Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 450
Filter
1.
Biol Lett ; 20(5): 20230448, 2024 May.
Article in English | MEDLINE | ID: mdl-38716586

ABSTRACT

Recent molecular taxonomic advancements have expanded our understanding of crocodylian diversity, revealing the existence of previously overlooked species, including the Congo dwarf crocodile (Osteolaemus osborni) in the central Congo Basin rainforests. This study explores the genomic divergence between O. osborni and its better-known relative, the true dwarf crocodile (Osteolaemus tetraspis), shedding light on their evolutionary history. Field research conducted in the northwestern Republic of the Congo uncovered a locality where both species coexist in sympatry/syntopy. Genomic analysis of sympatric individuals reveals a level of divergence comparable to that between ecologically similar South American dwarf caimans (Paleosuchus palpebrosus and Paleosuchus trigonatus), suggesting parallel speciation in the Afrotropics and Neotropics during the Middle to Late Miocene, 10-12 Ma. Comparison of the sympatric and allopatric dwarf crocodiles indicates no gene flow between the analysed sympatric individuals of O. osborni and O. tetraspis. However, a larger sample will be required to answer the question of whether or to what extent these species hybridize. This study emphasizes the need for further research on the biology and conservation status of the Congo dwarf crocodile, highlighting its significance in the unique biodiversity of the Congolian rainforests and thus its potential as a flagship species.


Subject(s)
Alligators and Crocodiles , Animals , Alligators and Crocodiles/genetics , Alligators and Crocodiles/anatomy & histology , Alligators and Crocodiles/classification , Congo , Sympatry , South America , Phylogeny , Genetic Speciation
2.
J Anat ; 244(6): 943-958, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38242862

ABSTRACT

The evolution of archosaurs provides an important context for understanding the mechanisms behind major functional transformations in vertebrates, such as shifts from sprawling to erect limb posture and the acquisition of powered flight. While comparative anatomy and ichnology of extinct archosaurs have offered insights into musculoskeletal and gait changes associated with locomotor transitions, reconstructing the evolution of motor control requires data from extant species. However, the scarcity of electromyography (EMG) data from the forelimb, especially of crocodylians, has hindered understanding of neuromuscular evolution in archosaurs. Here, we present EMG data for nine forelimb muscles from American alligators during terrestrial locomotion. Our aim was to investigate the modulation of motor control across different limb postures and examine variations in motor control across phylogeny and locomotor modes. Among the nine muscles examined, m. pectoralis, the largest forelimb muscle and primary shoulder adductor, exhibited significantly smaller mean EMG amplitudes for steps in which the shoulder was more adducted (i.e., upright). This suggests that using a more adducted limb posture helps to reduce forelimb muscle force and work during stance. As larger alligators use a more adducted shoulder and hip posture, the sprawling to erect postural transition that occurred in the Triassic could be either the cause or consequence of the evolution of larger body size in archosaurs. Comparisons of EMG burst phases among tetrapods revealed that a bird and turtle, which have experienced major musculoskeletal transformations, displayed distinctive burst phases in comparison to those from an alligator and lizard. These results support the notion that major shifts in body plan and locomotor modes among sauropsid lineages were associated with significant changes in muscle activation patterns.


Subject(s)
Alligators and Crocodiles , Biological Evolution , Electromyography , Forelimb , Muscle, Skeletal , Posture , Animals , Alligators and Crocodiles/physiology , Alligators and Crocodiles/anatomy & histology , Forelimb/physiology , Forelimb/anatomy & histology , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Posture/physiology , Locomotion/physiology , Phylogeny , Flight, Animal/physiology
3.
J Anat ; 244(5): 749-791, 2024 May.
Article in English | MEDLINE | ID: mdl-38104997

ABSTRACT

The anatomy of the archosaurian pelvis and hindlimb has adopted a diversity of successful configurations allowing a wide range of postures during the evolution of the group (e.g., erect, sprawling). For this reason, thorough studies of the structure and function of the pelvic and hindlimb musculature of crocodylians are required and provide the possibility to expand their implications for the evolution of archosaurian locomotion, as well as to identify potential new characters based on muscles and their bony correlates. In this study, we give a detailed description of the pelvic and hindlimb musculature of the South American alligator Caiman yacare, providing comprehensive novel information regarding lower limb and autopodial muscles. Particularly for the pedal muscles, we propose a new classification for the dorsal and ventral muscles of the autopodium based on the organisation of these muscles in successive layers. We have studied the myology in a global background in which we have compared the Caiman yacare musculature with other crocodylians. In this sense, differences in the arrangement of m. flexor tibialis internus 1, m. flexor tibialis externus, m. iliofibularis, mm. puboischiofemorales internii 1 and 2, between Ca. yacare and other crocodylians were found. We also discuss the muscle attachments that have different bony correlates among the crocodylian species and their morphological variation. Most of the correlates did not exhibit great variation among the species compared. The majority of the recognised correlates were identified in the pelvic girdle; additionally, some bony correlates associated with the pedal muscles are highlighted here for the first time. This research provides a wide framework for future studies on comparative anatomy and functional morphology, which could contribute to improving the character definition used in phylogenetic analyses and to understand the patterns of musculoskeletal hindlimb evolution.


Subject(s)
Alligators and Crocodiles , Animals , Alligators and Crocodiles/anatomy & histology , Phylogeny , Muscle, Skeletal/anatomy & histology , Lower Extremity , Hindlimb/anatomy & histology , Pelvis/anatomy & histology
4.
Curr Biol ; 33(19): 4261-4268.e3, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37714148

ABSTRACT

Crocodilians grow slowly and have low metabolic rates similar to other living reptiles, but palaeohistology indicates that they evolved from an ancestor with higher growth rates.1,2,3,4,5 It remains unclear when slow growth appeared in the clade due to the sparse data on key divergences among early Mesozoic members of their stem lineage. We present new osteohistological data from a broad sample of early crocodylomorphs, evaluated in a phylogenetic context alongside other pseudosuchians. We find that the transition to slow-growing bone types during mid-late ontogeny occurred around the origin of Crocodylomorpha during the Late Triassic. Earlier-diverging pseudosuchians had high maximum growth rates, as indicated by the presence of woven bone during middle and (sometimes) late ontogeny.6,7,8,9 Large-bodied pseudosuchians in particular exhibit some of the fastest-growing bone types, giving evidence for prolonged, rapid growth. By contrast, early-branching crocodylomorphs, including a new large-bodied taxon, had slow maximum rates of bone deposition, as evidenced by the presence of predominantly parallel-fibered or lamellar bone tissue during middle-late ontogeny. Late Triassic crocodylomorphs show skeletal anatomy consistent with "active" terrestrial habits,10,11,12 and their slow growth rates reject hypotheses linking this transition with sedentary, semiaquatic lifestyles or sprawling posture. Faster-growing pseudosuchian lineages go extinct in the Triassic, whereas slow-growing crocodylomorphs do not. This contrasts with the Jurassic radiation of fast-growing dinosaurs on the bird-stem lineage,13 suggesting that the End-Triassic mass extinction initiated a divergent distribution of growth strategies that persist in present-day archosaurs.


Subject(s)
Alligators and Crocodiles , Dinosaurs , Animals , Phylogeny , Alligators and Crocodiles/anatomy & histology , Fossils , Dinosaurs/anatomy & histology , Extinction, Biological , Biological Evolution
5.
J Anat ; 243(3): 374-393, 2023 09.
Article in English | MEDLINE | ID: mdl-37309776

ABSTRACT

We describe the endocranial structures of Hamadasuchus, a peirosaurid crocodylomorph from the late Albian-Cenomanian Kem Kem group of Morocco. The cranial endocast, associated nerves and arteries, endosseous labyrinths, and cranial pneumatization, as well as the bones of the braincase of a new specimen, are reconstructed and compared with extant and fossil crocodylomorphs, which represent different lifestyles. Cranial bones of this specimen are identified as belonging to Hamadasuchus, with close affinities with Rukwasuchus yajabalijekundu, another peirosaurid from the 'middle' Cretaceous of Tanzania. The endocranial structures are comparable to those of R. yajabalijekundu but also to baurusuchids and sebecids (sebecosuchians). Paleobiological traits of Hamadasuchus, such as alert head posture, ecology, and behavior are explored for the first time, using quantitative metrics. The expanded but narrow semi-circular canals and enlarged pneumatization of the skull of Hamadasuchus are linked to a terrestrial lifestyle. Continuing work on the neuroanatomy of supposedly terrestrial crocodylomorphs needs to be broadened to other groups and will allow to characterize whether some internal structures are affected by the lifestyle of these organisms.


Subject(s)
Alligators and Crocodiles , Neuroanatomy , Skull , Biological Evolution , Fossils , Head/anatomy & histology , Morocco , Skull/anatomy & histology , Alligators and Crocodiles/anatomy & histology
6.
J Anat ; 243(1): 1-22, 2023 07.
Article in English | MEDLINE | ID: mdl-36929596

ABSTRACT

The interrelationships of the extant crocodylians Gavialis gangeticus and Tomistoma schlegelii have been historically disputed. Whereas molecular analyses indicate a sister taxon relationship between these two gavialoid species, morphological datasets typically place Gavialis as the outgroup to all other extant crocodylians. Recent morphological-based phylogenetic analyses have begun to resolve this discrepancy, recovering Gavialis as the closest living relative of Tomistoma; however, several stratigraphically early fossil taxa are recovered as closer to Gavialis than Tomistoma, resulting in anomalously early divergence timings. As such, additional morphological data might be required to resolve these remaining discrepancies. 'Tomistoma' dowsoni is an extinct species of gavialoid from the Miocene of North Africa. Utilising CT scans of a near-complete, referred skull, we reconstruct the neuroanatomy and neurosensory apparatus of 'Tomistoma' dowsoni. Based on qualitative and quantitative morphometric comparisons with other crocodyliforms, the neuroanatomy of 'Tomistoma' dowsoni is characterised by an intermediate morphology between the two extant gavialoids, more closely resembling Gavialis. This mirrors the results of recent studies based on the external anatomy of these three species and other fossil gavialoids. Several neuroanatomical features of these species appear to reflect ecological and/or phylogenetic signals. For example, the 'simple' morphology of their neurosensory apparatus is broadly similar to that of other long and narrow-snouted (longirostrine), aquatic crocodyliforms. A dorsoventrally short, anteroposteriorly long endosseous labyrinth is also associated with longirostry. These features indicate that snout and skull morphology, which are themselves partly constrained by ecology, exert an influence on neuroanatomical morphology, as has also been recognised in birds and turtles. Conversely, the presence of a pterygoid bulla in Gavialis and several extinct gavialoids, and its absence in Tomistoma schlegelii, could be interpreted as a phylogenetic signal of crocodylians more closely related to Gavialis than to Tomistoma. Evaluation of additional fossil gavialoids will be needed to further test whether these and other neuroanatomical features primarily reflect a phylogenetic or ecological signal. By incorporating such previously inaccessible information of extinct and extant gavialoids into phylogenetic and macroecological studies, we can potentially further constrain the clade's interrelationships, as well as evaluate the timing and ecological association of the evolution of these neuroanatomical features. Finally, our study supports recent phylogenetic analyses that place 'Tomistoma' dowsoni as being phylogenetically closer to Gavialis gangeticus than to Tomistoma schlegelii, indicating the necessity of a taxonomic revision of this fossil species.


Subject(s)
Alligators and Crocodiles , Neuroanatomy , Animals , Phylogeny , Alligators and Crocodiles/anatomy & histology , Skull/anatomy & histology , Fossils , Africa, Northern
7.
PLoS One ; 18(3): e0283581, 2023.
Article in English | MEDLINE | ID: mdl-36976814

ABSTRACT

Isolated teeth, previously referred to Aves, are more common than other bird fossils from the Late Cretaceous of Alberta. However, there are no known morphological synapomorphies that distinguish isolated bird teeth, and features of these teeth are generally shared with those of non-avian theropods and crocodilians. Here, specimens ranging from Late Santonian to Late Maastrichtian in age are described and qualitatively categorized into morphotypes, most of which strongly resemble teeth of extant juvenile and some fossil crocodilians. Variation within this sample of teeth may therefore reflect the heterodont dentition of crocodilians, rather than avian species diversity. Quantitative analysis Principal Component Analysis was mostly uninformative, with limited overlap between putative avian teeth and those of known Cretaceous birds, crocodilians, and non-avian theropods. The reassignment of these putative avian teeth to Crocodylia has important ramifications for our understanding of the evolutionary history of Cretaceous birds.


Subject(s)
Alligators and Crocodiles , Dinosaurs , Animals , Alligators and Crocodiles/anatomy & histology , Alberta , Birds/anatomy & histology , Biological Evolution , Fossils , Phylogeny , Dinosaurs/anatomy & histology
8.
Int. j. morphol ; 41(1): 324-330, feb. 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1430512

ABSTRACT

SUMMARY: The Chinese alligator (Alligator sinensis) belongs to the genus Alligator, which is a unique crocodile in China. In order to study the macroscopic structure of the heart of Chinese alligator, we performed detailed cardiac anatomy on five specimens. The heart is in the cranial mediastinum. It is caudally involved by the liver cranial margins, and ventrally by the ribs, intercostal muscles, and sternum and dorsally by the lungs. The wild Chinese alligator heart is a typical four-chamber heart, with two (right and left) atria and ventricles, left and right aorta, pulmonary artery and subclavian artery branch from the aorta. Morphology measures the circumference (129.36 mm), weight (44.14 g), and length of the heart from apex to bottom (52.50 mm). Studies have shown that the shape of the wild Chinese alligator's heart is consistent with the anatomy of other crocodiles.


El caimán chino (Alligator sinensis) pertenece al género Alligator, que es un cocodrilo único en China. Para estudiar la estructura macroscópica del corazón del caimán chino, revisamos detalladamente la anatomía cardíaca de cinco especímenes. El corazón está en el mediastino craneal. Está limitado caudalmente por los márgenes craneales del hígado, y ventralmente por las costillas, los músculos intercostales y el esternón, y dorsalmente por los pulmones. El corazón de cocodrilo chino salvaje es un corazón típico de cuatro cámaras, con dos atrios y dos ventrículos (derecho e izquierdo), aortas izquierda y derecha, arteria pulmonar y rama de la arteria subclavia de la aorta. La morfología mide la circunferencia (129,36 mm), el peso (44,14 g) y la longitud del corazón desde el ápice hasta la base (52,50 mm). Los estudios han demostrado que la forma del corazón del caimán chino salvaje es consistente con la anatomía de otros cocodrilos.


Subject(s)
Animals , Alligators and Crocodiles/anatomy & histology , Heart/anatomy & histology
9.
Anat Rec (Hoboken) ; 306(7): 1618-1630, 2023 07.
Article in English | MEDLINE | ID: mdl-35670675

ABSTRACT

Distinctive anatomical features of bones can influence not only how these structures perform in living animals but also the tendency of elements to be transported by flowing water after death. Such transport can be critical in the concentration of fossils from animals that live near freshwater habitats, providing important context for interpreting the composition of paleocommunities. Measurements of the tendency of flowing water to disperse skeletal elements have been collected for diverse taxa, including mammals, turtles, and birds. However, these extant models may not be entirely appropriate for many morphologically distinct extinct lineages, such as non-avian dinosaurs. To expand the range of models available for evaluating the influence of hydrodynamic transport on the assembly of fossil deposits, we used a flow tank to measure the water speeds that disperse bones from a subadult American alligator (Alligator mississippiensis), with the skull and mandible tested in multiple starting orientations. Alligator bones are sorted into three main dispersal groups: early (vertebrae, most girdle elements), intermediate (ribs, most limb bones), and late (pubis, femur), with the skull and mandible varying between intermediate and late depending on orientation. Late dispersing elements tended to be heavy or very flat. These results can refine interpretations of the taphonomic context for deposits of fossil crocodylians and morphologically similar taxa (e.g., choristoderes, phytosaurs) and provide an additional comparative model for deposits of non-avian dinosaurs. Moreover, variation in hydrodynamic sorting across lineages highlights how distinctive anatomical features can influence the concentration of fossils, shaping understanding of assemblage composition and paleofaunal evolution.


Subject(s)
Alligators and Crocodiles , Dinosaurs , Animals , Fossils , Dinosaurs/anatomy & histology , Alligators and Crocodiles/anatomy & histology , Hydrodynamics , Geology , Skull/anatomy & histology , Birds/anatomy & histology , Biological Evolution , Mammals
10.
J Morphol ; 284(1): e21542, 2023 01.
Article in English | MEDLINE | ID: mdl-36533737

ABSTRACT

Osteoderms of eight extant and extinct species of crocodylomorphs are studied histologically and morphologically. Most osteoderms display the typical "crocodilian" structure with a woven-fibered matrix surrounded by an upper and a lower parallel fibered matrix. The dorsal ornamentation of those specimens consists of a pit-and-ridge structure, with corresponding remodeling mechanisms. However, an osteoderm of Iberosuchus, studied here for the first time, differs in being nearly devoid of ornamentation; moreover, it shows strong bundles of straight Sharpey's fibers perpendicular to the surface in its lateral and dorsal walls, along with a rough plywood-like structure in its basal plate. This suggests that this osteoderm was more deeply anchored within the dermis than the other osteoderms studied hitherto. This peculiar structure might have been linked to a terrestrial ecology and a specific thermoregulation strategy. Some other notosuchians in our sample do not exhibit ornamentation on their osteoderms, as opposed to neosuchians. Considering current interpretations of osteoderm function(s) in crocodilians, our observations are discussed in reference to possible ecophysiological peculiarities of Notosuchia in general, and Iberosuchus in particular.


Subject(s)
Alligators and Crocodiles , Bone and Bones , Animals , Alligators and Crocodiles/anatomy & histology , Bone and Bones/anatomy & histology , Fossils
11.
J Anat ; 242(4): 592-606, 2023 04.
Article in English | MEDLINE | ID: mdl-36484567

ABSTRACT

Major transformations in the locomotor system of archosaurs (a major clade of reptiles including birds, crocodiles, dinosaurs, and pterosaurs) were accompanied by significant modifications to ankle anatomy. How the evolution of such a complex multi-joint structure is related to shifts in ankle function and locomotor diversity across this clade remains unclear and weakly grounded in extant experimental data. Here, we used X-ray Reconstruction of Moving Morphology to reconstruct skeletal motion and quantify the sources of three-dimensional ankle mobility in the American alligator, a species that retains the ancestral archosaur ankle structure. We then applied the observed relationships between joint excursion and locomotor behaviors to predict ankle function in extinct archosaurs. High-resolution reconstructions of Alligator skeletal movement revealed previously unseen regionalized coordination among joints responsible for overall ankle rotation. Differences in joint contributions between maneuvers and steady walking parallel transitions in mobility inferred from the ankle structure of fossil taxa in lineages with more erect hind limb postures. Key ankle structures related to ankle mobility were identified in the alligator, which permitted the characterization of ancestral archosaur ankle function. Modifications of these structures provide morphological evidence for functional convergence among sublineages of bird-line and crocodylian-line archosaurs. Using the dynamic insight into the internal sources of Alligator ankle mobility and trends among locomotor modes, we trace anatomical shifts and propose a mechanistic hypothesis for the evolution of ankle structure and function across Archosauria.


Subject(s)
Alligators and Crocodiles , Dinosaurs , Animals , Alligators and Crocodiles/anatomy & histology , Ankle , Lower Extremity , Walking , Dinosaurs/anatomy & histology , Birds/anatomy & histology , Biological Evolution
12.
Anat Rec (Hoboken) ; 305(10): 2343-2352, 2022 10.
Article in English | MEDLINE | ID: mdl-35912969

ABSTRACT

Crocodilians inspire researchers and the public alike with their explosive hunting methodologies, distinct craniofacial and dental morphology, and resplendent fossil record. This special issue highlights recent advances in the biology and paleontology of this fascinating lineage of vertebrates. The authors in this volume bring crocodylians and their extinct ancestors to life using a variety of approaches including fieldwork, imaging, 3D modeling, developmental biology, physiological monitoring, dissection, and a host of other comparative methods. Our journey begins with early crocodylomorphs from the Triassic, carries us through the radiation of crocodyliforms during the rest of the Mesozoic Era, and finally celebrates the diversification development and biology of extant crocodylians. Crocodyliform science has grown appreciably the past few decades. New fossil species and genetic evidence continue to keep phylogenies and our understanding of relationships wavering in key places of the tree such as the relationships of the extinct marine thalattosuchians as well as still living species like gharials. The application of imaging approaches and 3D modeling to both preserved tissues as well as living specimens is now revealing patterns in brain and lung evolution and function, growth strategies, and feeding and locomotor behaviors across the lineage. Comparative anatomical studies are offering new data on genitals, cephalic venous drainage and thoracoabdominal pressures. The new discoveries found here only reveal there is far more work to be done to understand the biology and behavior responsible for the great radiation extinct suchians and their crocodylian descendants experienced during their conquest of Mesozoic and Tertiary ecosystems.


Subject(s)
Alligators and Crocodiles , Alligators and Crocodiles/anatomy & histology , Animals , Biological Evolution , Ecosystem , Fossils , Paleontology , Phylogeny
13.
J Anat ; 241(4): 981-1013, 2022 10.
Article in English | MEDLINE | ID: mdl-36037801

ABSTRACT

Although our knowledge on crocodylomorph palaeoneurology has experienced considerable growth in recent years, the neuroanatomy of many crocodylomorph taxa has yet to be studied. This is true for Australian taxa, where thus far only two crocodylian crocodylomorphs have had aspects of their neuroanatomy explored. Here, the neuroanatomy of the Australian mekosuchine crocodylian Trilophosuchus rackhami is described for the first time, which significantly increases our understanding on the palaeoneurology of Australian crocodylians. The palaeoneurological description is based on the taxon's holotype specimen (QMF16856), which was subjected to a µCT scan. Because of the exceptional preservation of QMF16856, most neuroanatomical elements could be digitally reconstructed and described in detail. Therefore, the palaeoneurological assessment presented here is hitherto the most in-depth study of this kind for an extinct Australian crocodylomorph. Trilophosuchus rackhami has a brain endocast with a distinctive morphology that is characterized by an acute dural peak over the hindbrain region. While the overall morphology of the brain endocast is unique to T. rackhami, it does share certain similarities with the notosuchian crocodyliforms Araripesuchus wegeneri and Sebecus icaeorhinus. The endosseous labyrinth displays a morphology that is typical for crocodylians, although a stand-out feature is the unusually tall common crus. Indeed, the common crus of T. rackhami has one of the greatest height ratios among crocodylomorphs with currently known endosseous labyrinths. The paratympanic pneumatic system of T. rackhami is greatly developed and most similar to those of the extant crocodylians Osteolaemus tetraspis and Paleosuchus palpebrosus. The observations on the neuroanatomy of T. rackhami are also discussed in the context of Crocodylomorpha. The comparative palaeoneurology reinforces previous evaluations that the neuroanatomy of crocodylomorphs is complex and diverse among species, and T. rackhami has a peculiar neuromorphology, particularly among eusuchian crocodyliforms.


Subject(s)
Alligators and Crocodiles , Fossils , Alligators and Crocodiles/anatomy & histology , Animals , Australia , Biological Evolution , Neuroanatomy , Skull/anatomy & histology
14.
Sci Rep ; 12(1): 9362, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672433

ABSTRACT

Pathologic eggs have been documented in the amniote eggs of birds, turtles, and dinosaurs. These eggs occur either in the form of one egg within another egg, a condition known as ovum-in-ovo or multi-shelled eggs showing additional pathological eggshell layer/s besides the primary shell layer. Though multi-shelled eggs and eggshells were previously recorded only  in reptiles and ovum-in-ovo eggs in birds, now it has been shown that multi-shelled egg pathology occurs in birds as well. However, no ovum-in-ovo egg has been reported  in dinosaurs or for that matter  in other reptiles. Here we describe an ovum-in-ovo pathological egg from a titanosaurid dinosaur nest from the Upper Cretaceous Lameta Formation of western Central India which makes it the first report of this pathology in dinosaurs. Birds possess a specialized uterus while other amniotes have a generalized uterus. However, alligators and crocodiles retain a specialized uterus like birds along with a reptilian mode of egg-laying. The discovery of ovum-in-ovo egg from a titanosaurid dinosaur nest suggests that their oviduct morphology was similar to that of birds opening up the possibility for sequential laying of eggs in this group of sauropod dinosaurs. This new find underscores that the ovum-in-ovo pathology is not unique to birds and sauropods share a reproductive behavior very similar to that of other archosaurs.


Subject(s)
Alligators and Crocodiles , Dinosaurs , Alligators and Crocodiles/anatomy & histology , Animals , Biological Evolution , Biology , Birds , Dinosaurs/anatomy & histology , Egg Shell/anatomy & histology , Female , Fossils , Ovum
15.
J Morphol ; 283(8): 1080-1093, 2022 08.
Article in English | MEDLINE | ID: mdl-35723180

ABSTRACT

The nasolacrimal apparatus (NLA) is a feature common to many sauropsid amniotes. It consists of an orbital Harderian gland (HG)whose secretions drain into the nasal cavity, in the vicinity of the vomeronasal organ (VNO), an accessory olfactory organ derived from the olfactory epithelium, and a connecting nasolacrimal duct (NLD). Though not all features are present in all posthatchling sauropsids (i.e., no VNO in crocodilomorphs), it is not clear if this system either never existed or failed to develop during the embryonic stages. The purpose of this study is to histologically describe the ontogeny of the NLA and the main olfactory organ in Alligator mississippiensis. Alligator specimens, from embryonic stage 9 to hatchling, were serially histologically sectioned, stained, photographed, and segmented into different tissues using Abobe Photoshop and then reconstructed using Amira for 3D analysis and quantitative nasal epithelial distribution. Though there was no evidence of a VNO, the rest of the NLA was present. The development of the NLA could be subdivided into four phases: (1) inception of NLD, (2) establishment of orbitonasal connections of NLD, (3) bone development, and (4) nasal cavity growth. Glands mature during this last phase and the nasal region rapidly grows, rotates, and is displaced anteriorly. The gradual proportional increase in nonolfactory epithelial distribution during ontogeny is consistent with the literature. Alligator embryonic nasal and NLD growth differs from that of mammals and squamates. The NLD is connected to the anterior third of the nasal region during its initial attachment, but as anterior nasal growth exceeds posterior growth, it is gradually displaced into the posterior third of the nasal region by hatching. It is unknown whether this is a derived archosaur condition or just another example of the morphological variation seen within sauropsid amniotes.


Subject(s)
Alligators and Crocodiles , Lacrimal Apparatus , Nasolacrimal Duct , Vomeronasal Organ , Alligators and Crocodiles/anatomy & histology , Animals , Mammals , Nasolacrimal Duct/anatomy & histology , Nose , Vomeronasal Organ/anatomy & histology
16.
Anat Rec (Hoboken) ; 305(10): 3016-3030, 2022 10.
Article in English | MEDLINE | ID: mdl-35723491

ABSTRACT

New imaging and biomechanical approaches have heralded a renaissance in our understanding of crocodylian anatomy. Here, we review a series of approaches in the preparation, imaging, and functional analysis of the jaw muscles of crocodylians. Iodine-contrast microCT approaches are enabling new insights into the anatomy of muscles, nerves, and other soft tissues of embryonic as well as adult specimens of alligators. These imaging data and other muscle modeling methods offer increased accuracy of muscle sizes and attachments without destructive methods like dissection. 3D modeling approaches and imaging data together now enable us to see and reconstruct 3D muscle architecture which then allows us to estimate 3D muscle resultants, but also measurements of pennation in ways not seen before. These methods have already revealed new information on the ontogeny, diversity, and function of jaw muscles and the heads of alligators and other crocodylians. Such approaches will lead to enhanced and accurate analyses of form, function, and evolution of crocodylians, their fossil ancestors and vertebrates in general.


Subject(s)
Alligators and Crocodiles , Iodine , Alligators and Crocodiles/anatomy & histology , Animals , Fossils , Jaw/anatomy & histology , Muscles/anatomy & histology , X-Ray Microtomography
17.
Sci Rep ; 12(1): 3358, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35233027

ABSTRACT

Biomechanical models and simulations of musculoskeletal function rely on accurate muscle parameters, such as muscle masses and lines of action, to estimate force production potential and moment arms. These parameters are often obtained through destructive techniques (i.e., dissection) in living taxa, frequently hindering the measurement of other relevant parameters from a single individual, thus making it necessary to combine multiple specimens and/or sources. Estimating these parameters in extinct taxa is even more challenging as soft tissues are rarely preserved in fossil taxa and the skeletal remains contain relatively little information about the size or exact path of a muscle. Here we describe a new protocol that facilitates the estimation of missing muscle parameters (i.e., muscle volume and path) for extant and extinct taxa. We created three-dimensional volumetric reconstructions for the hindlimb muscles of the extant Nile crocodile and extinct stem-archosaur Euparkeria, and the shoulder muscles of an extant gorilla to demonstrate the broad applicability of this methodology across living and extinct animal clades. Additionally, our method can be combined with surface geometry data digitally captured during dissection, thus facilitating downstream analyses. We evaluated the estimated muscle masses against physical measurements to test their accuracy in estimating missing parameters. Our estimated muscle masses generally compare favourably with segmented iodine-stained muscles and almost all fall within or close to the range of observed muscle masses, thus indicating that our estimates are reliable and the resulting lines of action calculated sufficiently accurately. This method has potential for diverse applications in evolutionary morphology and biomechanics.


Subject(s)
Alligators and Crocodiles , Biomechanical Phenomena/physiology , Hominidae , Models, Biological , Muscle, Skeletal , Alligators and Crocodiles/anatomy & histology , Alligators and Crocodiles/physiology , Animals , Fossils , Gorilla gorilla/anatomy & histology , Gorilla gorilla/physiology , Hominidae/anatomy & histology , Hominidae/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology
18.
Anat Rec (Hoboken) ; 305(10): 2980-3001, 2022 10.
Article in English | MEDLINE | ID: mdl-35202518

ABSTRACT

The lower jaw of early tetrapods is composed of several intramembranous ossifications. However, a tendency toward the independent reduction of the number of bones has been observed in the mandible of mammals, lepidosaurs, turtles, crocodiles, and birds. Regarding archosaurs, the coronoid and prearticular bones are interpreted to be lost during the evolution of stem-birds and stem-crocodiles, respectively, but the homology of the post-dentary bones retained in living pseudosuchians remains unclear. Here, we combine paleontological and embryological evidence to explore in detail the homology of the crocodylian post-dentary bones. We study the mandible embryogenesis on a sample of 71 embryos of Caiman and compare this pattern with the mandibular transformations observed across pseudosuchian evolution. In the pre-hatching ontogeny of caimans, at least five intramembranous ossification centers are formed along the margins of the internal mandibular fenestra (perifenestral centers) and, subsequently, merge to form the coronoid (three intramembranous centers), angular (one intramembranous center), and articular (one intramembranous and one chondral center). In the fossil record, an independent prearticular is lost around the base of Mesoeucrocodylia (optimized as reappearing in Thalattosuchia if they are placed within Neosuchia), and the coronoid is apomorphically lost in notosuchians. The integration of embryological and paleontological data indicates that most perifenestral centers are involved in the origin of the prearticular of non-mesoeucrocodylian pseudosuchians. These centers are rearranged during the evolution to contribute to different post-dentary bones in mesoeucrocodylians bolstering the idea that the coronoid and the articular of Crocodylia are not completely homologous to those of other diapsids.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Fossils/anatomy & histology , Mandible/anatomy & histology , Alligators and Crocodiles/embryology , Animals , Biological Evolution , Jaw/anatomy & histology , Mandible/embryology
19.
J Anat ; 241(1): 101-118, 2022 07.
Article in English | MEDLINE | ID: mdl-35118654

ABSTRACT

The last common ancestor of birds and crocodylians plus all of its descendants (clade Archosauria) dominated terrestrial Mesozoic ecosystems, giving rise to disparate body plans, sizes, and modes of locomotion. As in the fields of vertebrate morphology and paleontology more generally, studies of archosaur skeletal structure have come to depend on tools for acquiring, measuring, and exploring three-dimensional (3-D) digital models. Such models, in turn, form the basis for many analyses of musculoskeletal function. A set of shared conventions for describing 3-D pose (joint or limb configuration) and 3-D kinematics (change in pose through time) is essential for fostering comparison of posture/movement among such varied species, as well as for maximizing communication among scientists. Following researchers in human biomechanics, we propose a standard methodological approach for measuring the relative position and orientation of the major segments of the archosaur pelvis and hindlimb in 3-D. We describe the construction of anatomical and joint coordinate systems using the extant guineafowl and alligator as examples. Our new standards are then applied to three extinct taxa sampled from the wider range of morphological, postural, and kinematic variation that has arisen across >250 million years of archosaur evolution. These proposed conventions, and the founding principles upon which they are based, can also serve as starting points for measuring poses between elements within a hindlimb segment, for establishing coordinate systems in the forelimb and axial skeleton, or for applying our archosaurian system more broadly to different vertebrate clades.


Subject(s)
Alligators and Crocodiles , Biological Evolution , Alligators and Crocodiles/anatomy & histology , Animals , Biomechanical Phenomena , Ecosystem , Hindlimb/anatomy & histology , Humans , Lower Extremity , Vertebrates
20.
Anat Rec (Hoboken) ; 305(10): 2654-2669, 2022 10.
Article in English | MEDLINE | ID: mdl-34428341

ABSTRACT

Metriorhynchoid thalattosuchians were a marine clade of Mesozoic crocodylomorphs that evolved from semi-aquatic, "gharial"-like species into the obligately pelagic subclade Metriorhynchidae. To explore whether the sensory and physiological demands of underwater life necessitates a shift in rostral anatomy, both in neurology and vasculature, we investigate the trigeminal innervation and potential somatosensory abilities of metriorhynchoids by digitally segmenting the rostral neurovascular canals in CT scans of 10 extant and extinct crocodyliforms. The dataset includes the terrestrial, basal crocodyliform Protosuchus haughtoni, two semi-aquatic basal metriorhynchoids, four pelagic metriorhynchids and three extant, semi-aquatic crocodylians. In the crocodylian and basal metriorhynchoid taxa, we find three main neurovascular channels running parallel to one another posteroanteriorly down the length of the snout, whereas in metriorhynchids there are two, and in P. haughtoni only one. Crocodylians appear to be unique in their extensive trigeminal innervation, which is used to supply the integumentary sensory organs (ISOs) involved with their facial somatosensory abilities. Crocodylians have a far higher number of foramina on the maxillary bones than either metriorhynchoids or P. haughtoni, suggesting that the fossil taxa lacked the somatosensory abilities seen in extant species. We posit that the lack of ISO osteological correlates in metriorhynchoids is due to their basal position in Crocodyliformes, rather than a pelagic adaptation. This is reinforced by the hypothesis that extant crocodyliforms, and possibly some neosuchian clades, underwent a long "nocturnal bottleneck"-hinting that their complex network of ISOs evolved in Neosuchia, as a sensory trade-off to compensate for poorer eyesight.


Subject(s)
Alligators and Crocodiles , Biological Evolution , Alligators and Crocodiles/anatomy & histology , Animals , Environment , Fossils , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...