Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.037
Filter
1.
Chem Biol Drug Des ; 103(5): e14530, 2024 May.
Article in English | MEDLINE | ID: mdl-38725091

ABSTRACT

Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC50s at the two targets to be strong (r2 = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC50 of 0.030 µM ± 0.009. This compared to FIV IC50 values of 0.22 ± 0.17 µM, 0.040 ± 0.010 µM and >160 µM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.


Subject(s)
HIV Reverse Transcriptase , Immunodeficiency Virus, Feline , Reverse Transcriptase Inhibitors , Animals , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Cats , Immunodeficiency Virus, Feline/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Humans , Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Alkynes/chemistry , Alkynes/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Cyclopropanes/pharmacology , Cyclopropanes/chemistry , Molecular Docking Simulation , Benzoxazines/chemistry , Benzoxazines/pharmacology
2.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731638

ABSTRACT

Copper-catalyzed azide-alkyne cycloaddition click (CuAAC) reaction is widely used to synthesize drug candidates and other biomolecule classes. Homogeneous catalysts, which consist of copper coordinated to a ligand framework, have been optimized for high yield and specificity of the CuAAC reaction, but CuAAC reaction with these catalysts requires the addition of a reducing agent and basic conditions, which can complicate some of the desired syntheses. Additionally, removing copper from the synthesized CuAAC-containing biomolecule is necessary for biological applications but inconvenient and requires additional purification steps. We describe here the design and synthesis of a PNN-type pincer ligand complex with copper (I) that stabilizes the copper (I) and, therefore, can act as a CuAAC catalyst without a reducing agent and base under physiologically relevant conditions. This complex was immobilized on two types of resin, and one of the immobilized catalyst forms worked well under aqueous physiological conditions. Minimal copper leaching was observed from the immobilized catalyst, which allowed its use in multiple reaction cycles without the addition of any reducing agent or base and without recharging with copper ion. The mechanism of the catalytic cycle was rationalized by density functional theory (DFT). This catalyst's utility was demonstrated by synthesizing coumarin derivatives of small molecules such as ferrocene and sugar.


Subject(s)
Alkynes , Azides , Click Chemistry , Copper , Cycloaddition Reaction , Copper/chemistry , Click Chemistry/methods , Ligands , Catalysis , Azides/chemistry , Alkynes/chemistry , Coumarins/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Molecular Structure
3.
Pak J Pharm Sci ; 37(2): 367-375, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767104

ABSTRACT

The efficacy of 400mg efavirenz (EFV) once daily is reported to be similar to that of 600mg EFV. However, EFV-related toxic and side effects of 400mg EFV are significantly reduced. Here, the feasibility of reducing EFV to 400mg once a day in HIV-infected/AIDS patients was evaluated. Fifty patients were included. Patients were given 3TC+TDF+400mg EFV (n=25) or 3TC+TDF+600mg EFV (n=25). The proportion of patients with HIV RNA < 40 copies/mL and the adverse events served as the primary and secondary outcomes, respectively. HIV inhibition rates of the 3TC+TDF+400mg EFV group and 3TC+TDF+600mg EFV group were both 56.52% at week 24 and respectively 100%, 91.3% at week 48. During 48 weeks, 27 cases of adverse events were reported in the 3TC+TDF+400mg EFV group, lower than those in the 3TC+TDF+600mg EFV group, which had 39 cases. Compared with the 3TC+TDF+400mg EFV group, the incidence of transaminase, dizziness, hyperlipidemia and rashes all increased in the 3TC+TDF+600mg EFV group (P>0.05). No serious adverse events of the central nervous system occurred. The incidence of depression, sleep disturbance, and vertigo were similar (P>0.05). The efficacy of 400mg EFV is comparable to 600mg EFV. However, patients receiving 400mg EFV have fewer adverse events.


Subject(s)
Alkynes , Anti-HIV Agents , Benzoxazines , Cyclopropanes , HIV Infections , Humans , Benzoxazines/adverse effects , Benzoxazines/administration & dosage , Benzoxazines/therapeutic use , Cyclopropanes/administration & dosage , Male , Female , Adult , Anti-HIV Agents/adverse effects , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , Middle Aged , Treatment Outcome , Lamivudine/administration & dosage , Lamivudine/adverse effects , Lamivudine/therapeutic use , Tenofovir/adverse effects , Tenofovir/administration & dosage , Tenofovir/therapeutic use , Drug Therapy, Combination , Viral Load/drug effects , RNA, Viral , Acquired Immunodeficiency Syndrome/drug therapy
4.
Top Curr Chem (Cham) ; 382(2): 15, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703255

ABSTRACT

Aligned with the increasing importance of bioorthogonal chemistry has been an increasing demand for more potent, affordable, multifunctional, and programmable bioorthogonal reagents. More advanced synthetic chemistry techniques, including transition-metal-catalyzed cross-coupling reactions, C-H activation, photoinduced chemistry, and continuous flow chemistry, have been employed in synthesizing novel bioorthogonal reagents for universal purposes. We discuss herein recent developments regarding the synthesis of popular bioorthogonal reagents, with a focus on s-tetrazines, 1,2,4-triazines, trans-cyclooctenes, cyclooctynes, hetero-cycloheptynes, and -trans-cycloheptenes. This review aims to summarize and discuss the most representative synthetic approaches of these reagents and their derivatives that are useful in bioorthogonal chemistry. The preparation of these molecules and their derivatives utilizes both classical approaches as well as the latest organic chemistry methodologies.


Subject(s)
Cyclooctanes , Triazines , Triazines/chemistry , Triazines/chemical synthesis , Cyclooctanes/chemistry , Cyclooctanes/chemical synthesis , Alkynes/chemistry , Alkynes/chemical synthesis , Catalysis , Indicators and Reagents/chemistry , Molecular Structure
5.
Wei Sheng Yan Jiu ; 53(2): 257-266, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38604962

ABSTRACT

OBJECTIVE: To analyse potential differences towards liver impairment status on vinyl chloride monomer(VCM) exposed population from technique under acetylene hydrochlorination to the one of ethylene oxychlorination respectively and to explore the possible reasons, which will pave the way for occupational health promotion in terms of hazard reduction. METHODS: a cross-sectional study was initiated between June and September in 2022 towards 2 groups of VCM exposed population from the facility of acetylene hydrochlorination(n=78) and the one of ethylene oxychlorination(n=69) in a PVC petrochemical complex enterprise(abbreviation of H) in Tianjin City. The demographic information concerning age, gender, messages on occupational history, field investigation were inquired through questionnaire interview. Then, venous blood(4 mL/person) and urine(10-50 mL/person) were collected during the physical exam phase and indices of 8-hydroxy-2 deoxyguanosine(8-OHdG) in blood and thiodiglycolic acid(TDGA) in urine were detected through ELISA and solid phase extraction-ion chromatography respectively. RESULTS: The 2 groups of population were matched well in terms of average age distribution and gender composition ratio, with significant differences on population composition ratio were found on variables of working years, alcohol consumption and daily sleeping duration(P<0.01 or P<0.05). It was found that the average content of TDGA in acetylene hydrochlorination group was(0.81±0.05)mg/L while the content in ethylene oxychlorination group reached to(0.83±0.06)mg/L, noteworthy differences were only found among 6 posts in the acetylene hydrochlorination group and 5 others in the ethylene oxychlorination group after classification for specific posts, however, the average concentration of 8-OHdG in acetylene hydrochlorination group(122(78.3, 168.8) µg/m~3) was different from the one in ethylene oxychlorination group(101.7(79.6, 149.7) µg/m~3)(Z=6.82, P<0.05). Moreover, a series of positive correlations in moderate intensity between 8-OHdG concentration and TDGA content were observed among posts of polymerization cleaners(r=0.53), aggregation operators(r=0.47), maintenance repairers(r=0.45), sampling operators(r=0.41) in acetylene hydrochlorination group(P<0.05) and posts of cracking reactants(r=0.64), DCS operators(r=0.51), oxychlorination operators(r=0.50) and chemical loaders(r=0.44) in ethylene oxychlorination group(P<0.05). Liver function indices such as content on ALT(χ~2=15.41, P<0.01), AST(χ~2=9.95, P<0.01) and ALP(χ~2=3.79, P<0.01) were different in the 2 groups population with statistical significance, then proportions on population composition ratio that exceeded normal ranges of indices on ALT, AST, AST/ALT ratio, ALP and Alb/Glb ratio were higher in acetylene hydrochlorination group than ones in ethylene oxychlorination group with great significance(P<0.05), so as to the abnormalities in liver B altrosonography test between groups(χ~2=17.33, P<0.01). Binary logistic regression model indicated that 8-OHdG concentration in blood that exceed 90 µg/m~3, TDGA content in urine that exceed 0.60 mg/L, working years that were over 10a, alcohol consumption, sleeping duration less than 6 h per day and male workers were potential risky factors for liver impairment(P<0.05). CONCLUSION: The degree on liver impairment status was higher in acetylene hydrochlorination group than ones in in ethylene oxychlorination group under the same PVC factory, which might be associated with the oxidative stress injury induced from the combination of higher VCM concentration at workplaces, longer cumulative exposure time, longer working years, alcohol consumption habits and sleep shortage caused by shift work patterns.


Subject(s)
Liver Diseases , Occupational Exposure , Vinyl Chloride , Humans , Male , Vinyl Chloride/toxicity , Cross-Sectional Studies , Ethylenes , Alkynes , Occupational Exposure/adverse effects
6.
Molecules ; 29(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611835

ABSTRACT

The synthesis of hybrid molecules is one of the current strategies of drug discovery for the development of new lead compounds. The 1,2,3-triazole moiety represents an important building block in Medicinal Chemistry, extensively present in recent years. In this paper, we presented the design and the synthesis of new 1,2,3-triazole hybrids, containing both an isatine and a phenolic core. Firstly, the non-commercial azide and the alkyne synthons were prepared by different isatines and phenolic acids, respectively. Then, the highly regioselective synthesis of 1,4-disubstituted triazoles was obtained in excellent yields by a click chemistry approach, catalyzed by Cu(I). Finally, a molecular docking study was performed on the hybrid library, finding four different therapeutic targets. Among them, the most promising results were obtained on 5-lipoxygenase, an enzyme involved in the inflammatory processes.


Subject(s)
Isatin , Molecular Docking Simulation , Phenols , Alkynes , Triazoles
7.
Nat Commun ; 15(1): 3246, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622137

ABSTRACT

Simultaneously quantifying mitochondrial Cu+ and Cu2+ levels is crucial for evaluating the molecular mechanisms of copper accumulation-involved pathological processes. Here, a series of molecules containing various diacetylene derivatives as Raman reporters are designed and synthesized, and the alkyne-tagged SERS probe is created for determination Cu+ and Cu2+ with high selectivity and sensitivity. The developed SERS probe generates well-separated distinguishable Raman fingerprint peaks with built-in corrections in the cellular silent region, resulting in accurate quantification of Cu+ and Cu2+. The present probe demonstrates high tempo-spatial resolution for real-time imaging and simultaneously quantifying mitochondrial Cu+ and Cu2+ with long-term stability benefiting from the probe assembly with designed Au-C≡C groups. Using this powerful tool, it is found that mitochondrial Cu+ and Cu2+ increase during ischemia are associated with breakdown of proteins containing copper as well as conversion of Cu+ and Cu2+. Meanwhile, we observe that parts of Cu+ and Cu2+ are transported out of neurons by ATPase. More importantly, cuproptosis in neurons is found including the oxidative stress process caused by the conversion of Cu+ to Cu2+, which dominates at the early stage (<9 h), and subsequent proteotoxic stress. Both oxidative and proteotoxic stresses contribute to neuronal death.


Subject(s)
Alkynes , Copper , Spectrum Analysis, Raman/methods , Gold , Biological Transport
8.
J Org Chem ; 89(8): 5715-5725, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38593068

ABSTRACT

Some bacteria produce "bacterial polyynes" bearing a conjugated C≡C bond that starts with a terminal alkyne. Ergoynes A and B have been reported as sulfur-containing metabolites from Gynuella sunshinyii YC6258. These compounds were thought to be formed by cycloaddition between a bacterial polyyne (named Gs-polyyne) and l-ergothioneine. The biosynthetic gene clusters (BGCs), which may contribute to their synthesis, were present in the YC6258 genome. The biosynthetic origin of Gs-polyyne is interesting considering its rare 2-isopentyl fatty acyl skeleton. Here, the structures and biosynthesis of Gs-polyyne and ergoynes were verified by analytical, chemical, and genetic techniques. In the YC6258 extract, which was prepared considering their instability, Gs-polyyne was detected as a major LC peak, and ergoynes were not detected. The NMR data of the isolated Gs-polyyne contradicted the proposed structure and identified it as the previously reported protegenin A. The expression of Gs-polyyne BGC in Escherichia coli BL21(DE3) also yielded protegenin A. The cyclization between protegenin A and l-ergothioneine did not proceed during sample preparation; a base, such as potassium carbonate, was required. Overall, Gs-polyyne was identified as protegenin A, while ergoynes were determined to be artifacts. This cyclization may provide a derivatization to stabilize polyynes or create new chemical space.


Subject(s)
Ergothioneine , Gammaproteobacteria , Polyynes , Alkynes , Bacteria
9.
Water Environ Res ; 96(4): e11020, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38636954

ABSTRACT

Antiretroviral drugs (ARVDs) have been extensively employed in health care to improve the quality of life and lifecycle longevity. However, overuse and improper disposal of ARVDs have been recognized as an emerging concern whereby wastewater treatment major recipients. Therefore, in this work, the activated macadamia nutshells (MCNs) were explored as low-cost adsorbents for the removal of ARVDs in wastewater samples. Fourier transform infrared spectroscopy (FTIR), Scanning Electron microscopy (SEM), Brunauer-Emmet-Teller (BET), and Powder X-ray diffraction (PXRD). The highest removal efficiency (R.E) was above 86% for the selected analytes nevirapine, abacavir, and efavirenz. The maximum adsorption capacity of the functionalized MCN adsorbent was 10.79, 27.44, and 38.17 mg/g for nevirapine, abacavir, and efavirenz for HCl-modified adsorbent. In contrast, NaOH modified had adsorption capacities of 13.67, 14.25, and 20.79 mg/g. The FTIR showed distinct functional groups OH and CO, which facilitate the removal of selected ARVDs. From studying kinetics parameters, the pseudo-second-order (R2 = 0.990-0.996) was more dominant than the pseudo-first-order (R2 = 0.872-0.994). The experimental data was most fitted in the Freundlich model with (R2 close to 1). The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. The study indicated that MCNs are an eco-friendly, low-cost, and effective adsorbent for the removal of nevirapine, abacavir, and efavirenz. PRACTITIONER POINTS: Modification macadamia nutshell with HCl and NaOH improved physio-chemical properties that yielded high removal efficiency compared with raw macadamia nutshells. Modification of macadamia by HCl showed high removal efficiency, which could be attributed to high interaction such as H-bonding that improves adsorption. The macadamia nutshell as an adsorbent showed so much robustness with regeneration studies yielding to about 69.64% of selected compounds.


Subject(s)
Alkynes , Benzoxazines , Cyclopropanes , Dideoxyadenosine/analogs & derivatives , HIV Infections , Water Pollutants, Chemical , Wastewater , Macadamia , Adsorption , Nevirapine , Quality of Life , Sodium Hydroxide , Thermodynamics , Kinetics , Water Pollutants, Chemical/chemistry , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration
10.
Chem Commun (Camb) ; 60(41): 5423-5426, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38683668

ABSTRACT

The late-stage fluorescent labeling of structurally complex peptides bears immense potential for molecular imaging. Herein, we report on a manganese(I)-catalyzed peptide C-H alkenylation under exceedingly mild conditions with natural fluorophores as coumarin- and chromone-derivatives. The robustness and efficiency of the manganese(I) catalysis regime was reflected by a broad functional group tolerance and low catalyst loading in a resource- and atom-economical fashion.


Subject(s)
Alkynes , Amino Acids , Coumarins , Fluorescent Dyes , Manganese , Peptides , Coumarins/chemistry , Coumarins/chemical synthesis , Catalysis , Manganese/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Peptides/chemistry , Alkynes/chemistry , Amino Acids/chemistry , Molecular Structure
11.
Clin Biochem ; 127-128: 110765, 2024 May.
Article in English | MEDLINE | ID: mdl-38649089

ABSTRACT

INTRODUCTION: The specific physiological background induced by pregnancy leads to significant changes in maternal pharmacokinetics, suggesting potential variability in plasma concentrations of antiretrovirals. Pregnant HIV patients exposed to subtherapeutic doses, particularly in the last trimester of the pregnancy, have higher chances to transmit the infection to their children. Therefore, the therapeutic drug monitoring of antiretrovirals in HIV pregnant patients would be of great value. OBJECTIVES: This study aimed to develop and validate a sensitive liquid chromatograph tandem mass spectrometry (LC-MS/MS) method for simultaneous quantification of efavirenz, raltegravir, atazanavir, and ritonavir in dried blood spots (DBS) and plasma. DESIGN AND METHODS: The analytes were extracted from the DBS punch and plasma with a mixture of methanol:zinc sulfate 200 mM (50:50, v/v) and 100 % methanol, respectively. For the chromatographic separation a Shim-pack® C18, 4.6 mm × 150 mm, 5 µm column was used. Detection was performed in a 3200-QTRAP® mass spectrometer, with a run time of 6 min. RESULTS: The assay was linear in the range of 15-1,000 ng/mL for raltegravir, 50-10,000 ng/mL for both atazanavir and ritonavir, 50-5,000 ng/mL for efavirenz. Precision and accuracy at these concentrations were less than 15 % for all analytes. Raltegravir, atazanavir, and ritonavir were stable for seven days at 23 °C and 40 °C, whereas efavirenz was stable for twenty-four hours at the same conditions. CONCLUSIONS: The method was successfully applied to quantify efavirenz in DBS samples obtained from HIV-1 infected pregnant volunteers under antiretroviral therapy. The concentrations of efavirenz in DBS and plasma were comparable according to Passing-Bablok regression and Bland-Altman analysis.


Subject(s)
Alkynes , Benzoxazines , Cyclopropanes , Dried Blood Spot Testing , Drug Monitoring , HIV Infections , Tandem Mass Spectrometry , Humans , Female , Benzoxazines/blood , Benzoxazines/pharmacokinetics , Benzoxazines/therapeutic use , Cyclopropanes/blood , Pregnancy , Tandem Mass Spectrometry/methods , Drug Monitoring/methods , Dried Blood Spot Testing/methods , HIV Infections/drug therapy , HIV Infections/blood , Atazanavir Sulfate/blood , Atazanavir Sulfate/therapeutic use , Atazanavir Sulfate/pharmacokinetics , Ritonavir/blood , Ritonavir/therapeutic use , Chromatography, Liquid/methods , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/blood , Raltegravir Potassium/blood , Raltegravir Potassium/therapeutic use , Anti-HIV Agents/blood , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacokinetics , Liquid Chromatography-Mass Spectrometry
12.
Biomacromolecules ; 25(5): 3200-3211, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38591457

ABSTRACT

Achieving efficient and site-specific conjugation of therapeutic protein to polymer is crucial to augment their applicability in the realms of biomedicine by improving their stability and enzymatic activity. In this study, we exploited tetrazine bioorthogonal chemistry to achieve the site-specific conjugation of bottlebrush polymers to urate oxidase (UOX), a therapeutic protein for gout treatment. An azido-functionalized zwitterionic bottlebrush polymer (N3-ZBP) using a "grafting-from" strategy involving RAFT and ATRP methods was synthesized, and a trans-cyclooctene (TCO) moiety was introduced at the polymer end through the strain-promoted azide-alkyne click (SPAAC) reaction. The subsequent coupling between TCO-incorporated bottlebrush polymer and tetrazine-labeled UOX using a fast and safe bioorthogonal reaction, inverse electron demand Diels-Alder (IEDDA), led to the formation of UOX-ZBP conjugates with a 52% yield. Importantly, the enzymatic activity of UOX remained unaffected following polymer conjugation, suggesting a minimal change in the folded structure of UOX. Moreover, UOX-ZBP conjugates exhibited enhanced proteolytic resistance and reduced antibody binding, compared to UOX-wild type. Overall, the present findings reveal an efficient and straightforward route for synthesizing protein-bottlebrush polymer conjugates without compromising the enzymatic activity while substantially reducing proteolytic degradation and antibody binding.


Subject(s)
Click Chemistry , Cycloaddition Reaction , Polymers , Urate Oxidase , Urate Oxidase/chemistry , Click Chemistry/methods , Polymers/chemistry , Cyclooctanes/chemistry , Humans , Azides/chemistry , Alkynes/chemistry
13.
Biomacromolecules ; 25(5): 2780-2791, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38613487

ABSTRACT

Linear-dendritic block copolymers assemble in solution due to differences in the solubility or charge properties of the blocks. The monodispersity and multivalency of the dendritic block provide unparalleled control for the design of drug delivery systems when incorporating poly(ethylene glycol) (PEG) as a linear block. An accelerated synthesis of PEG-dendritic block copolymers based on the click and green chemistry pillars is described. The tandem composed of the thermal azide-alkyne cycloaddition with internal alkynes and azide substitution is revealed as a flexible, reliable, atom-economical, and user-friendly strategy for the synthesis and functionalization of biodegradable (polyester) PEG-dendritic block copolymers. The high orthogonality of the sequence has been exploited for the preparation of heterolayered copolymers with terminal alkenes and alkynes, which are amenable for subsequent functionalization by thiol-ene and thiol-yne click reactions. Copolymers with tunable solubility and charge were so obtained for the preparation of various types of nanoassemblies with promising applications in drug delivery.


Subject(s)
Alkynes , Azides , Click Chemistry , Cycloaddition Reaction , Drug Delivery Systems , Polyethylene Glycols , Alkynes/chemistry , Polyethylene Glycols/chemistry , Azides/chemistry , Drug Delivery Systems/methods , Click Chemistry/methods , Dendrimers/chemistry , Dendrimers/chemical synthesis , Polymers/chemistry
14.
Bioorg Chem ; 147: 107365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636436

ABSTRACT

Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs, and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.


Subject(s)
Alkynes , Astrocytes , Motor Neurons , Protein Prenylation , Astrocytes/metabolism , Astrocytes/cytology , Animals , Alkynes/chemistry , Alkynes/chemical synthesis , Motor Neurons/metabolism , Motor Neurons/cytology , Terpenes/chemistry , Terpenes/chemical synthesis , Terpenes/metabolism , Mice , Molecular Structure , Cells, Cultured
15.
Anal Methods ; 16(17): 2751-2759, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38634398

ABSTRACT

Exosomes have gained recognition as valuable reservoirs of biomarkers, holding immense potential for early cancer detection. Consequently, there is a pressing need for the development of an economical and highly sensitive exosome detection methodology. In this work, we present a fluorescence method for breast cancer-derived exosome detection based on Cu-triggered click reaction of azide-modified CD63 aptamer and alkyne functionalized Pdots. The detection threshold for the exosomes obtained from the breast cancer serum was determined to be 6.09 × 107 particles per µL, while the measurable range spanned from 6.50 × 107 to 1.30 × 109 particles per µL. The employed methodology achieved notable success in accurately distinguishing breast cancer patients from healthy individuals through serum analysis. The application of this method showcases the significant potential for early exosome analysis in the clinical diagnosis of breast cancer patients.


Subject(s)
Alkynes , Aptamers, Nucleotide , Azides , Biosensing Techniques , Breast Neoplasms , Click Chemistry , Exosomes , Tetraspanin 30 , Humans , Breast Neoplasms/blood , Female , Exosomes/chemistry , Tetraspanin 30/metabolism , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Azides/chemistry , Alkynes/chemistry , Fluorescent Dyes/chemistry , Polymers/chemistry
16.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673948

ABSTRACT

A series of bench-stable Co(II) complexes containing hydrazone Schiff base ligands were evaluated in terms of their activity and selectivity in carbon-carbon multiple bond transfer hydrogenation. These cobalt complexes, especially a Co(II) precatalyst bearing pyridine-2-yl-N(Me)N=C-(1-methyl)imidazole-2-yl ligand, activated by LiHBEt3, were successfully used in the transfer hydrogenation of substituted styrenes and phenylacetylenes with ammonia borane as a hydrogen source. Key advantages of the reported catalytic system include mild reaction conditions, high selectivity and tolerance to functional groups of substrates.


Subject(s)
Boranes , Cobalt , Schiff Bases , Hydrogenation , Cobalt/chemistry , Schiff Bases/chemistry , Catalysis , Boranes/chemistry , Coordination Complexes/chemistry , Alkynes/chemistry , Ammonia/chemistry , Molecular Structure
17.
Anal Chem ; 96(17): 6643-6651, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626411

ABSTRACT

Visualizing the distribution of small-molecule drugs in living cells is an important strategy for developing specific, effective, and minimally toxic drugs. As an alternative to fluorescence imaging using bulky fluorophores or cell fixation, stimulated Raman scattering (SRS) imaging combined with bisarylbutadiyne (BADY) tagging enables the observation of small molecules closer to their native intracellular state. However, there is evidence that the physicochemical properties of BADY-tagged analogues of small-molecule drugs differ significantly from those of their parent drugs, potentially affecting their intracellular distribution. Herein, we developed a modified BADY to reduce deviations in physicochemical properties (in particular, lipophilicity and membrane permeability) between tagged and parent drugs, while maintaining high Raman activity in live-cell SRS imaging. We highlight the practical application of this approach by revealing the nuclear distribution of a modified BADY-tagged analogue of JQ1, a bromodomain and extra-terminal motif inhibitor with applications in targeted cancer therapy, in living HeLa cells. The modified BADY, methoxypyridazyl pyrimidyl butadiyne (MPDY), revealed intranuclear JQ1, while BADY-tagged JQ1 did not show a clear nuclear signal. We anticipate that the present approach combining MPDY tagging with live-cell SRS imaging provides important insight into the behavior of intracellular drugs and represents a promising avenue for improving drug development.


Subject(s)
Cell Nucleus , Humans , HeLa Cells , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Nonlinear Optical Microscopy/methods , Alkynes/chemistry , Spectrum Analysis, Raman/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
18.
Anal Chem ; 96(18): 6995-7004, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38666367

ABSTRACT

Lipopolysaccharide (LPS) presents a significant threat to human health. Herein, a novel method for detecting LPS was developed by coupling hybridization chain reaction (HCR), gold nanoparticles (AuNPs) agglutination (AA) triggered by a Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry (CuAAC), and electrokinetic accumulation (EA) in a microfluidic chip, termed the HCR-AA-EA method. Thereinto, the LPS-binding aptamer (LBA) was coupled with the AuNP-coated Fe3O4 nanoparticle, which was connected with the polymer of H1 capped on CuO (H1-CuO) and H2-CuO. Upon LPS recognition by LBA, the polymers of H1- and H2-CuO were released into the solution, creating a "one LPS-multiple CuO" effect. Under ascorbic acid reduction, CuAAC was initiated between the alkyne and azide groups on the AuNPs' surface; then, the product was observed visually in the microchannel by EA. Finally, LPS was quantified by the integrated density of AuNP aggregates. The limit of detections were 29.9 and 127.2 fM for water samples and serum samples, respectively. The levels of LPS in the injections and serum samples by our method had a good correlation with those from the limulus amebocyte lysate test (r = 0.99), indicating high accuracy. Remarkably, to popularize our method, a low-cost, wall-power-free portable device was developed, enabling point-of-care testing.


Subject(s)
Click Chemistry , Gold , Lipopolysaccharides , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Lipopolysaccharides/analysis , Humans , Azides/chemistry , Limit of Detection , Copper/chemistry , Alkynes/chemistry , Aptamers, Nucleotide/chemistry
19.
Sex Health ; 212024 Apr.
Article in English | MEDLINE | ID: mdl-38683940

ABSTRACT

Background Australia imposes restrictions for people living with HIV (PLHIV) applying for permanent residency (PR), including spending less than AUD51,000 on medical costs over 10years. Some PLHIV opted for suboptimal and cheaper antiretroviral therapy (ART) regimens to increase their chances of receiving PR. We collated a case series to examine PLHIV on suboptimal ART because of visa issues. Methods We identified all patients applying for a PR in Australia who obtained nevirapine, efavirenz or zidovudine between July 2022 and July 2023 from the Melbourne Sexual Health Centre. Pathology results and records detailing psychological issues relating to the patients' wishes to remain on suboptimal ART were extracted from clinical records by two researchers. Results We identified six patients with a mean age of 39years migrating from Asian and European countries. Three patients used efavirenz, and three used nevirapine. All desired to remain on cheaper, suboptimal ART to stay below visa cost thresholds, which they considered to aid favourably with their application. Four displayed stress and anxiety arising from visa rejections, appeal deadlines and the lengthy visa application process. Conclusions Despite access to more effective and safer ART, we identified patients who chose to remain on cheaper ART to improve chances of obtaining an Australian visa, potentially putting their health at risk. We found significant evidence of stress and anxiety among patients. There is a need to review and revise current migration policies and laws in Australia that discriminate against PLHIV and jeopardise public health.


Subject(s)
HIV Infections , Humans , HIV Infections/drug therapy , Adult , Male , Australia , Female , Emigration and Immigration/legislation & jurisprudence , Middle Aged , Anti-HIV Agents/therapeutic use , Alkynes , Cyclopropanes/therapeutic use , Benzoxazines/therapeutic use , Nevirapine/therapeutic use , Zidovudine/therapeutic use
20.
Am J Trop Med Hyg ; 110(4): 713-718, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38442417

ABSTRACT

India has the third-largest number of people living with HIV (PLHIV) in the world. A national program provides free access to standard uniform antiretroviral therapy. However, the program is not monitored by comprehensive drug resistance surveys. The aim of this study was to determine the prevalence of HIV drug resistance mutations (DRMs) among treatment-naive PLHIV in a large antiretroviral treatment center of the national program. This cross-sectional study was done in 2017 and involved 200 consecutive treatment-naive PLHIV. A target fragment of 1,306 bp in the reverse transcriptase and protease regions was amplified. Identification of mutations and drug resistance interpretation was done by HIV Genotypic Resistance Interpretation and International Antiviral Society-USA list. Sequencing was successful in 177 samples. The majority (98.8%; 175/177) belonged to subtype C. Nineteen of 177 patients (10.7%; 95% CI: 6.2%-15.3%) had at least one major DRM. The prevalence of non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations was 10.2% (18/177). The most frequent mutations were E138A/K, A98G, K103N, V179D, and K101H/E. The prevalence of nucleoside reverse transcriptase inhibitor (NRTI) mutations was 1.1% (2/177). None of the samples had major protease inhibitor resistance mutations. The prevalence of NNRTI mutations in this study was >10%, crossing the threshold recommended by the WHO to change the NNRTI-based first-line regimen to non-NNRTI based. In 2021, the national program replaced efavirenz with dolutegravir in the first-line regimen of tenofovir, lamivudine, and efavirenz. As the majority (64%) of PLHIV in India are accessing free ART from the national program, this study highlights the need for regular nationally representative drug resistance surveys for optimizing antiretroviral regimens in the program.


Subject(s)
Alkynes , Anti-HIV Agents , Cyclopropanes , HIV Infections , HIV-1 , Humans , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Prevalence , Tertiary Care Centers , Cross-Sectional Studies , HIV-1/genetics , Benzoxazines/therapeutic use , HIV Infections/drug therapy , HIV Infections/epidemiology , Anti-Retroviral Agents/therapeutic use , Mutation , Drug Resistance, Viral/genetics , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...