Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 914
Filter
1.
Chem Biol Drug Des ; 103(5): e14530, 2024 May.
Article in English | MEDLINE | ID: mdl-38725091

ABSTRACT

Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC50s at the two targets to be strong (r2 = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC50 of 0.030 µM ± 0.009. This compared to FIV IC50 values of 0.22 ± 0.17 µM, 0.040 ± 0.010 µM and >160 µM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.


Subject(s)
HIV Reverse Transcriptase , Immunodeficiency Virus, Feline , Reverse Transcriptase Inhibitors , Animals , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Cats , Immunodeficiency Virus, Feline/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Humans , Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Alkynes/chemistry , Alkynes/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Cyclopropanes/pharmacology , Cyclopropanes/chemistry , Molecular Docking Simulation , Benzoxazines/chemistry , Benzoxazines/pharmacology
2.
Biomed Pharmacother ; 174: 116442, 2024 May.
Article in English | MEDLINE | ID: mdl-38513596

ABSTRACT

Parkinson's disease (PD) is a complex neurodegenerative disorder with an unclear etiology. Despite significant research efforts, developing disease-modifying treatments for PD remains a major unmet medical need. Notably, drug repositioning is becoming an increasingly attractive direction in drug discovery, and computational approaches offer a relatively quick and resource-saving method for identifying testable hypotheses that promote drug repositioning. We used an artificial intelligence (AI)-based drug repositioning strategy to screen an extensive compound library and identify potential therapeutic agents for PD. Our AI-driven analysis revealed that efavirenz and nevirapine, approved for treating human immunodeficiency virus infection, had distinct profiles, suggesting their potential effects on PD pathophysiology. Among these, efavirenz attenuated α-synuclein (α-syn) propagation and associated neuroinflammation in the brain of preformed α-syn fibrils-injected A53T α-syn Tg mice and α-syn propagation and associated behavioral changes in the C. elegans BiFC model. Through in-depth molecular investigations, we found that efavirenz can modulate cholesterol metabolism and mitigate α-syn propagation, a key pathological feature implicated in PD progression by regulating CYP46A1. This study opens new avenues for further investigation into the mechanisms underlying PD pathology and the exploration of additional drug candidates using advanced computational methodologies.


Subject(s)
Alkynes , Artificial Intelligence , Benzoxazines , Cyclopropanes , Drug Repositioning , Parkinson Disease , alpha-Synuclein , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Alkynes/pharmacology , Benzoxazines/pharmacology , Drug Repositioning/methods , Animals , alpha-Synuclein/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Mice , Caenorhabditis elegans/drug effects , Mice, Transgenic , Humans , Nevirapine/pharmacology , Disease Models, Animal , Mice, Inbred C57BL
3.
Antimicrob Agents Chemother ; 68(4): e0166823, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38483175

ABSTRACT

Ainuovirine (ANV), a novel non-nucleoside reverse-transcriptase inhibitor (NNRTI), was approved in China in 2021. In a previous randomized phase 3 trial, ANV demonstrated non-inferior efficacy relative to efavirenz (EFV) and was associated with lower rates of dyslipidemia. In this study, we aimed to explore lipid changes in treatment-experienced people with human immunodeficiency virus (HIV)-1 (PWH) switching to ANV from EFV in real world. At week 24, 96.65% of patients in the ANV group and 93.25% in the EFV group had HIV-1 RNA levels below the limit of quantification (LOQ). Median changes from baseline in CD4 +T cell counts (37.0 vs 36.0 cells/µL, P = 0.886) and CD4+/CD8 +ratio (0.03 vs 0.10, P = 0.360) were similar between the two groups. The ANV group was superior to the EFV group in mean changes in total cholesterol (TC, -0.06 vs 0.26 mmol/L, P = 0.006), triglyceride (TG, -0.6 vs 0.14 mmol/L, P < 0.001), high-density lipoprotein cholesterol (HDL-C, 0.09 vs 0.08 mmol/L, P = 0.006), and low-density lipoprotein cholesterol (LDL-C, -0.18 vs 0.29 mmol/L, P < 0.001) at week 24. We also observed that a higher proportion of patients demonstrated improved TC (13.55% vs 4.45%, P = 0.015) or LDL-C (12.93% vs 6.89%, P = 0.017), and a lower proportion of patients showed worsened LDL-C (5.57% vs 13.52%, P = 0.017) with ANV than with EFV at week 24. In conclusion, we observed good efficacy and favorable changes in lipids in switching to ANV from EFV in treatment-experienced PWH in real world, indicating a promising switching option for PWH who may be more prone to metabolic or cardiovascular diseases.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , Retrospective Studies , Cholesterol, LDL , Benzoxazines/therapeutic use , Benzoxazines/pharmacology , Alkynes/pharmacology , Alkynes/therapeutic use , Cyclopropanes/pharmacology , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology
4.
Nat Prod Res ; 38(4): 589-593, 2024.
Article in English | MEDLINE | ID: mdl-36855235

ABSTRACT

Synergistic bioassay-guided isolation of the extracts of Artemisia rupestris L, which belongs to the family Asteraceae, afforded two acetylenic spiroketal enol ethers, namely rupesdiynes A (1) and B (2). Their structures were determined based on spectroscopic analysis and experimental and calculated ECD investigations. The two compounds exhibited synergistic activity and were able to reduce the minimum inhibitory concentration (MIC) of oxacillin four-fold, with a fractional inhibitory concentration index (FICI) of 0.5 in combination with oxacillin against the oxacillin-resistant EMRSA-16. Biofilm formation inhibitory and Ethidium bromide (EtBr) efflux assay were further employed to verify the possible mechanism of the synergistic antibacterial effect. Additionally, molecular docking studies were conducted to investigate the binding affinities of the two compounds with penicillin-binding protein 2a (PBP2a) of EMRSA-16. Taken together, rupesdiynes A (1) and rupesdiyne B (2) showed moderate synergistic activity against EMRSA-16 with oxacillin via inhibiting biofilm formation and efflux pump activity, respectively.


Subject(s)
Artemisia , Furans , Methicillin-Resistant Staphylococcus aureus , Spiro Compounds , Molecular Docking Simulation , Acetylene/metabolism , Acetylene/pharmacology , Alkynes/pharmacology , Ethers/metabolism , Ethers/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents , Oxacillin/pharmacology , Oxacillin/metabolism , Microbial Sensitivity Tests , Drug Synergism
5.
J Med Chem ; 66(20): 13918-13945, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37816126

ABSTRACT

A series of 25 chiral anti-cancer lipidic alkynylcarbinols (LACs) were devised by introducing an (hetero)aromatic ring between the aliphatic chain and the dialkynylcarbinol warhead. The resulting phenyl-dialkynylcarbinols (PACs) exhibit enhanced stability, while retaining cytotoxicity against HCT116 and U2OS cell lines with IC50 down to 40 nM for resolved eutomers. A clickable probe was used to confirm the PAC prodrug behavior: upon enantiospecific bio-oxidation of the carbinol by the HSD17B11 short-chain dehydrogenase/reductase (SDR), the resulting ynones covalently modify cellular proteins, leading to endoplasmic reticulum stress, ubiquitin-proteasome system inhibition, and apoptosis. Insights into the design of LAC prodrugs specifically bioactivated by HSD17B11 vs its paralogue HSD17B13 were obtained. The HSD17B11/HSD17B13-dependent cytotoxicity of PACs was exploited to develop a cellular assay to identify specific inhibitors of these enzymes. A docking study was performed with the HSD17B11 AlphaFold model, providing a molecular basis of the SDR substrates mimicry by PACs. The safety profile of a representative PAC was established in mice.


Subject(s)
Alkynes , Antineoplastic Agents , Mice , Animals , Alkynes/pharmacology , Alkynes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Acetylene , Molecular Structure , Lipids/chemistry , Cell Line, Tumor
6.
J Med Chem ; 66(17): 12237-12248, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37595260

ABSTRACT

There is an urgent need for improved therapy to better control the ongoing COVID-19 pandemic. The main protease Mpro plays a pivotal role in SARS-CoV-2 replications, thereby representing an attractive target for antiviral development. We seek to identify novel electrophilic warheads for efficient, covalent inhibition of Mpro. By comparing the efficacy of a panel of warheads installed on a common scaffold against Mpro, we discovered that the terminal alkyne could covalently modify Mpro as a latent warhead. Our biochemical and X-ray structural analyses revealed the irreversible formation of the vinyl-sulfide linkage between the alkyne and the catalytic cysteine of Mpro. Clickable probes based on the alkyne inhibitors were developed to measure target engagement, drug residence time, and off-target effects. The best alkyne-containing inhibitors potently inhibited SARS-CoV-2 infection in cell infection models. Our findings highlight great potentials of alkyne as a latent warhead to target cystine proteases in viruses and beyond.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Alkynes/pharmacology
7.
J Biomol Struct Dyn ; 41(21): 11987-11999, 2023.
Article in English | MEDLINE | ID: mdl-36617941

ABSTRACT

A new series of thiazolidinone linked 1,2,3-triazole hybrids 5a-h was designed and synthesized using the copper-catalyzed Huisgen azide-alkyne cycloaddition (CuAAC) between thiazolidinone linked alkyne and aromatic azides. The structures of the newly synthesized compounds were established by NMR (1H and 13C) and HRMS. The targeted thiazolidinone-1,2,3-triazole hybrids were evaluated for their cytotoxic activity against four human cancer cell lines, including fibrosarcoma (HT-1080), lung carcinoma (A-549), and breast carcinoma (MCF-7 and MDA-MB-231) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliun bromide (MTT). The obtained data showed that most of these compounds have moderate anti-proliferative activity with IC50 values between 10.26 ± 0.71 and 53.93 ± 1.20 µM. The compound 5a exhibited higher activity with an IC50 value of 10.26 ± 0.71 µM, compared to 5d with an IC50 value of 11.56 ± 1.98 µM for the HT-1080 and MCF-7 cancer cells line, respectively. Moreover, Annexin-V apoptosis was assessed by flow cytometry for hybrid compounds 5a and 5d against HT-1080 and MCF-7 competitor cell lines, as they increase the level of active caspase 3/7. The experimental results were further confirmed by docking studies followed by molecular dynamic simulations. Both the potent derivatives i.e. 5a and 5d have comparable docking scores and MD simulations results showed that the docked complex of 5a is somewhat more stable than 5d primarily for protein p53. The ADMET profile of both derivatives established their safety zone and drug-like potential.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Molecular Dynamics Simulation , Humans , Molecular Structure , Structure-Activity Relationship , Cell Line, Tumor , Molecular Docking Simulation , Triazoles/pharmacology , Triazoles/chemistry , Alkynes/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Cell Proliferation
8.
Drug Chem Toxicol ; 46(3): 534-545, 2023 May.
Article in English | MEDLINE | ID: mdl-35450496

ABSTRACT

Occupational exposure to potentially harmful substances is one of the dangers associated with industrial jobs. This study evaluated the modulatory influence of selected dietary polyphenols on the pulmonotoxic and testiculotoxic effects of crude acetylene, an industrial gas used in welding metals. Wistar rats were exposed to 58 000 ppm acetylene, 20 min daily for 30 days, in a 36 L glass inhalation chamber. Some acetylene-exposed animals were treated concurrently with 30 mg/kg quercetin, rutin, caffeic acid, ferulic acid, or coumaric acid. At the end of the treatment sessions, the levels of superoxide dismutase, reduced glutathione, glutathione peroxidase, lactate dehydrogenase, and hormonal markers in rats exposed to acetylene were significantly decreased, with a concomitant increase in lipid peroxidation, nitric oxide level, cholesterol concentration, and histopathological abnormalities. These damaging biochemical and histopathological changes were significantly ameliorated in animals administered the polyphenols. Quercetin showed greater ameliorative activity than rutin while the phenolic acids exhibited increasing levels of ameliorative activity in the order: caffeic acid > ferulic acid > coumaric acid. These results indicate that inhalation of crude acetylene is deleterious to the lungs and testes, and polyphenols provide protection against these detrimental effects.


Subject(s)
Coumaric Acids , Testis , Male , Rats , Animals , Coumaric Acids/pharmacology , Coumaric Acids/metabolism , Antioxidants/metabolism , Quercetin/pharmacology , Rats, Wistar , Oxidative Stress , Polyphenols/pharmacology , Rutin/pharmacology , Lipid Peroxidation , Superoxide Dismutase/metabolism , Lung/metabolism , Alkynes/metabolism , Alkynes/pharmacology
9.
Int J Parasitol Drugs Drug Resist ; 20: 121-128, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36375339

ABSTRACT

Malaria is among the tropical diseases that cause the most deaths in Africa. Around 500,000 malaria deaths are reported yearly among African children under the age of five. Chloroquine (CQ) is a low-cost antimalarial used worldwide for the treatment of Plasmodium vivax malaria. Due to resistance mechanisms, CQ is no longer effective against most malaria cases caused by P. falciparum. The World Health Organization recommends artemisinin combination therapies for P. falciparum malaria, but resistance is emerging in Southeast Asia and some parts of Africa. Therefore, new medicines for treating malaria are urgently needed. Previously, our group identified the 4-aminoquinoline DAQ, a CQ analog containing an acetylenic bond in its side chain, which overcomes CQ resistance in K1 P. falciparum strains. In this work, the antiplasmodial profile, drug-like properties, and pharmacokinetics of DAQ were further investigated. DAQ showed no cross-resistance against standard CQ-resistant strains (e.g., Dd2, IPC 4912, RF12) nor against P. falciparum and P. vivax isolates from patients in the Brazilian Amazon. Using drug pressure assays, DAQ showed a low propensity to generate resistance. DAQ showed considerable solubility but low metabolic stability. The main metabolite was identified as a mono N-deethylated derivative (DAQM), which also showed significant inhibitory activity against CQ-resistant P. falciparum strains. Our findings indicated that the presence of a triple bond in CQ-analogues may represent a low-cost opportunity to overcome known mechanisms of resistance in the malaria parasite.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria, Vivax , Malaria , Plasmodium , Child , Humans , Chloroquine/pharmacology , Chloroquine/therapeutic use , Plasmodium falciparum , Acetylene/pharmacology , Acetylene/therapeutic use , Alkynes/pharmacology , Alkynes/therapeutic use , Drug Resistance , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Vivax/drug therapy , Malaria/drug therapy
10.
J Am Chem Soc ; 144(41): 18938-18947, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36197299

ABSTRACT

The fish oil constituent docosahexaenoic acid (DHA, 22:6 n-3) is a signaling lipid with anti-inflammatory properties. The molecular mechanisms underlying the biological effect of DHA are poorly understood. Here, we report the design, synthesis, and application of a complementary pair of bio-orthogonal, photoreactive probes based on the polyunsaturated scaffold DHA and its oxidative metabolite 17-hydroxydocosahexaenoic acid (17-HDHA). In these probes, an alkyne serves as a handle to introduce a fluorescent reporter group or a biotin-affinity tag via copper(I)-catalyzed azide-alkyne cycloaddition. This pair of chemical probes was used to map specific targets of the omega-3 signaling lipids in primary human macrophages. Prostaglandin reductase 1 (PTGR1) was identified as an interaction partner that metabolizes 17-oxo-DHA, an oxidative metabolite of 17-HDHA. 17-oxo-DHA reduced the formation of pro-inflammatory lipids 5-HETE and LTB4 in human macrophages and neutrophils. Our results demonstrate the potential of comparative photoaffinity protein profiling for the discovery of metabolic enzymes of bioactive lipids and highlight the power of chemical proteomics to uncover new biological insights.


Subject(s)
Docosahexaenoic Acids , Fatty Acids, Omega-3 , Humans , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/pharmacology , Azides , Copper/pharmacology , Biotin/pharmacology , Leukotriene B4/pharmacology , Fatty Acids, Omega-3/pharmacology , Macrophages , Fish Oils/pharmacology , Anti-Inflammatory Agents/pharmacology , Alkynes/pharmacology , Prostaglandins , Oxidoreductases
11.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36296551

ABSTRACT

New 1,3,4-thiadiazole thioglycosides linked to a substituted arylidine system were synthesized via heterocyclization via click 1,3-dipolar cycloaddition. The click strategy was used for the synthesis of new 1,3,4-thiadiazole and 1,2,3-triazole hybrid glycoside-based indolyl systems as novel hybrid molecules by reacting azide derivatives with the corresponding acetylated glycosyl terminal acetylenes. The cytotoxic activities of the compounds were studied against HCT-116 (human colorectal carcinoma) and MCF-7 (human breast adenocarcinoma) cell lines using the MTT assay. The results showed that the key thiadiazolethione compounds, the triazole glycosides linked to p-methoxyarylidine derivatives and the free hydroxyl glycoside had potent activity comparable to the reference drug, doxorubicin, against MCF-7 human cancer cells. Docking simulation studies were performed to check the binding patterns of the synthesized compounds. Enzyme inhibition assay studies were also conducted for the epidermal growth factor receptor (EGFR), and the results explained the activity of a number of derivatives.


Subject(s)
Antineoplastic Agents , Thioglycosides , Humans , Molecular Docking Simulation , Triazoles/chemistry , Glycosides/pharmacology , Azides/pharmacology , Structure-Activity Relationship , Cell Proliferation , Thioglycosides/chemistry , Antineoplastic Agents/chemistry , ErbB Receptors/metabolism , MCF-7 Cells , Doxorubicin/pharmacology , Alkynes/pharmacology , Molecular Structure , Drug Screening Assays, Antitumor
12.
J Med Chem ; 65(19): 13112-13124, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36166643

ABSTRACT

The toxic calcemic effects of the natural hormone 1α,25-dihydroxyvitamin D3 (1,25D3, 1,25-dihydroxycholecalciferol) in the treatment of hyperproliferative diseases demand the development of highly active and noncalcemic vitamin D analogues. We report the development of two highly active and noncalcemic analogues of 1,25D3 that lack the C-ring and possess an m-phenylene ring that replaces the natural D-ring. The new analogues (3a, 3b) are characterized by an additional six-carbon hydroxylated side chain attached either to the aromatic nucleus or to the triene system. Both compounds were synthesized by the Pd-catalyzed tandem cyclization/cross coupling approach starting from alkyne 6 and diphenol 8. Key steps include a stereoselective Cu-assisted addition of a Grignard reagent to an aromatic alkyne and a Takai olefination of an aromatic aldehyde. The new compounds are noncalcemic and show transcriptional and antiproliferative activities similar to 1,25D3. Structural analysis revealed that they induce a large conformational rearrangement of the vitamin D receptor around helix 6.


Subject(s)
Calcitriol , Receptors, Calcitriol , Aldehydes , Alkynes/pharmacology , Calcitriol/pharmacology , Carbon , Hormones , Palladium/chemistry , Vitamin D/analogs & derivatives
13.
Chemosphere ; 307(Pt 2): 135796, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35917978

ABSTRACT

We investigated the occurrence and risk assessment of three anti-HIV drugs [(tenofovir (TNF), lamivudine (LMV) and efavirenz (EFV)] in urban rivers from Curitiba (Brazil), as well as the individual and combined effects of their environmental representative concentrations on the freshwater periphytic species Synechococcus elongatus (Cyanobacteria) and Chlorococcum infusionum (Chlorophyta). The three studied drugs, except TNF, were found in 100% of the samples, and concentrations in samples ranged from 165 to 412 ng TNF L-1, 173-874 ng LMV L-1 and 13-1250 ng EFV L-1. Bioassays using artificial contaminated water showed that at environmental concentrations, TNF and LMV did not represent environmental risks to the studied photosynthetic organisms. However, EFV was shown to be toxic, affecting photosynthesis, respiration, and oxidative metabolism. The studied drugs demonstrated interactive effects. Indeed, when submitted to the combination of TNF and LMV, decreased photosynthesis was observed in C. infusionum cells. Moreover, the toxic effects of EFV were amplified in both species when TNF and/or LMV were added to the media. The simultaneous presence of TNF, LMV and EFV in environmental matrices associated with their interactive effects, lead to increased toxicological effects of water contaminated by anti-HIV drugs and thus to an ecological threat to photosynthetic microorganisms.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Alkynes/pharmacology , Alkynes/therapeutic use , Benzoxazines , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , HIV Infections/complications , HIV Infections/drug therapy , Humans , Lamivudine/pharmacology , Lamivudine/therapeutic use , Photosynthesis , Tenofovir/pharmacology , Tenofovir/therapeutic use , Water/pharmacology
14.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35887013

ABSTRACT

Efavirenz (EFV), an FDA-approved anti-HIV drug, has off-target binding to CYP46A1, the CNS enzyme which converts cholesterol to 24-hydroxycholesterol. At small doses, EFV allosterically activates CYP46A1 in mice and humans and mitigates some of the Alzheimer's disease manifestations in 5XFAD mice, an animal model. Notably, in vitro, all phase 1 EFV hydroxymetabolites activate CYP46A1 as well and bind either to the allosteric site for EFV, neurotransmitters or both. Herein, we treated 5XFAD mice with 8,14-dihydroxyEFV, the binder to the neurotransmitter allosteric site, which elicits the highest CYP46A1 activation in vitro. We found that treated animals of both sexes had activation of CYP46A1 and cholesterol turnover in the brain, decreased content of the amyloid beta 42 peptide, increased levels of acetyl-CoA and acetylcholine, and altered expression of the brain marker proteins. In addition, male mice had improved performance in the Barnes Maze test and increased expression of the acetylcholine-related genes. This work expands our knowledge of the beneficial CYP46A1 activation effects and demonstrates that 8,14-dihydroxyEFV crosses the blood-brain barrier and has therapeutic potential as a CYP46A1 activator.


Subject(s)
Acetylcholine , Alzheimer Disease , Brain , Cholesterol 24-Hydroxylase , Acetylcholine/analysis , Acetylcholine/metabolism , Alkynes/metabolism , Alkynes/pharmacology , Alkynes/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Benzoxazines/metabolism , Benzoxazines/pharmacology , Benzoxazines/therapeutic use , Brain/drug effects , Brain/metabolism , Cholesterol/metabolism , Cholesterol 24-Hydroxylase/genetics , Cholesterol 24-Hydroxylase/metabolism , Cholesterol 24-Hydroxylase/pharmacology , Cyclopropanes/metabolism , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Disease Models, Animal , Female , Male , Mice
15.
Molecules ; 27(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35807263

ABSTRACT

Novel 1,2,3-triazolo-linked-1,5-benzodiazepinones were designed and synthesized via a Cu(I)-catalyzed 1,3-dipolar alkyne-azide coupling reaction (CuAAC). The chemical structures of these compounds were confirmed by 1H NMR, 13C NMR, HMBC, HRMS, and elemental analysis. The compounds were screened for their in vitro antibacterial and antifungal activities. Several compounds exhibited good to moderate activities compared to those of established standard drugs. Furthermore, the binding interactions of these active analogs were confirmed through molecular docking.


Subject(s)
Antifungal Agents , Copper , Alkynes/chemistry , Alkynes/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Azides/chemistry , Benzodiazepines , Catalysis , Click Chemistry , Copper/chemistry , Molecular Docking Simulation , Molecular Structure
16.
J Virol ; 96(7): e0169921, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35293766

ABSTRACT

The "shock and kill" strategy for HIV-1 cure incorporates latency-reversing agents (LRA) in combination with interventions that aid the host immune system in clearing virally reactivated cells. LRAs have not yet been investigated in pediatric clinical or preclinical studies. Here, we evaluated an inhibitor of apoptosis protein (IAP) inhibitor (IAPi), AZD5582, that activates the noncanonical NF-κB (ncNF-κB) signaling pathway to reverse latency. Ten weekly doses of AZD5582 were intravenously administered at 0.1 mg/kg to rhesus macaque (RM) infants orally infected with SIVmac251 at 4 weeks of age and treated with a triple ART regimen for over 1 year. During AZD5582 treatment, on-ART viremia above the limit of detection (LOD, 60 copies/mL) was observed in 5/8 infant RMs starting at 3 days post-dose 4 and peaking at 771 copies/mL. Of the 135 measurements during AZD5582 treatment in these 5 RM infants, only 8 were above the LOD (6%), lower than the 46% we have previously reported in adult RMs. Pharmacokinetic analysis of plasma AZD5582 levels revealed a lower Cmax in treated infants compared to adults (294 ng/mL versus 802 ng/mL). RNA-Sequencing of CD4+ T cells comparing pre- and post-AZD5582 dosing showed many genes that were similarly upregulated in infants and adults, but the expression of key ncNF-κB genes, including NFKB2 and RELB, was significantly higher in adult RMs. Our results suggest that dosing modifications for this latency reversal approach may be necessary to maximize virus reactivation in the pediatric setting for successful "shock and kill" strategies. IMPORTANCE While antiretroviral therapy (ART) has improved HIV-1 disease outcome and reduced transmission, interruption of ART results in rapid viral rebound due to the persistent latent reservoir. Interventions to reduce the viral reservoir are of critical importance, especially for children who must adhere to lifelong ART to prevent disease progression. Here, we used our previously established pediatric nonhuman primate model of oral SIV infection to evaluate AZD5582, identified as a potent latency-reversing agent in adult macaques, in the controlled setting of daily ART. We demonstrated the safety of the IAPi AZD5582 and evaluate the pharmacokinetics and pharmacodynamics of repeated dosing. The response to AZD5582 in macaque infants differed from what we previously showed in adult macaques with weaker latency reversal in infants, likely due to altered pharmacokinetics and less inducibility of infant CD4+ T cells. These data supported the contention that HIV-1 cure strategies for children are best evaluated using pediatric model systems.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Alkynes/pharmacokinetics , Alkynes/pharmacology , Alkynes/therapeutic use , Animals , Anti-Retroviral Agents/pharmacokinetics , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , HIV-1/genetics , Humans , Macaca mulatta , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Viral Load , Virus Latency/drug effects , Virus Replication
17.
Life Sci ; 294: 120329, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35090905

ABSTRACT

Antiretroviral therapy (ART), a life-saving treatment strategy in HIV/AIDS, has been implicated in increasing the risk of type 2 diabetes mellitus (T2DM). Direct damaging effects on beta-cell function and survival by either non-nucleoside reverse transcriptase inhibitors (NNRTIs) or nucleoside/tide reverse transcriptase inhibitors (NRTIs) may predispose individuals to developing T2DM or if already type 2 diabetic, to insulin dependency. The aim of this study was to investigate the effects of the NNRTIs efavirenz, rilpivirine and doravirine, and the NRTIs tenofovir disoproxil fumarate and emtricitabine, on beta-cell function and survival while suggesting potential cellular and molecular mechanism(s). Our results show contrasting effects within the NNRTI class as doravirine did not cause damaging effects in the rat insulinoma INS-1E cells while efavirenz and rilpivirine reduced insulin release and cell viability, and induced apoptosis in INS-1E cells. Additionally, efavirenz and rilpivirine increased ROS generation, disrupted Δψm and upregulated the mRNA and protein expression of CHOP and GRP78, key markers of endoplasmic reticulum stress. In silico docking studies predict a possible inhibition of the mitochondrial ATP synthase by rilpivirine. On the contrary, both the NRTIs tenofovir disoproxil fumarate and emtricitabine did not affect GSIS, cell viability and apoptosis/necrosis levels in INS-1E cells. The deleterious effects observed in beta-cells exposed to efavirenz or rilpivirine may be, at least partially, mediated by oxidative stress and mitochondrial toxicity. These findings provide potential mechanism(s) by which efavirenz and rilpivirine may contribute to the pathogenesis of T2DM and the progression of T2DM to insulin dependency in HIV-infected type 2 diabetics.


Subject(s)
Endoplasmic Reticulum Stress , Insulin-Secreting Cells/pathology , Insulinoma/pathology , Mitochondria/pathology , Oxidative Stress , Reverse Transcriptase Inhibitors/pharmacology , Alkynes/pharmacology , Animals , Benzoxazines/pharmacology , Cyclopropanes/pharmacology , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulinoma/metabolism , Mitochondria/drug effects , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Rats , Reactive Oxygen Species/metabolism , Rilpivirine/pharmacology , Tumor Cells, Cultured
18.
Sci Rep ; 12(1): 45, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997070

ABSTRACT

Head-and-neck squamous cell carcinomas (HNSCCs) are relatively common in patients with Fanconi anemia (FA), a hereditary chromosomal instability disorder. Standard chemo-radiation therapy is not tolerated in FA due to an overall somatic hypersensitivity to such treatment. The question is how to find a suitable alternative treatment. We used whole-exome and whole genome mRNA sequencing to identify major genomic and transcriptomic events associated with FA-HNSCC. CRISPR-engineered FA-knockout models were used to validate a number of top hits that were likely to be druggable. We identified deletion of 18q21.2 and amplification of 11q22.2 as prevailing copy-number alterations in FA HNSCCs, the latter of which was associated with strong overexpression of the cancer-related genes YAP1, BIRC2, BIRC3 (at 11q22.1-2). We then found the drug AZD5582, a known small molecule inhibitor of BIRC2-3, to selectively kill FA tumor cells that overexpressed BIRC2-3. This occurred at drug concentrations that did not affect the viability of untransformed FA cells. Our data indicate that 11q22.2 amplifications are relatively common oncogenic events in FA-HNSCCs, as holds for non FA-HNSCC. Therefore, chemotherapeutic inhibition of overexpressed BIRC2-3 may provide the basis for an approach to develop a clinically realistic treatment of FA-HNSCCs that carry 11q22.2 amplifications.


Subject(s)
Baculoviral IAP Repeat-Containing 3 Protein/genetics , Baculoviral IAP Repeat-Containing 3 Protein/metabolism , Fanconi Anemia/drug therapy , Fanconi Anemia/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Inhibitor of Apoptosis Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Alkynes/pharmacology , Baculoviral IAP Repeat-Containing 3 Protein/antagonists & inhibitors , Cell Line , Cell Survival/drug effects , Cell Survival/genetics , DNA Copy Number Variations , DNA Mutational Analysis , Fanconi Anemia/complications , Fanconi Anemia/immunology , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/complications , Head and Neck Neoplasms/immunology , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Oligopeptides/pharmacology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
19.
Can J Physiol Pharmacol ; 100(1): 53-60, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34428378

ABSTRACT

The Frank-Starling response of the heart is known to be mediated by nitric oxide (NO) signaling, which is regulated by reduced glutathione (GSH) and hydrogen sulfide (H2S). We hypothesized that stimulation of endogenous H2S or GSH synthesis would improve the Frank-Starling response. Wistar male rats were injected with propargylglycine (PAG; 11.3 mg/kg, 40 min, n = 12), an inhibitor of H2S-producing enzyme (cystationine-γ-lyase), and l-cysteine (121 mg/kg, 30 min, n = 20), a precursor of H2S and GSH. Pretreatment with PAG or l-cysteine separately slightly improved the pressure-volume (P-V) dependence of the isolated rat heart, but the combination of PAG and l-cysteine (n = 12) improved heart contractile activity. H2S content, Ca2+-dependent NOS activity (cNOS) activity, nitrate reductase activity, and nitrite content increased by 2, 3.83, 2.5, and 1.3 times in cardiac mitochondria, and GSH and oxidized glutathione (GSSG) levels increased by 2.24 and 1.86 times in the heart homogenates of the PAG + l-cysteine group compared with the control (all P < 0.05). Inhibition of glutathione with DL-buthionine-sulfoximine (BSO; 22.2 mg/kg, 40 min, n = 6) drastically decreased Frank-Starling response of the heart and prevented PAG + l-cysteine-induced increase of GSH and GSSG levels (BSO + PAG + l-cysteine, n = 9). Inhibition of NOS, N-nitro-l-arginine-methylester hydrochloride (l-NAME; 40 min, 27 mg/kg) abolished positive inotropy induced by PAG+l-cysteine pretreatment (l-NAME + PAG + l-cysteine, n = 7). Thus, PAG + l-cysteine administration improves the Frank-Starling response by upregulating mitochondrial H2S, glutathione, and NO synthesis, which may be a promising approach in the treatment of myocardial dysfunction.


Subject(s)
Glutathione/metabolism , Hydrogen Sulfide/metabolism , Mitochondria/metabolism , Myocardial Contraction/drug effects , Myocardium/metabolism , Nitric Oxide/metabolism , Signal Transduction/physiology , Alkynes/pharmacology , Animals , Cysteine/pharmacology , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , In Vitro Techniques , Male , Rats, Wistar , Stimulation, Chemical , Up-Regulation/drug effects
20.
Mol Divers ; 26(5): 2375-2391, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34671895

ABSTRACT

Some urea-thiazole/benzothiazole hybrids with a triazole linker were synthesized via Cu(I)-catalysed click reaction. After successfully analysed by various spectral techniques including FTIR, NMR and HRMS, antimicrobial screening of the synthesized hybrids along with their precursors was carried out against two Gram (+) bacteria (Staphylococcus aureus and Bacillus endophyticus), two Gram (-) bacteria (Escherichia coli and Pseudomonas fluorescens) and two fungi (Candida albicans and Rhizopus oryzae). All the synthesized compounds (4a-4l) displayed better biological response than the standard fluconazole against both of the tested fungi. Compounds 4h and 4j were found to be the most active compounds against R. oryzae and C. albicans, respectively. Molecular docking of hybrid 4j and its alkyne precursor 1b in the active site of C. albicans target sterol 14-α demethylase was also performed and was also supported by molecular dynamics studies. In silico ADME prediction of synthesized urea-thiazole/benzothiazole hybrids with a triazole linker and their alkyne precursors was also predicted.


Subject(s)
Anti-Infective Agents , Triazoles , Alkynes/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Benzothiazoles/pharmacology , Candida albicans , Escherichia coli , Fluconazole , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Sterols , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...