones/administration & dosage , Benzoquinones/pharmacology , Rhinitis, Allergic, Seasonal/drug therapy , Young Adult , Adolescent , Piperidines/therapeutic use , Piperidines/administration & dosage , Treatment Outcome , Immunoglobulin E/blood , Polyunsaturated Alkamides/therapeutic use , Alkaloids , Carum , Nigella sativa , Benzodioxoles
5.
Org Lett ; 26(31): 6535-6539, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39087787

ABSTRACT

Lappaconitine, a diterpene alkaloid isolated from Aconitum sinomontanum Nakai, exhibits a wide range of biological activities, making it a promising candidate for the development of novel derivatives with therapeutic potential. In our research, we executed a two-step transformation via oxidative cleavage of lappaconitine's vicinal diol using the hypervalent iodine reagent PhI(OAc)2, followed by strong alkaline hydrolysis. This approach yielded four new unanticipated compounds, whose structures were identified by spectroscopic methods and/or X-ray crystallography. Thus, we proposed plausible reaction mechanisms for their formations and particularly investigated the remarkable diastereoselectivity for the formation of single stereoisomer 8 observed during the alkaline hydrolysis step. Among them, compound 8 (code name: QG3030) demonstrated both enhanced osteogenic differentiation of human mesenchymal stem cells and significant osteogenic effect in an ovariectomized rat model with no acute oral toxicity.


Subject(s)
Aconitine , Iodine , Aconitine/analogs & derivatives , Aconitine/chemistry , Aconitine/pharmacology , Humans , Animals , Molecular Structure , Rats , Iodine/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Mesenchymal Stem Cells/drug effects , Aconitum/chemistry , Crystallography, X-Ray , Osteogenesis/drug effects , Stereoisomerism , Cell Differentiation/drug effects
6.
J Pharm Biomed Anal ; 249: 116391, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39116504

ABSTRACT

Sinomenii Caulis (SC), a commonly used traditional Chinese medicine for its therapeutic effects on rheumatoid arthritis, contains rich chemical components. At present, most studies mainly focus on sinomenine, with little research on other alkaloids. In this study, a comprehensive profile of compounds in SC extract, and biological samples of rats (including bile, urine, feces, and plasma) after oral administration of SC extract was conducted via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The fragmentation patterns and potential biotransformation pathways of six main types of alkaloids in SC were summarized, and the corresponding characteristic product ions, relative ion intensity, and neutral losses were obtained to achieve rapid classification and identification of complex components of SC from in vitro to in vivo. As a result, a total of 114 alkaloid compounds were identified, including 12 benzyl alkaloids, 4 isoquinolone alkaloids, 32 aporphine alkaloids, 28 protoberberine alkaloids, 34 morphinan alkaloids and 4 organic amine alkaloids. After administration of SC extract to rats, a total of 324 prototypes and metabolites were identified from rat plasma, urine, feces and bile, including 81 aporphines, 95 protoberberines, 117 morphinans and 31 benzylisoquinolines. The main types of metabolites were demethylation, hydrogenation, dehydrogenation, aldehydation, oxidation, methylation, sulfate esterification, glucuronidation, glucose conjugation, glycine conjugation, acetylation, and dihydroxylation. In summary, this integrated strategy provides an additional approach for the incomplete identification caused by compound diversity and low abundance, laying the foundation for the discovery of new bioactive compounds of SC against rheumatoid arthritis.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Rats, Sprague-Dawley , Animals , Rats , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Male , Alkaloids/analysis , Alkaloids/chemistry , Alkaloids/pharmacokinetics , Sinomenium/chemistry , Feces/chemistry , Administration, Oral , Bile/chemistry , Bile/metabolism , Tandem Mass Spectrometry/methods , Plant Extracts/chemistry , Plant Extracts/pharmacokinetics , Mass Spectrometry/methods , Medicine, Chinese Traditional/methods , Morphinans/pharmacokinetics , Morphinans/metabolism
7.
J Am Chem Soc ; 146(33): 23574-23581, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39132870

ABSTRACT

We describe the unified enantioselective total synthesis of the polycyclotryptamine natural products (+)-quadrigemine H, (+)-isopsychotridine C, (+)-oleoidine, and (+)-caledonine. Inspired by our hypothesis for the biogenesis of these alkaloids via an iterative concatenative addition of homochiral cyclotryptamines to a meso-chimonanthine headcap, we leverage the modular, diazene-directed assembly of stereodefined cyclotryptamines to introduce successive C3a-C7' quaternary stereocenters on a heterodimeric meso-chimonanthine surrogate with full stereochemical control at each quaternary linkage. We developed a new strategy for iterative aryl-alkyl diazene synthesis using increasingly complex oligomeric hydrazide nucleophiles and a bifunctional cyclotryptamine bearing a C3a leaving group and a pendant C7 pronucleophile. The utility of this strategy is demonstrated by the first total synthesis of heptamer (+)-caledonine and hexamer (+)-oleoidine. Enabled by our completely stereoselective total syntheses and expanded characterization data sets, we provide the first complete stereochemical assignment of pentamer (+)-isopsychotridine C, provide evidence that it is identical to the alkaloid known as (+)-isopsychotridine B, and report that tetramer (+)-quadrigemine H is identical to the alkaloid called (+)-quadrigemine I, resolving longstanding questions about the structures of the highest-order [n + 1] oligocyclotryptamine alkaloids.


Subject(s)
Alkaloids , Stereoisomerism , Alkaloids/chemical synthesis , Alkaloids/chemistry , Tryptamines/chemistry , Tryptamines/chemical synthesis , Molecular Structure , Biological Products/chemical synthesis , Biological Products/chemistry
8.
Cancer Med ; 13(16): e7314, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39155844

ABSTRACT

OBJECTIVE: Solanum nigrum L. (SNL) is a natural drugwith diverse bioactive components and multi-targeted anti-tumor effects, gaining increasing attention in clinical application. METHOD AND RESULTS: This paper reviews the studies on SNL by searching academic databases (Google Scholar, PubMed, Science Direct,and Web of Science, among others), analyzing its chemical compositions (alkaloids, saponins, polysaccharides, and polyphenols, among others), andbriefly describes the anti-tumor mechanisms of the main components. DISCUSSION: This paper discusses the shortcomings of the current research on SNL and proposes corresponding solutions, providing theoretical support for further research on its biological functions and clinical efficacy.


Subject(s)
Antineoplastic Agents, Phytogenic , Solanum nigrum , Solanum nigrum/chemistry , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Neoplasms/drug therapy , Polysaccharides/pharmacology , Polysaccharides/chemistry , Saponins/pharmacology , Saponins/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Polyphenols/pharmacology , Polyphenols/chemistry , Animals , Alkaloids/pharmacology , Alkaloids/chemistry
9.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125943

ABSTRACT

The rising incidence of colorectal cancer (CRC) and gastric cancer (GC) worldwide, coupled with the limited effectiveness of current chemotherapeutic agents, has prioritized the search for new therapeutic options. Natural substances, which often exhibit cytostatic properties, hold significant promise in this area. This review evaluates the anticancer properties of three natural alkaloids-berberine, sanguinarine, and chelerythrine-against CRC and GC. In vivo and in vitro studies have demonstrated that these substances can reduce tumor volume and inhibit the epithelial-mesenchymal transition (EMT) of tumors. At the molecular level, these alkaloids disrupt key signaling pathways in cancer cells, including mTOR, MAPK, EGFR, PI3K/AKT, and NF-κB. Additionally, they exhibit immunomodulatory effects, leading to the induction of programmed cell death through both apoptosis and autophagy. Notably, these substances have shown synergistic effects when combined with classical cytostatic agents such as cyclophosphamide, 5-fluorouracil, cetuximab, and erlotinib. Furthermore, berberine has demonstrated the ability to restore sensitivity in individuals originally resistant to cisplatin GC. Given these findings, natural compounds emerge as a promising option in the chemotherapy of malignant gastrointestinal tumors, particularly in cases with limited treatment options. However, more research is necessary to fully understand their therapeutic potential.


Subject(s)
Benzophenanthridines , Berberine , Colorectal Neoplasms , Stomach Neoplasms , Humans , Benzophenanthridines/pharmacology , Benzophenanthridines/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Berberine/pharmacology , Berberine/therapeutic use , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Animals , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Alkaloids/pharmacology , Alkaloids/therapeutic use
10.
World J Microbiol Biotechnol ; 40(9): 274, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030384

ABSTRACT

Argemone mexicana belonging to family Papaveraceae is a traditional medicinal plant widely utilized by tribal people in India for treating various ailments like skin infections, wounds and inflammation. This plant is very rich in alkaloidal content, which has a great potential in the treatment of anti-inflammatory disorders. Therapeutically promising bioactive molecules are often produced by endophytic fungi associated with medicinal plants. In this investigation, endophytic fungi were isolated from various parts of A. mexicana and screened for alkaloidal content. Among these, one of the fungal isolate, Acremonium alternatum AMEF-5 producing maximum alkaloids showed significant anti-inflammatory activity. Fractionation of this crude fungal extract through column chromatography yielded eight fractions, which were further screened for anti-inflammatory activities. Fraction 3 exhibited significant anti-inflammatory activity by the inhibition of lipoxygenase enzyme (IC50 15.2 ± 0.09 µg/ml), scavenging of the nitric oxide radicals (IC50 11.38 ± 0.35 µg/ml), protein denaturation (IC50 14.93 ± 0.4 µg/ml), trypsin inhibition (IC50 12.06 ± 0.64 µg/ml) and HRBC stabilization (IC50 11.9 ± 0.22 µg/ml). The bioactive alkaloid in fraction 3 was identified as aconitine which was confirmed by UV, FTIR, HPLC, HRMS, 1H NMR, and 13C NMR analysis. This study demonstrates that endophytic fungi serve a potential source for sustainable production of therapeutically important alkaloids.


Subject(s)
Aconitine , Acremonium , Anti-Inflammatory Agents , Endophytes , Acremonium/metabolism , Acremonium/chemistry , Anti-Inflammatory Agents/pharmacology , Aconitine/pharmacology , Aconitine/chemistry , Endophytes/metabolism , Endophytes/chemistry , Endophytes/isolation & purification , Animals , Nitric Oxide/metabolism , Mice , Alkaloids/pharmacology , Lipoxygenase/metabolism , RAW 264.7 Cells , India
11.
Org Lett ; 26(31): 6692-6697, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39058897

ABSTRACT

Asperalins represent a novel class of viridicatin natural products with potent inhibitory activities against fish pathogens. In this study, we elucidated the biosynthesis of asperalins in the Aspergillus oryzae NSAR1 heterologous host and identified the FAD-dependent monooxygenase AplB stereoselectively hydroxylates viridicatin to yield a unique 3R,4S configuration. The monomodular NRPS AplJ catalyzes a rare intramolecular ester bond formation reaction using dihydroquinoline as a nucleophile. Subsequent modifications by cytochrome P450 AplF, chlorinase AplN, and prenyltransferase AplE tailor the anthranilic acid portion, leading to the formation of asperalins. Additionally, we explored the potential of AplB for the hydroxylation of viridicatin analogs, demonstrating its relaxed substrate specificity. This finding suggests that AplB could be developed as a biocatalyst for the synthesis of viridicatin derivatives.


Subject(s)
Alkaloids , Aspergillus oryzae , Esters , Quinolones , Quinolones/chemistry , Quinolones/metabolism , Quinolones/pharmacology , Stereoisomerism , Aspergillus oryzae/metabolism , Aspergillus oryzae/enzymology , Molecular Structure , Alkaloids/chemistry , Alkaloids/biosynthesis , Esters/chemistry , Esters/metabolism , Cytochrome P-450 Enzyme System/metabolism
12.
Sci Total Environ ; 948: 174745, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39032754

ABSTRACT

Harmful cyanobacterial blooms will be more intense and frequent in the future, contaminating surface waters with cyanotoxins and posing a threat to communities heavily reliant on surface water usage for crop irrigation. Constructed wetlands (CWs) are proposed to ensure safe crop irrigation, but more research is needed before implementation. The present study operated 28 mesocosms in continuous mode mimicking horizontal sub-surface flow CWs. Mesocosms were fed with synthetic lake water and spiked periodically with two cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), at environmentally relevant cyanotoxins concentrations (10 µg L-1). The influence of various design factors, including plant species, porous media, and seasonality, was explored. The mesocosms achieved maximum MC-LR and CYN mass removal rates of 95 % and 98 %, respectively. CYN removal is reported for the first time in CWs mimicking horizontal sub-surface flow CWs. Planted mesocosms consistently outperformed unplanted mesocosms, with Phragmites australis exhibiting superior cyanotoxin mass removal compared to Juncus effusus. Considering evapotranspiration, J. effusus yielded the least cyanotoxin-concentrated effluent due to the lower water losses in comparison with P. australis. Using the P-kC* model, different scaling-up scenarios for future piloting were calculated and discussed. Additionally, bacterial community structure was analyzed through correlation matrices and differential taxa analyses, offering valuable insights into their removal of cyanotoxins. Nevertheless, attempts to validate microcystin-LR biotransformation via the known mlrA gene degradation pathway were unfruitful, indicating alternative enzymatic degradation pathways occurring in such complex CW systems. Further investigation into the precise molecular mechanisms of removal and the identification of transformation products is needed for the comprehensive understanding of cyanotoxin mitigation in CW. This study points towards the feasibility of horizontal sub-surface flow CWs to be employed to control cyanotoxins in irrigation or recreational waters.


Subject(s)
Alkaloids , Bacterial Toxins , Biodegradation, Environmental , Cyanobacteria Toxins , Marine Toxins , Microcystins , Uracil , Wetlands , Microcystins/metabolism , Marine Toxins/metabolism , Alkaloids/metabolism , Uracil/analogs & derivatives , Uracil/metabolism , Bacterial Toxins/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Cyanobacteria/metabolism
13.
Org Lett ; 26(30): 6359-6363, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39037587

ABSTRACT

Innovative discovery approaches such as genome-mining and metabolomics-inspired methods have reshaped the natural product research field, complementing traditional bioactivity-based screens and allowing hitherto unseen compounds to be uncovered from previously investigated producers. In line with these trends, we report here imidacins, a novel class of secondary metabolites specific to the myxobacterial genus Stigmatella. A combination of secondary metabolome analysis, genome-mining techniques, spectroscopic analysis, and finally total synthesis was used to allow structure elucidation. Imidacins are urocanate-derived aliphatic acids with an adjacent cyclopropane moiety, structural features unprecedented in natural products to date.


Subject(s)
Stigmatella aurantiaca , Molecular Structure , Stigmatella aurantiaca/chemistry , Alkaloids/chemistry , Alkaloids/chemical synthesis , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/chemical synthesis , Myxococcales/chemistry , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Cyclopropanes/chemical synthesis
14.
Langmuir ; 40(29): 14941-14952, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38980061

ABSTRACT

The objective of the current study is to prepare amorphous solid dispersions (ASDs) containing piperine (PIP) by utilizing organic acid glycyrrhizic acid (GA) and inorganic disordered mesoporous silica 244FP (MSN/244FP) as carriers and to investigate their dissolution mechanism. The physicochemical properties of ASDs were characterized with scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) and one-dimensional proton nuclear magnetic resonance (1H NMR) studies collectively proved that strong hydrogen-bonding interactions formed between PIP and the carriers in ASDs. Additionally, molecular dynamic (MD) simulation was conducted to simulate and predict the physical stability and dissolution mechanisms of the ASDs. Interestingly, it revealed a significant increase in the dissolution of amorphous PIP in ASDs in in vitro dissolution studies. Rapid dissolution of GA in pH 6.8 medium resulted in the immediate release of PIP drugs into a supersaturated state, acting as a dissolution-control mechanism. This exhibited a high degree of fitting with the pseudo-second-order dynamic model, with an R2 value of 0.9996. Conversely, the silanol groups on the outer surface of the MSN and its porous nanostructures enabled PIP to display a unique two-step drug release curve, indicating a diffusion-controlled mechanism. This curve conformed to the Ritger-Peppas model, with an R2 > 0.9. The results obtained provide a clear evidence of the proposed transition of dissolution mechanism within the same ASD system, induced by changes in the properties of carriers in a solution medium of varying pH levels.


Subject(s)
Alkaloids , Benzodioxoles , Piperidines , Polyunsaturated Alkamides , Silicon Dioxide , Piperidines/chemistry , Benzodioxoles/chemistry , Polyunsaturated Alkamides/chemistry , Alkaloids/chemistry , Porosity , Silicon Dioxide/chemistry , Glycyrrhizic Acid/chemistry , Solubility , Molecular Dynamics Simulation , Drug Carriers/chemistry , Particle Size
15.
Med Oncol ; 41(9): 212, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073639

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous non-Hodgkin lymphoma that is extremely aggressive and has an intermediate to high malignancy. Some patients still experience treatment failure, relapse, or resistance to rituximab, cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP) therapy. Therefore, there is an urgent need for further research on new agents for the treatment of DLBCL. AP-48 is an aaptamine alkaloid analog with potent anti-tumor effects that originates from marine natural products. In this study, we found that AP-48 exhibits dose-dependent cytotoxicity in DLBCL cell lines. Flow cytometry showed that AP-48 induced cell cycle arrest in the G0/G1 phase in SU-DHL-4 and Farage cells and in the S phase in WSU-DLCL-2 cells. AP-48 also accelerated apoptosis via the caspase-3-mediated intrinsic apoptotic pathway. Further experiments demonstrated that AP-48 exerted its anti-DLBCL effects through the PI3K/AKT/mTOR pathway, and that the PI3K agonist YS49 partially alleviated the inhibition of cell proliferation and apoptosis induced by AP-48. Finally, in a tumor xenograft model, AP-48 inhibited tumor growth and promoted apoptosis in tumor tissues, indicating its therapeutic potential in DLBCL.


Subject(s)
Alkaloids , Apoptosis , Lymphoma, Large B-Cell, Diffuse , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/metabolism , Humans , TOR Serine-Threonine Kinases/metabolism , Animals , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Alkaloids/pharmacology , Cell Line, Tumor , Mice , Apoptosis/drug effects , Porifera/chemistry , Mice, Nude , Cell Proliferation/drug effects , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology
16.
J Agric Food Chem ; 72(30): 16801-16811, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39016690

ABSTRACT

Nine new sesquiterpene alkaloids, eurochevalierines A-I (1-9), were separated from the rice cultures of the endophytic fungus Penicillium sp. HZ-5 originated from the fresh leaf of Hypericum wilsonii N. Robson. The structures' illumination was conducted by single-crystal X-ray diffraction, extensive spectroscopic analysis, alkaline hydrolysis reaction, and Snatzke's method. Importantly, the antitumor activities screen of these isolates indicated that 1 could suppress triple negative breast cancer (TNBC) cell proliferation and induce apoptosis, with an IC50 value of 5.4 µM, which is comparable to the positive control docetaxel (DXT). Flow cytometry experiments mentioned that compound 1 significantly reduced mitochondrial membrane potential (MMP) of TNBC cells. In addition, 1 could activate caspase-3 and elevated the levels of reactive oxygen species (ROS) and expressions of suppressive cytokines and chemokines. Further Western blot analysis showed that 1 could selectively induce mitochondria-dependent apoptosis in TNBC cells via the BAX/BCL-2 pathway. Remarkably, these finding provide a new natural product skeleton for the treatment of TNBC.


Subject(s)
Alkaloids , Antineoplastic Agents , Apoptosis , Cell Proliferation , Penicillium , Sesquiterpenes , Triple Negative Breast Neoplasms , Penicillium/chemistry , Humans , Triple Negative Breast Neoplasms/drug therapy , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Apoptosis/drug effects , Alkaloids/pharmacology , Alkaloids/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Female , Molecular Structure
17.
BMC Plant Biol ; 24(1): 639, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971732

ABSTRACT

BACKGROUND: Alkaloids, important secondary metabolites produced by plants, play a crucial role in responding to environmental stress. Heuchera micrantha, a well-known plant used in landscaping, has the ability to purify air, and absorb toxic and radioactive substances, showing strong environmental adaptability. However, there is still limited understanding of the accumulation characteristics and metabolic mechanism of alkaloids in H. micrantha. RESULTS: In this study, four distinct varieties of H. micrantha were used to investigate the accumulation and metabolic traits of alkaloids in its leaves. We conducted a combined analysis of the plant's metabolome and transcriptome. Our analysis identified 44 alkaloids metabolites in the leaves of the four H. micrantha varieties, with 26 showing different levels of accumulation among the groups. The HT and JQ varieties exhibited higher accumulation of differential alkaloid metabolites compared to YH and HY. We annotated the differential alkaloid metabolites to 22 metabolic pathways, including several alkaloid metabolism. Transcriptome data revealed 5064 differentially expressed genes involved in these metabolic pathways. Multivariate analysis showed that four key metabolites (N-hydroxytryptamine, L-tyramine, tryptamine, and 2-phenylethylamine) and three candidate genes (Cluster-15488.116815, Cluster-15488.146268, and Cluster-15488.173297) that merit further investigation. CONCLUSIONS: This study provided preliminarily insight into the molecular mechanism of the biosynthesis of alkaloids in H. micrantha. However, further analysis is required to elucidate the specific regulatory mechanisms of the candidate gene involved in the synthesis of key alkaloid metabolites. In summary, our findings provide important information about how alkaloid metabolites build up and the metabolic pathways involved in H. micrantha varieties. This gives us a good starting point for future research on the regulation mechanism, and development, and utilization of alkaloids in H. micrantha.


Subject(s)
Alkaloids , Metabolome , Plant Leaves , Transcriptome , Alkaloids/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Genes, Plant , Gene Expression Regulation, Plant , Caryophyllales/genetics , Caryophyllales/metabolism , Gene Expression Profiling
18.
Rapid Commun Mass Spectrom ; 38(18): e9857, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39022839

ABSTRACT

RATIONAL: Aconiti Lateralis Radix Praeparata (AC) is a traditional Chinese medicine with a long history of use. However, the current research on the material basis of AC and its processed products is still not comprehensive, especially the changes in lipo-diterpenoid alkaloids (LDAs) that can be hydrolyzed into diester-diterpenoid alkaloids in AC before and after processing. This study aimed to provide material basis guidance for the clinical use of AC and its processed products by comprehensively analyzing the changes in substances between AC and its processed products. METHODS: An ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS/MS) approach was optimized to chemical profiling. The MS data were processed using molecular networking combined with the in-house library database to fast characterize the compounds. Multivariate statistical methods were adopted to determine the dissimilarities of components in AC and its processed products. RESULTS: A total of 310 compounds were tentatively identified from AC, including 109 potential new alkaloids, of which 98 were potential novel LPAs. A metabolomics approach was applied to find the characteristic marker components. As a result, 52 potential chemical markers were selected to distinguish the AC samples of different extraction methods and 42 potential chemical markers for differentiating between AC and its processed products were selected. CONCLUSION: The results indicate that UHPLC/Q-TOF-MS/MS and Global Natural Products Social Molecular Networking coupled with multivariate analysis strategies was a powerful tool to rapidly identify and screen the chemical markers of alkaloids between the AC samples and its processed products. These results also indicate that the toxicity of water extracts of AC and its processed products were decreased. This research not only guides the clinical safe use of AC and its processed products, but also extends the application of the molecular networking strategy in traditional herbal medicine.


Subject(s)
Aconitum , Alkaloids , Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Alkaloids/analysis , Alkaloids/chemistry , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Aconitum/chemistry , Multivariate Analysis , Humans
19.
BMC Plant Biol ; 24(1): 669, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004716

ABSTRACT

BACKGROUND: Fenugreeks (Trigonella L. spp.), belonging to the legume family (Fabaceae), are well-known multipurpose crops that their materials are currently received much attention in the pharmaceutical and food industries for the production of healthy and functional foods all over the world. Iran is one of the main diversity origins of this valuable plant. Therefore, the aim of the present study was to explore vitamins, minerals, and fatty acids profile, proximate composition, content of diosgenin, trigonelline, phenolic acids, total carotenoids, saponins, phenols, flavonoids, and tannins, mucilage and bitterness value, and antioxidant activity of the seed of thirty populations belonging to the ten different Iranian Trigonella species. RESULTS: We accordingly identified notable differences in the nutrient and bioactive compounds of each population. The highest content (mg/100 g DW) of ascorbic acid (18.67 ± 0.85‒22.48 ± 0.60) and α-tocopherol (31.61 ± 0.15‒38.78 ± 0.67) were found in the populations of T. filipes and T. coerulescens, respectively. Maximum content of catechin was found in the populations of T. teheranica (52.67 ± 0.05‒63.50 ± 0.72 mg/l). Linoleic acid (> 39.11% ± 0.61%) and linolenic acid (> 48.78 ± 0.39%) were the main polyunsaturated fatty acids, with the majority in the populations of T. stellata (54.81 ± 1.39‒63.46 ± 1.21%). The populations of T. stellata were also rich in trigonelline (4.95 ± 0.03‒7.66 ± 0.16 mg/g DW) and diosgenin (9.06 ± 0.06‒11.03 ± 0.17 mg/g DW). CONCLUSIONS: The obtained data provides baseline information to expand the inventory of wild and cultivated Iranian Trigonella species for further exploitation of rich chemotypes in the new foods and specific applications.


Subject(s)
Alkaloids , Antioxidants , Diosgenin , Fatty Acids , Seeds , Trigonella , Antioxidants/metabolism , Alkaloids/analysis , Iran , Seeds/chemistry , Fatty Acids/analysis , Trigonella/chemistry , Minerals/analysis , Phenols/metabolism , Nutrients/analysis
20.
Sci Rep ; 14(1): 15263, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961089

ABSTRACT

Ziziphi Spinosae Semen (ZSS) is the first choice for the treatment of insomnia. This research aimed to reveal the spatial distribution of identifying quality markers of ZSS and to illustrate the metabolite quality characteristics of this herbal medicine. Here, we performed a matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) in situ to detect and image 33 metabolites in ZSS, including three saponins, six flavonoids, four alkaloids, eight fatty acids, and 12 amino acids. The MALDI images of the metabolites clearly showed the heterogeneous spatial distribution in different regions of ZSS tissues, such as the cotyledon, endosperm, and radicle. The distribution area of two saponins, six flavonoids, and three alkaloids increased significantly after the fried processing of ZSS. Based on the ion images, samples with different processing technologies were distinguished unambiguously by the pattern recognition method of orthogonal partial least squares discrimination analysis (OPLS-DA). Simultaneously, 23 major influencing components exerting higher ion intensities were identified as the potential quality markers of ZSS. Results obtained in the current research demonstrate that the processing of ZSS changes its content and distribution of the medicinal components. The analysis of MALDI-MSI provides a novel MS-based molecular imaging approach to investigate and monitor traditional medicinal plants.


Subject(s)
Flavonoids , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Ziziphus , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Ziziphus/chemistry , Ziziphus/metabolism , Flavonoids/analysis , Flavonoids/metabolism , Saponins/analysis , Saponins/metabolism , Alkaloids/analysis , Alkaloids/metabolism , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL