Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 962
Filter
1.
Clin Med Res ; 22(2): 107-111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39231619

ABSTRACT

Alkaptonuria is an inborn error of metabolism inherited as an autosomal recessive disorder due to a mutation in the homogentisic acid dioxygenase gene. It occurs rarely (global prevalence of alkaptonuria is 1 in 100,000 to 250,000), and mainly affects the joints and connective tissue of the body due to deposition of homogentisic acid giving affected areas a blue-black discoloration (ochronosis).In this case report, we present a male patient, aged 47 years, with joint and scleral involvement. He had been diagnosed many years ago with the disease by gas chromatography. His symptoms kept progressively worsening since he was recently prescribed physiotherapy and vitamin C for his disease, which has not been shown to be an effective treatment. A main reason for his disease deterioration was also the lack of nitisinone availability in his home country, as well as in the subcontinent region generally. We also presen a summary of some previously reported cases and treatment regimens to compare our case and present the comparison as a learning source for future physicians.


Subject(s)
Alkaptonuria , Humans , Alkaptonuria/drug therapy , Alkaptonuria/diagnosis , Male , Middle Aged , Ascorbic Acid/therapeutic use , Nitrobenzoates/therapeutic use , Ochronosis , Cyclohexanones/therapeutic use , Homogentisic Acid , Physical Therapy Modalities
2.
Cells ; 13(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39273071

ABSTRACT

Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder caused by mutations in the homogentisate 1,2-dioxygenase (HGD) gene, leading to the accumulation of homogentisic acid (HGA), causing severe inflammatory conditions. Recently, the presence of serum amyloid A (SAA) has been reported in AKU tissues, classifying AKU as novel secondary amyloidosis; AA amyloidosis is characterized by the extracellular tissue deposition of fibrils composed of fragments of SAA. AA amyloidosis may complicate several chronic inflammatory conditions, like rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, chronic infections, neoplasms, etc. Treatments of AA amyloidosis relieve inflammatory disorders by reducing SAA concentrations; however, no definitive therapy is currently available. SAA regulation is a crucial step to improve AA secondary amyloidosis treatments. Here, applying a comprehensive in vitro and in silico approach, we provided evidence that HGA is a disruptor modulator of SAA, able to enhance its polymerization, fibril formation, and aggregation upon SAA/SAP colocalization. In silico studies deeply dissected the SAA misfolding molecular pathway and SAA/HGA binding, suggesting novel molecular insights about it. Our results could represent an important starting point for identifying novel therapeutic strategies in AKU and AA secondary amyloidosis-related diseases.


Subject(s)
Alkaptonuria , Homogentisic Acid , Serum Amyloid A Protein , Alkaptonuria/metabolism , Alkaptonuria/pathology , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Humans , Homogentisic Acid/metabolism , Protein Aggregates , Amyloidosis/metabolism , Amyloidosis/pathology , Amyloid/metabolism , Models, Biological , Homogentisate 1,2-Dioxygenase/metabolism , Homogentisate 1,2-Dioxygenase/genetics
3.
Nutrients ; 16(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39203858

ABSTRACT

INTRODUCTION: Protein nutrition disorder in alkaptonuria (AKU), resulting in increased homogentisic acid (HGA) before nitisinone therapy and increased tyrosine (TYR) during nitisinone therapy, may benefit from dietetic intervention. The aim of this study was to characterise the diet and their effects prospectively in those who received formal dietetic intervention in the nitisinone-receiving National Alkaptonuria Centre (NAC) patients with those who did not in no-nitisinone Suitability of Nitisinone in Alkaptonuria 2 (SN2 N-) and nitisinone-treated SN2 (SN2 N+) randomised study groups. PATIENTS AND METHODS: A total of 63, 69, and 69 AKU patients from the NAC, SN2 N-, and SN2 N+ were studied for anthropometric (weight, BMI), body composition (including muscle mass, %body fat, hand grip strength), chemical characteristics (serum TYR, serum phenylalanine, urine urea or uUREA, and urine creatinine or uCREAT), and corneal keratopathy. Nitisinone 2 mg and 10 mg were employed in the NAC and SN2 N+ groups, respectively. Dieticians managed protein intake in the NAC, while the SN2 N- and SN2 N+ groups only received advice on self-directed protein restriction during four years of study duration. RESULTS: uUREA decreased in the NAC, SN2 N-, and SN2 N+ groups, showing that protein restriction was achieved in these groups. Body weight and BMI increased in the NAC and SN2 N+ groups. uCREAT decreased significantly in SN2 N- and SN2 N+ compared with the NAC over four years of study. Corneal keratopathy was less frequent in the NAC than in the SN2 N+ group. Active dietetic intervention in NAC stabilised lean body mass (muscle mass, hand grip strength) despite a decrease in uUREA and uCREAT, as well as sTYR. CONCLUSION: Ongoing dietetic intervention prevented loss of lean body mass despite protein restriction and moderated serum tyrosine increase, leading to less prevalent corneal keratopathy. Protein restriction risks fat mass gain.


Subject(s)
Alkaptonuria , Body Composition , Cyclohexanones , Nitrobenzoates , Humans , Male , Female , Middle Aged , Body Composition/drug effects , Aged , Tyrosine/blood , Tyrosine/analogs & derivatives , Adult , Prospective Studies , Body Mass Index , Nutritional Status , Phenylalanine/blood , Anthropometry , Homogentisic Acid/urine , Hand Strength
4.
J Cardiothorac Surg ; 19(1): 374, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918861

ABSTRACT

BACKGROUND: Alkaptonuria is a rare congenital metabolic disorder characterized by homogentisic acid accumulation in body cartilage and connective tissues due to a deficient homogentisic acid dioxygenase enzyme. This disorder manifests in various clinical symptoms, including spondyloarthropathy, ocular and dermal pigmentation, genitourinary tract obstruction by ochronosis stones, and cardiovascular system involvement. Cardiac ochronosis is a rare manifestation of alkaptonuria that may present as aortic stenosis, sometimes accompanied by other cardiovascular complications. CASE PRESENTATION: We report an unexpected case of ochronosis diagnosed during cardiac surgery. Due to the fragile, thin, and atheromatous nature of the ascending aorta in patients with ochronosis, we opted for a sutureless aortic valve replacement procedure. This approach appears to be more suitable for patients with ochronosis. CONCLUSIONS: Although cardiac ochronosis is rare, surgeons should remain vigilant and consider the possibility of this condition when examining patients with aortic valve stenosis, paying close attention to the clinical manifestations of alkaptonuria.


Subject(s)
Aortic Valve Stenosis , Ochronosis , Humans , Ochronosis/surgery , Ochronosis/complications , Aortic Valve Stenosis/surgery , Alkaptonuria/complications , Alkaptonuria/surgery , Heart Valve Prosthesis Implantation/methods , Aortic Valve/surgery , Male , Sutureless Surgical Procedures/methods , Female , Aged
5.
Cells ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38920699

ABSTRACT

Alkaptonuria (AKU) is a genetic disorder that affects connective tissues of several body compartments causing cartilage degeneration, tendon calcification, heart problems, and an invalidating, early-onset form of osteoarthritis. The molecular mechanisms underlying AKU involve homogentisic acid (HGA) accumulation in cells and tissues. HGA is highly reactive, able to modify several macromolecules, and activates different pathways, mostly involved in the onset and propagation of oxidative stress and inflammation, with consequences spreading from the microscopic to the macroscopic level leading to irreversible damage. Gaining a deeper understanding of AKU molecular mechanisms may provide novel possible therapeutical approaches to counteract disease progression. In this review, we first describe inflammation and oxidative stress in AKU and discuss similarities with other more common disorders. Then, we focus on HGA reactivity and AKU molecular mechanisms. We finally describe a multi-purpose digital platform, named ApreciseKUre, created to facilitate data collection, integration, and analysis of AKU-related data.


Subject(s)
Alkaptonuria , Oxidative Stress , Alkaptonuria/metabolism , Alkaptonuria/genetics , Humans , Homogentisic Acid/metabolism , Inflammation/pathology , Inflammation/metabolism , Animals
6.
Clin Neurol Neurosurg ; 242: 108349, 2024 07.
Article in English | MEDLINE | ID: mdl-38820945

ABSTRACT

OBJECTIVES: Alkaptonuria is a rare inborn disorder of phenylalanine and tyrosine metabolism. It is characterized by an accumulation of homogentisic acid and its oxidation products, possibly resulting into connective tissue damaging. "Ochronosis" is a main feature, which is characterized by tissue discoloration and even alkaptonuric arthropathy. Cervical spine involvement is exceptional and there is a paucity of reports on surgical interventions in these patients. We explored the literature concerning cervical spine involvement in patients with alkaptonuria. PATIENTS AND METHODS: We performed a review of the literature, in which patients with alkaptonuric degenerative changes of the cervical spine were examined. Articles were obtained from MEDLINE. Search terms included: "cervical", "alkaptonuria", "alkaptonuric changes" and "black disc". Additional studies were identified by checking reference lists. Furthermore, we present the case of a 46 year old patient with critical cervical spinal canal stenosis who underwent C6-C7 anterior cervical microdiscectomy and interbody fusion, in order to prevent myelopathic changes. CARE statement guidelines were followed. RESULTS: Peroperatively, we did not encounter any macroscopic abnormalities of the skin, muscles or ligaments. A black discoloration of the nucleus pulposus was observed. Peroperative and postoperative course was uneventful. CONCLUSION: Alkaptonuric degenerative abnormalities most commonly involve the lumbar spine, although the cervical spine can be affected in rare cases. Most frequently, the diagnosis of alkaptonuria can be made based on the clinical phenotype many years before symptoms secondary to ochronotic arthropathy develop. A retrospective diagnosis based on peroperative black discoloration of spinal structures has been described. A black discoloration of the intervertebral disc should encourage the neurosurgeon to further explore the possibility of alkaptonuria, even in the absence of a clear phenotype. Surgical results are mostly satisfactory. Further studies are required in order to better understand this pathology and its postoperative course.


Subject(s)
Alkaptonuria , Cervical Vertebrae , Intervertebral Disc , Ochronosis , Humans , Middle Aged , Alkaptonuria/complications , Cervical Vertebrae/surgery , Cervical Vertebrae/diagnostic imaging , Diskectomy/methods , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/pathology , Intervertebral Disc/surgery , Ochronosis/complications , Spinal Fusion/methods , Spinal Stenosis/surgery , Spinal Stenosis/diagnostic imaging
7.
J Inherit Metab Dis ; 47(4): 664-673, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38487984

ABSTRACT

Altered activity of specific enzymes in phenylalanine-tyrosine (phe-tyr) metabolism results in incomplete breakdown of various metabolite substrates in this pathway. Increased biofluid concentration and tissue accumulation of the phe-tyr pathway metabolite homogentisic acid (HGA) is central to pathophysiology in the inherited disorder alkaptonuria (AKU). Accumulation of metabolites upstream of HGA, including tyrosine, occurs in patients on nitisinone, a licenced drug for AKU and hereditary tyrosinaemia type 1, which inhibits the enzyme responsible for HGA production. The aim of this study was to investigate the phe-tyr metabolite content of key biofluids and tissues in AKU mice on and off nitisinone to gain new insights into the biodistribution of metabolites in these altered metabolic states. The data show for the first time that HGA is present in bile in AKU (mean [±SD] = 1003[±410] µmol/L; nitisinone-treated AKU mean [±SD] = 45[±23] µmol/L). Biliary tyrosine, 3(4-hydroxyphenyl)pyruvic acid (HPPA) and 3(4-hydroxyphenyl)lactic acid (HPLA) are also increased on nitisinone. Urine was confirmed as the dominant elimination route of HGA in untreated AKU, but with indication of biliary excretion. These data provide new insights into pathways of phe-tyr metabolite biodistribution and metabolism, showing for the first time that hepatobiliary excretion contributes to the total pool of metabolites in this pathway. Our data suggest that biliary elimination of organic acids and other metabolites may play an underappreciated role in disorders of metabolism. We propose that our finding of approximately 3.8 times greater urinary HGA excretion in AKU mice compared with patients is one reason for the lack of extensive tissue ochronosis in the AKU mouse model.


Subject(s)
Alkaptonuria , Cyclohexanones , Disease Models, Animal , Homogentisic Acid , Nitrobenzoates , Alkaptonuria/urine , Alkaptonuria/metabolism , Animals , Homogentisic Acid/urine , Homogentisic Acid/metabolism , Mice , Cyclohexanones/urine , Male , Tyrosine/metabolism , Tyrosine/urine , Liver/metabolism , Phenylalanine/metabolism
8.
Nat Rev Dis Primers ; 10(1): 16, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453957

ABSTRACT

Alkaptonuria is a rare inborn error of metabolism caused by the deficiency of homogentisate 1,2-dioxygenase activity. The consequent homogentisic acid (HGA) accumulation in body fluids and tissues leads to a multisystemic and highly debilitating disease whose main features are dark urine, ochronosis (HGA-derived pigment in collagen-rich connective tissues), and a painful and severe form of osteoarthropathy. Other clinical manifestations are extremely variable and include kidney and prostate stones, aortic stenosis, bone fractures, and tendon, ligament and/or muscle ruptures. As an autosomal recessive disorder, alkaptonuria affects men and women equally. Debilitating symptoms appear around the third decade of life, but a proper and timely diagnosis is often delayed due to their non-specific nature and a lack of knowledge among physicians. In later stages, patients' quality of life might be seriously compromised and further complicated by comorbidities. Thus, appropriate management of alkaptonuria requires a multidisciplinary approach, and periodic clinical evaluation is advised to monitor disease progression, complications and/or comorbidities, and to enable prompt intervention. Treatment options are patient-tailored and include a combination of medications, physical therapy and surgery. Current basic and clinical research focuses on improving patient management and developing innovative therapies and implementing precision medicine strategies.


Subject(s)
Alkaptonuria , Ochronosis , Male , Humans , Female , Alkaptonuria/complications , Alkaptonuria/diagnosis , Alkaptonuria/therapy , Quality of Life , Ochronosis/complications , Ochronosis/diagnosis , Kidney/metabolism , Homogentisic Acid/metabolism
9.
J Clin Lab Anal ; 37(21-22): e24976, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37877521

ABSTRACT

OBJECTIVE: Homogentisic acid (HGA) is excreted in excessive amounts in the urine of patients with alkaptonuria, which is a hereditary metabolic disorder of phenylalanine and tyrosine. Therefore, the detection of HGA in urine is useful for the diagnosis of alkaptonuria. To evaluate the detection of HGA, we confirmed the color shift of HGA solutions and analyzed them by electrospray ionization mass spectrometry (ESI-MS). METHODS: We observed the color change of the HGA solutions under different pH conditions (pH 6.0, 7.0, and 8.0) and examined the influences of adding potassium hydroxide (KOH) and ascorbic acid (AA) to the HGA solutions. Then, we analyzed the chemical reaction in HGA solutions using ESI-MS. RESULTS: The HGA solution at pH 8.0 became brown after incubation at room temperature for 24 h and became darker brown with the addition of KOH; however, HGA solutions at pH 6.0 and 7.0 showed no color changes. The brown color change of the HGA solution at pH 8.0 was also inhibited by AA. Moreover, all HGA sample solutions showed the deprotonated molecular ion peak at m/z 167.035 in the negative ion mode after incubation at room temperature for 24 h and with the addition of KOH and AA. CONCLUSION: We identified the molecular ion of HGA in all sample solutions by ESI-MS, regardless of different pH conditions, color changes, or the presence of AA. These results suggest that spectral analysis by ESI-MS is suitable for the detection of HGA and the diagnosis of alkaptonuria.


Subject(s)
Alkaptonuria , Humans , Alkaptonuria/diagnosis , Alkaptonuria/urine , Spectrometry, Mass, Electrospray Ionization , Homogentisic Acid/urine , Hydroxides , Ascorbic Acid
10.
BMJ Case Rep ; 16(10)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880174

ABSTRACT

Alkaptonuria is a very rare disorder in which homogentisic acid accumulates due to a deficiency in the activity of homogentisic acid 1,2 dioxygenase. This deficiency results in deposition of a yellowish-brown pigment in connective tissue. Such deposition is termed 'ochronosis' and leads to deterioration in the formation and structure of proteoglycans in hyaline cartilage. These actions lead to fragmentation and rapid destructive arthritis. Often, ochronotic arthritis appears at 40-60 years of age, and many patients are treated symptomatically. Here, we report two patients (three ankles) with ochronotic arthritis who were treated with ankle arthrodesis. In all cases, the postoperative clinical score improved, but the time needed for fusion was prolonged and symptomatic subtalar arthropathy developed in the early postoperative period.


Subject(s)
Alkaptonuria , Cartilage Diseases , Osteoarthritis , Humans , Alkaptonuria/complications , Alkaptonuria/surgery , Ankle , Homogentisic Acid , Arthrodesis
11.
Sci Rep ; 13(1): 14374, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658095

ABSTRACT

Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder caused by pathogenic variants in the homogentisate 1,2-dioxygenase (HGD) gene. This leads to a deficient HGD enzyme with the consequent accumulation of homogentisic acid (HGA) in different tissues causing complications in various organs, particularly in joints, heart valves and kidneys. The genetic basis of AKU in Egypt is completely unknown. We evaluated the clinical and genetic spectrum of six pediatric and adolescents AKU patients from four unrelated Egyptian families. All probands had a high level of HGA in urine by qualitative GC/MS before genetic confirmation by Sanger sequencing. Recruited AKU patients were four females and two males (median age 13 years). We identified four different pathogenic missense variants within HGD gene. Detected variants included a novel variant c.1079G > T;p.(Gly360Val) and three recurrent variants; c.1078G > C;p.(Gly360Arg), c.808G > A;p.(Gly270Arg) and c.473C > T;p.(Pro158Leu). All identified variants were properly segregating in the four families consistent with autosomal recessive inheritance. In this study, we reported the phenotypic and genotypic spectrum of alkaptonuria for the first time in Egypt. We further enriched the HGD-variant database with another novel pathogenic variant. The recent availability of nitisinone may promote the need for genetic confirmation at younger ages to start therapy earlier and prevent serious complications.


Subject(s)
Alkaptonuria , Dioxygenases , Adolescent , Female , Male , Humans , Child , Alkaptonuria/genetics , Egypt , Homogentisate 1,2-Dioxygenase/genetics , Phenylacetates , Homogentisic Acid
12.
Int J Mol Sci ; 24(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37446173

ABSTRACT

Nitisinone has been approved for treatment of alkaptonuria (AKU). Non-invasive biomarkers of joint tissue remodelling could aid in understanding the molecular changes in AKU pathogenesis and how these can be affected by treatment. Serological and urinary biomarkers of type I collagen and II collagen in AKU were investigated in patients enrolled in the randomized SONIA 2 (NCT01916382) clinical study at baseline and yearly until the end of the study (Year 4). The trajectories of the biomarkers over time were observed. After treatment with nitisinone, the biomarkers of type I collagen remodelling increased at Year 1 (19% and 40% increase in CTX-I and PRO-C1, respectively), which was potentially reflected in the higher degree of mobility seen following treatment. The biomarkers of type II collagen remodelling decreased over time in the nitisinone group: C2M showed a 9.7% decline at Year 1, and levels then remained stable over the following visits; CTX-II showed a 26% decline at Year 3 and 4 in the nitisinone-treated patients. Nitisinone treatment induced changes in biomarkers of bone and cartilage remodelling. These biomarkers can aid patient management and deepen our knowledge of the molecular mechanisms of this rare disease.


Subject(s)
Alkaptonuria , Humans , Alkaptonuria/drug therapy , Biomarkers , Cartilage/pathology , Collagen Type I
13.
J Inherit Metab Dis ; 46(5): 916-930, 2023 09.
Article in English | MEDLINE | ID: mdl-37395296

ABSTRACT

Until now, only a few studies have focused on the early onset of symptoms of alkaptonuria (AKU) in the pediatric population. This prospective, longitudinal study is a comprehensive approach to the assessment of children with recognized AKU during childhood. The study includes data from 32 visits of 13 patients (five males, eight females; age 4-17 years) with AKU. A clinical evaluation was performed with particular attention to eye, ear, and skin pigmentation, musculoskeletal complaints, magnetic resonance imaging (MRI), and ultrasound (US) imaging abnormalities. The cognitive functioning and adaptive abilities were examined. Molecular genetic analyses were performed. The most common symptoms observed were dark urine (13/13), followed by joint pain (6/13), and dark ear wax (6/13). In 4 of 13 patients the values obtained in the KOOS-child questionnaire were below the reference values. MRI and US did not show degenerative changes in knee cartilages. One child had nephrolithiasis. Almost half of the children with AKU (5/13) presented deficits in cognitive functioning and/or adaptive abilities. The most frequent HGD variants observed in the patients were c.481G>A (p.Gly161Arg) mutation and the c.240A>T (p.His80Gln) polymorphism. The newly described allele of the HGD gene (c.948G>T, p.Val316Phe) which is potentially pathogenic was identified.


Subject(s)
Alkaptonuria , Child , Male , Female , Humans , Child, Preschool , Adolescent , Alkaptonuria/diagnosis , Alkaptonuria/genetics , Alkaptonuria/pathology , Homogentisate 1,2-Dioxygenase/genetics , Prospective Studies , Longitudinal Studies , Mutation
14.
Cells ; 12(13)2023 06 21.
Article in English | MEDLINE | ID: mdl-37443717

ABSTRACT

Despite urgent warnings about the spread of multidrug-resistant bacteria, the antibiotic development pipeline has remained sparsely populated. Naturally occurring antibacterial compounds may provide novel chemical starting points for antibiotic development programs and should be actively sought out. Evaluation of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway, showed that the compound had innate activity against Gram-positive and Gram-negative bacteria, which was lost following conversion into the degradation product benzoquinone acetic acid (BQA). Anti-staphylococcal activity of HGA can be attributed to effects on bacterial membranes. Despite an absence of haemolytic activity, the compound was cytotoxic to human HepG2 cells. We conclude that the antibacterial activity and in vitro safety profile of HGA render it more suitable for use as a topical agent or for inclusion in a small-molecule medicinal chemistry program.


Subject(s)
Alkaptonuria , Humans , Alkaptonuria/drug therapy , Alkaptonuria/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria , Homogentisic Acid/metabolism , Prospective Studies
16.
Mol Genet Metab ; 139(3): 107628, 2023 07.
Article in English | MEDLINE | ID: mdl-37354891

ABSTRACT

A 6-yr-old female orangutan presented with a history of dark urine that turned brown upon standing since birth. Repeated routine urinalysis and urine culture were unremarkable. Urine organic acid analysis showed elevation in homogentisic acid consistent with alkaptonuria. Sequence analysis identified a homozygous missense variant, c.1081G>A (p.Gly361Arg), of the homogentisate 1,2-dioxygenase (HGD) gene. Familial studies, molecular modeling, and comparison to human variant databases support this variant as the underlying cause of alkaptonuria in this orangutan. This is the first report of molecular confirmation of alkaptonuria in a nonhuman primate.


Subject(s)
Alkaptonuria , Pongo abelii , Animals , Humans , Female , Alkaptonuria/diagnosis , Alkaptonuria/genetics , Pongo abelii/genetics , Homogentisic Acid , Mutation, Missense , Homozygote
17.
Adv Clin Chem ; 114: 47-81, 2023.
Article in English | MEDLINE | ID: mdl-37268334

ABSTRACT

Alkaptonuria (AKU) is an ultra-rare inherited inborn error of metabolism that afflicts the tyrosine metabolic pathway, resulting in the accumulation of homogentisic acid (HGA) in the circulation, and significant excretion in urine. Clinical manifestations, typically observed from the third decade of life, are lifelong and significantly affect the quality of life. This review provides a comprehensive overview of the natural history of AKU, including clinical, biochemical and genetic perspectives. An update on the major advances on studies in murine models and human subjects, providing mechanistic insight into the molecular and biochemical processes that underlie pathophysiology and its response to treatment are presented. The impact of treatment with nitisinone is also presented with a specific emphasis on hypertyrosinemia, as uncertainty on this topic remains. Future perspectives are explored, such as novel approaches to treat hypertyrosinemia including the use of binding agents and amino acid transporter inhibitors, as well as advanced potentially curative gene and cell therapy initiatives.


Subject(s)
Alkaptonuria , Tyrosinemias , Humans , Animals , Mice , Alkaptonuria/diagnosis , Alkaptonuria/drug therapy , Alkaptonuria/metabolism , Quality of Life , Homogentisic Acid/metabolism , Tyrosine/metabolism , Tyrosine/urine
18.
Ophthalmic Plast Reconstr Surg ; 39(5): e139-e142, 2023.
Article in English | MEDLINE | ID: mdl-37010051

ABSTRACT

Exogenous ochronosis refers to accumulation of homogentisic acid metabolites in tissues, manifesting as pigmentation of affected tissues. Phenolic compounds are most commonly implicated, including hydroquinone, quinine, phenol, resorcinol, mercury, and picric acid. The affected connective tissues exhibit brownish discoloration when heavily pigmented and the histopathological appearance is characteristic with "banana-shaped" ochre-colored pigment deposits. Herein, the authors describe a rare case of exogenous ochronosis involving the conjunctiva, sclera and skin, as a result of chronic use of Teavigo (94% epigallocatechin gallate), a polyphenol compound with postulated antioxidant and antiapoptotic activity.


Subject(s)
Alkaptonuria , Ochronosis , Pigmentation Disorders , Humans , Ochronosis/chemically induced , Ochronosis/diagnosis , Ochronosis/pathology , Alkaptonuria/pathology , Skin/pathology
19.
Molecules ; 28(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36985595

ABSTRACT

Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis, fractures, and tendon ruptures. To date, no medicine has been approved for the treatment of AKU. However, physiotherapy and strong painkillers are administered to help mitigate the condition. Recently, nitisinone, an FDA-approved drug for type 1 tyrosinemia, has been given to AKU patients in some countries and has shown encouraging results in reducing the disease progression. However, this drug is not the targeted treatment for AKU, and causes keratopathy. Therefore, the foremost aim of this study is the identification of potent and druggable inhibitors of AKU with no or minimal side effects by targeting 4-hydroxyphenylpyruvate dioxygenase. To achieve our goal, we have performed computational modelling using BioSolveIT suit. The library of ligands for molecular docking was acquired by fragment replacement of reference molecules by ReCore. Subsequently, the hits were screened on the basis of estimated affinities, and their pharmacokinetic properties were evaluated using SwissADME. Afterward, the interactions between target and ligands were investigated using Discovery Studio. Ultimately, compounds c and f were identified as potent inhibitors of 4-hydroxyphenylpyruvate dioxygenase.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Alkaptonuria , Ochronosis , Humans , Alkaptonuria/drug therapy , Alkaptonuria/genetics , Alkaptonuria/metabolism , Molecular Docking Simulation , Ochronosis/drug therapy , Homogentisic Acid/metabolism
20.
Curr Protein Pept Sci ; 24(5): 380-392, 2023.
Article in English | MEDLINE | ID: mdl-36880186

ABSTRACT

Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of homogentisic acid (HGA) in organs, which occurs because the homogentisate 1,2-dioxygenase (HGD) enzyme is not functional due to gene variants. Over time, HGA oxidation and accumulation cause the formation of the ochronotic pigment, a deposit that provokes tissue degeneration and organ malfunction. Here, we report a comprehensive review of the variants so far reported, the structural studies on the molecular consequences of protein stability and interaction, and molecular simulations for pharmacological chaperones as protein rescuers. Moreover, evidence accumulated so far in alkaptonuria research will be re-proposed as the bases for a precision medicine approach in a rare disease.


Subject(s)
Alkaptonuria , Homogentisate 1,2-Dioxygenase , Humans , Alkaptonuria/genetics , Alkaptonuria/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Genetic Association Studies , Homogentisate 1,2-Dioxygenase/genetics , Homogentisate 1,2-Dioxygenase/metabolism , Homogentisic Acid/metabolism , Rare Diseases , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL