Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Autophagy ; 18(8): 1801-1821, 2022 08.
Article in English | MEDLINE | ID: mdl-34822318

ABSTRACT

Alphaherpesvirus infection results in severe health consequences in a wide range of hosts. USPs are the largest subfamily of deubiquitinating enzymes that play critical roles in immunity and other cellular functions. To investigate the role of USPs in alphaherpesvirus replication, we assessed 13 USP inhibitors for PRV replication. Our data showed that all the tested compounds inhibited PRV replication, with the USP14 inhibitor b-AP15 exhibiting the most dramatic effect. Ablation of USP14 also influenced PRV replication, whereas replenishment of USP14 in USP14 null cells restored viral replication. Although inhibition of USP14 induced the K63-linked ubiquitination of PRV VP16 protein, its degradation was not dependent on the proteasome. USP14 directly bound to ubiquitin chains on VP16 through its UBL domain during the early stage of viral infection. Moreover, USP14 inactivation stimulated EIF2AK3/PERK- and ERN1/IRE1-mediated signaling pathways, which were responsible for VP16 degradation through SQSTM1/p62-mediated selective macroautophagy/autophagy. Ectopic expression of non-ubiquitinated VP16 fully rescued PRV replication. Challenge of mice with b-AP15 activated ER stress and autophagy and inhibited PRV infection in vivo. Our results suggested that USP14 was a potential therapeutic target to treat alphaherpesvirus-induced infectious diseases.Abbreviations ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; ATG5: autophagy related 5; ATG12: autophagy related 12; CCK-8: cell counting kit-8; Co-IP: co-immunoprecipitation; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR associated system 9; DDIT3/CHOP: DNA-damage inducible transcript 3; DNAJB9/ERdj4: DnaJ heat shock protein family (Hsp40) member B9; DUBs: deubiquitinases; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EP0: ubiquitin E3 ligase ICP0; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum (ER) to nucleus signaling 1; FOXO1: forkhead box O1; FRET: Förster resonance energy transfer; HSPA5/BiP: heat shock protein 5; HSV: herpes simplex virus; IE180: transcriptional regulator ICP4; MAP1LC3/LC3: microtube-associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PPP1R15A/GADD34: protein phosphatase 1, regulatory subunit 15A; PRV: pseudorabies virus; PRV gB: PRV glycoprotein B; PRV gE: PRV glycoprotein E; qRT-PCR: quantitative real-time polymerase chain reaction; sgRNA: single guide RNA; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: tissue culture infective dose; UB: ubiquitin; UBA: ubiquitin-associated domain; UBL: ubiquitin-like domain; UL9: DNA replication origin-binding helicase; UPR: unfolded protein response; USPs: ubiquitin-specific proteases; VHS: virion host shutoff; VP16: viral protein 16; XBP1: X-box binding protein 1; XBP1s: small XBP1; XBP1(t): XBP1-total.


Subject(s)
Alphaherpesvirinae , Autophagy , Endoplasmic Reticulum Stress , Herpes Simplex Virus Protein Vmw65 , Ubiquitin Thiolesterase , Alphaherpesvirinae/pathogenicity , Alphaherpesvirinae/physiology , Animals , Cell Proliferation , Herpes Simplex Virus Protein Vmw65/metabolism , Macroautophagy , Mice , Sequestosome-1 Protein , Ubiquitin Thiolesterase/metabolism
2.
J Virol ; 96(4): e0151021, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34935440

ABSTRACT

Recent studies have demonstrated that the signaling activity of the cytosolic pathogen sensor retinoic acid-inducible gene-I (RIG-I) is modulated by a variety of posttranslational modifications (PTMs) to fine-tune the antiviral type I interferon (IFN) response. Whereas K63-linked ubiquitination of the RIG-I caspase activation and recruitment domains (CARDs) catalyzed by TRIM25 or other E3 ligases activates RIG-I, phosphorylation of RIG-I at S8 and T170 represses RIG-I signal transduction by preventing the TRIM25-RIG-I interaction and subsequent RIG-I ubiquitination. While strategies to suppress RIG-I signaling by interfering with its K63-polyubiquitin-dependent activation have been identified for several viruses, evasion mechanisms that directly promote RIG-I phosphorylation to escape antiviral immunity are unknown. Here, we show that the serine/threonine (Ser/Thr) kinase US3 of herpes simplex virus 1 (HSV-1) binds to RIG-I and phosphorylates RIG-I specifically at S8. US3-mediated phosphorylation suppressed TRIM25-mediated RIG-I ubiquitination, RIG-I-MAVS binding, and type I IFN induction. We constructed a mutant HSV-1 encoding a catalytically-inactive US3 protein (K220A) and found that, in contrast to the parental virus, the US3 mutant HSV-1 was unable to phosphorylate RIG-I at S8 and elicited higher levels of type I IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines in a RIG-I-dependent manner. Finally, we show that this RIG-I evasion mechanism is conserved among the alphaherpesvirus US3 kinase family. Collectively, our study reveals a novel immune evasion mechanism of herpesviruses in which their US3 kinases phosphorylate the sensor RIG-I to keep it in the signaling-repressed state. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in the majority of the human population worldwide. HSV-1 occasionally reactivates to produce infectious virus and to facilitate dissemination. While often remaining subclinical, both primary infection and reactivation occasionally cause debilitating eye diseases, which can lead to blindness, as well as life-threatening encephalitis and newborn infections. To identify new therapeutic targets for HSV-1-induced diseases, it is important to understand the HSV-1-host interactions that may influence infection outcome and disease. Our work uncovered direct phosphorylation of the pathogen sensor RIG-I by alphaherpesvirus-encoded kinases as a novel viral immune escape strategy and also underscores the importance of RNA sensors in surveilling DNA virus infection.


Subject(s)
DEAD Box Protein 58/metabolism , Herpesvirus 1, Human/immunology , Immune Evasion , Protein Serine-Threonine Kinases/metabolism , Receptors, Immunologic/metabolism , Viral Proteins/metabolism , Alphaherpesvirinae/genetics , Alphaherpesvirinae/metabolism , Alphaherpesvirinae/physiology , Amino Acid Sequence , DEAD Box Protein 58/chemistry , HEK293 Cells , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Humans , Immunity, Innate , Interferon Type I/metabolism , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/genetics , Receptors, Immunologic/chemistry , Viral Proteins/genetics
3.
Front Immunol ; 12: 743466, 2021.
Article in English | MEDLINE | ID: mdl-34925320

ABSTRACT

In the process of infecting the host, alphaherpesviruses have derived a series of adaptation and survival strategies, such as latent infection, autophagy and immune evasion, to survive in the host environment. Infected cell protein 22 (ICP22) or its homologue immediate early protein 63 (IE63) is a posttranslationally modified multifunctional viral regulatory protein encoded by all alphaherpesviruses. In addition to playing an important role in the efficient use of host cell RNA polymerase II, it also plays an important role in the defense process of the virus overcoming the host immune system. These two effects of ICP22/IE63 are important survival strategies for alphaherpesviruses. In this review, we summarize the complex mechanism by which the ICP22 protein regulates the transcription of alphaherpesviruses and their host genes and the mechanism by which ICP22/IE63 participates in immune escape. Reviewing these mechanisms will also help us understand the pathogenesis of alphaherpesvirus infections and provide new strategies to combat these viral infections.


Subject(s)
Alphaherpesvirinae/physiology , Gene Expression Regulation, Viral/physiology , Immediate-Early Proteins/immunology , Immune Evasion/physiology , Animals , Herpesviridae Infections , Humans , Immediate-Early Proteins/metabolism
4.
Viruses ; 13(9)2021 09 17.
Article in English | MEDLINE | ID: mdl-34578438

ABSTRACT

An evolutionary arms race occurs between viruses and hosts. Hosts have developed an array of antiviral mechanisms aimed at inhibiting replication and spread of viruses, reducing their fitness, and ultimately minimising pathogenic effects. In turn, viruses have evolved sophisticated counter-measures that mediate evasion of host defence mechanisms. A key aspect of host defences is the ability to differentiate between self and non-self. Previous studies have demonstrated significant suppression of CpG and UpA dinucleotide frequencies in the coding regions of RNA and small DNA viruses. Artificially increasing these dinucleotide frequencies results in a substantial attenuation of virus replication, suggesting dinucleotide bias could facilitate recognition of non-self RNA. The interferon-inducible gene, zinc finger antiviral protein (ZAP) is the host factor responsible for sensing CpG dinucleotides in viral RNA and restricting RNA viruses through direct binding and degradation of the target RNA. Herpesviruses are large DNA viruses that comprise three subfamilies, alpha, beta and gamma, which display divergent CpG dinucleotide patterns within their genomes. ZAP has recently been shown to act as a host restriction factor against human cytomegalovirus (HCMV), a beta-herpesvirus, which in turn evades ZAP detection by suppressing CpG levels in the major immediate-early transcript IE1, one of the first genes expressed by the virus. While suppression of CpG dinucleotides allows evasion of ZAP targeting, synonymous changes in nucleotide composition that cause genome biases, such as low GC content, can cause inefficient gene expression, especially in unspliced transcripts. To maintain compact genomes, the majority of herpesvirus transcripts are unspliced. Here we discuss how the conflicting pressures of ZAP evasion, the need to maintain compact genomes through the use of unspliced transcripts and maintaining efficient gene expression may have shaped the evolution of herpesvirus genomes, leading to characteristic CpG dinucleotide patterns.


Subject(s)
Alphaherpesvirinae/genetics , Dinucleoside Phosphates/metabolism , Genome, Viral , Herpesviridae/genetics , RNA-Binding Proteins/metabolism , Alphaherpesvirinae/metabolism , Alphaherpesvirinae/physiology , Animals , Betaherpesvirinae/genetics , Betaherpesvirinae/metabolism , Betaherpesvirinae/physiology , Evolution, Molecular , Gammaherpesvirinae/genetics , Gammaherpesvirinae/metabolism , Gammaherpesvirinae/physiology , Gene Expression , Herpesviridae/metabolism , Herpesviridae/physiology , Host-Pathogen Interactions , Humans , Interferons/metabolism , RNA Splicing , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/chemistry , Signal Transduction , Viral Proteins/metabolism
5.
Curr Issues Mol Biol ; 42: 551-604, 2021.
Article in English | MEDLINE | ID: mdl-33622984

ABSTRACT

Alphaherpesvirus tegument assembly, secondary envelopment, and exocytosis processes are understood in broad strokes, but many of the individual steps in this pathway, and their molecular and cell biological details, remain unclear. Viral tegument and membrane proteins form an extensive and robust protein interaction network, such that essentially any structural protein can be deleted, yet particles are still assembled, enveloped, and released from infected cells. We conceptually divide the tegument proteins into three groups: conserved inner and outer teguments that participate in nucleocapsid and membrane contacts, respectively; and 'middle' tegument proteins, consisting of some of the most abundant tegument proteins that serve as central hubs in the protein interaction network, yet which are unique to the alphaherpesviruses. We then discuss secondary envelopment, reviewing the tegument-membrane contacts and cellular factors that drive this process. We place this viral process in the context of cell biological processes, including the endocytic pathway, ESCRT machinery, autophagy, secretory pathway, intracellular transport, and exocytosis mechanisms. Finally, we speculate about potential relationships between cellular defenses against oligomerizing or aggregating membrane proteins and the envelopment and egress of viruses.


Subject(s)
Exocytosis , Host-Pathogen Interactions , Virus Assembly , Virus Physiological Phenomena , Virus Release , Alphaherpesvirinae/physiology , Autophagy , Biological Transport , Endosomal Sorting Complexes Required for Transport/metabolism , Humans
6.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33361431

ABSTRACT

Latent and recurrent productive infection of long-living cells, such as neurons, enables alphaherpesviruses to persist in their host populations. Still, the viral factors involved in these events remain largely obscure. Using a complementation assay in compartmented primary peripheral nervous system (PNS) neuronal cultures, we previously reported that productive replication of axonally delivered genomes is facilitated by pseudorabies virus (PRV) tegument proteins. Here, we sought to unravel the role of tegument protein UL13 in this escape from silencing. We first constructed four new PRV mutants in the virulent Becker strain using CRISPR/Cas9-mediated gene replacement: (i) PRV Becker defective for UL13 expression (PRV ΔUL13), (ii) PRV where UL13 is fused to eGFP (PRV UL13-eGFP), and two control viruses (iii and iv) PRV where VP16 is fused with mTurquoise at either the N terminus (PRV mTurq-VP16) or the C terminus (PRV VP16-mTurq). Live-cell imaging of PRV capsids showed efficient retrograde transport after axonal infection with PRV UL13-eGFP, although we did not detect dual-color particles. However, immunofluorescence staining of particles in mid-axons indicated that UL13 might be cotransported with PRV capsids in PNS axons. Superinfecting nerve cell bodies with UV-inactivated PRV ΔUL13 failed to efficiently promote escape from genome silencing compared to UV-PRV wild type and UV-PRV UL13-eGFP superinfection. However, UL13 does not act directly in the escape from genome silencing, as adeno-associated virus (AAV)-mediated UL13 expression in neuronal cell bodies was not sufficient to provoke escape from genome silencing. Based on this, we suggest that UL13 may contribute to initiation of productive infection through phosphorylation of other tegument proteins.IMPORTANCE Alphaherpesviruses have mastered various strategies to persist in an immunocompetent host, including the induction of latency and reactivation in peripheral nervous system (PNS) ganglia. We recently discovered that the molecular mechanism underlying escape from latency by the alphaherpesvirus pseudorabies virus (PRV) relies on a structural viral tegument protein. This study aimed at unravelling the role of tegument protein UL13 in PRV escape from latency. First, we confirmed the use of CRISPR/Cas9-mediated gene replacement as a versatile tool to modify the PRV genome. Next, we used our new set of viral mutants and AAV vectors to conclude the indirect role of UL13 in PRV escape from latency in primary neurons, along with its spatial localization during retrograde capsid transport in axons. Based on these findings, we speculate that UL13 phosphorylates one or more tegument proteins, thereby priming these putative proteins to induce escape from genome silencing.


Subject(s)
Gene Silencing , Genome, Viral/genetics , Herpesvirus 1, Suid/physiology , Protein Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , Alphaherpesvirinae/physiology , Animals , Axonal Transport , CRISPR-Cas Systems , Capsid/metabolism , Cells, Cultured , Mutation , Neurons/metabolism , Neurons/virology , Protein Serine-Threonine Kinases/genetics , Swine , Viral Proteins/genetics , Virus Latency
7.
Viruses ; 12(12)2020 11 26.
Article in English | MEDLINE | ID: mdl-33256093

ABSTRACT

Alphaherpesviruses cause various diseases and establish life-long latent infections in humans and animals. These viruses encode multiple viral proteins and miRNAs to evade the host immune response, including both innate and adaptive immunity. Alphaherpesviruses evolved highly advanced immune evasion strategies to be able to replicate efficiently in vivo and produce latent infections with recurrent outbreaks. This review describes the immune evasion strategies of alphaherpesviruses, especially against cytotoxic host immune responses. Considering these strategies, it is important to evaluate whether the immune evasion mechanisms in cell cultures are applicable to viral propagation and pathogenicity in vivo. This review focuses on cytotoxic T lymphocytes (CTLs), natural killer cells (NK cells), and natural killer T cells (NKT cells), which are representative immune cells that directly damage virus-infected cells. Since these immune cells recognize the ligands expressed on their target cells via specific activating and/or inhibitory receptors, alphaherpesviruses make several ligands that may be targets for immune evasion. In addition, alphaherpesviruses suppress the infiltration of CTLs by downregulating the expression of chemokines at infection sites in vivo. Elucidation of the alphaherpesvirus immune evasion mechanisms is essential for the development of new antiviral therapies and vaccines.


Subject(s)
Alphaherpesvirinae/physiology , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Host-Pathogen Interactions/immunology , Immune Evasion , Immunity, Cellular , Animals , Antigen Presentation , Biomarkers , Cytokines/metabolism , Herpesviridae Infections/metabolism , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Host-Pathogen Interactions/genetics , Humans , Lymphocytes/immunology , Lymphocytes/metabolism
8.
Infect Dis Clin North Am ; 34(2): 311-339, 2020 06.
Article in English | MEDLINE | ID: mdl-32444012

ABSTRACT

Herpesviruses such as herpes simplex virus (HSV) type 1 and 2, varicella-zoster virus (VZV), and cytomegalovirus (CMV) maintain lifelong latency in the host after primary infection and can reactivate periodically either as asymptomatic viral shedding or as clinical disease. Immunosuppression, including biologic therapy, may increase frequency and severity of herpesvirus reactivation and infection. Licensed biologics are reviewed regarding their risks of potentiating HSV, VZV, and CMV reactivation and infection. Approaches to prophylaxis against HSV, VZV, and CMV infection or reactivation are discussed.


Subject(s)
Alphaherpesvirinae/physiology , Biological Products/adverse effects , Herpesviridae Infections/chemically induced , Alphaherpesvirinae/drug effects , Biological Products/pharmacology , Herpesviridae Infections/virology , Herpesvirus 1, Human/physiology , Herpesvirus 2, Human/physiology , Herpesvirus 3, Human/physiology , Humans , Immunosuppressive Agents/adverse effects , Virus Activation , Virus Latency/drug effects
9.
Viruses ; 12(4)2020 04 10.
Article in English | MEDLINE | ID: mdl-32290097

ABSTRACT

Herpesvirus envelope glycoprotein B (gB) is one of the best-documented extracellular vesicle (EVs)-incorporated viral proteins. Regarding the sequence and structure conservation between gB homologs, we asked whether bovine herpesvirus-1 (BoHV-1) and pseudorabies virus (PRV)-encoded gB share the property of herpes simplex-1 (HSV-1) gB to be trafficked to EVs and affect major histocompatibility complex (MHC) class II. Our data highlight some conserved and differential features of the three gBs. We demonstrate that mature, fully processed BoHV-1 and PRV gBs localize to EVs isolated from constructed stable cell lines and EVs-enriched fractions from virus-infected cells. gB also shares the ability to co-localize with CD63 and MHC II in late endosomes. However, we report here a differential effect of the HSV-1, BoHV-1, and PRV glycoprotein on the surface MHC II levels, and MHC II loading to EVs in stable cell lines, which may result from their adverse ability to bind HLA-DR, with PRV gB being the most divergent. BoHV-1 and HSV-1 gB could retard HLA-DR exports to the plasma membrane. Our results confirm that the differential effect of gB on MHC II may require various mechanisms, either dependent on its complex formation or on inducing general alterations to the vesicular transport. EVs from virus-infected cells also contained other viral glycoproteins, like gD or gE, and they were enriched in MHC II. As shown for BoHV-1 gB- or BoHV-1-infected cell-derived vesicles, those EVs could bind anti-virus antibodies in ELISA, which supports the immunoregulatory potential of alphaherpesvirus gB.


Subject(s)
Alphaherpesvirinae/physiology , Extracellular Vesicles/metabolism , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Histocompatibility Antigens Class II/metabolism , Viral Envelope Proteins/metabolism , Animals , Binding Sites , Cell Fractionation , Cell Line , Cell Membrane/metabolism , Flow Cytometry , Gene Expression , Herpesviridae Infections/immunology , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/immunology , Host-Pathogen Interactions , Humans , Mice , Protein Binding , Protein Transport , Viral Envelope Proteins/chemistry
10.
J Virol ; 94(8)2020 03 31.
Article in English | MEDLINE | ID: mdl-31996426

ABSTRACT

ß-Defensins protect the respiratory tract against the myriad of microbial pathogens entering the airways with each breath. However, this potentially hostile environment is known to serve as a portal of entry for herpesviruses. The lack of suitable respiratory model systems has precluded understanding of how herpesvirus virions overcome the abundant mucosal ß-defensins during host invasion. We demonstrate how a central alphaherpesvirus, equine herpesvirus type 1 (EHV1), actually exploits ß-defensins to invade its host and initiate viral spread. The equine ß-defensins (eBDs) eBD1, -2, and -3 were produced and secreted along the upper respiratory tract. Despite the marked antimicrobial action of eBD2 and -3 against many bacterial and viral pathogens, EHV1 virions were resistant to eBDs through the action of the viral glycoprotein M envelope protein. Pretreatment of EHV1 virions with eBD2 and -3 increased the subsequent infection of rabbit kidney (RK13) cells, which was dependent on viral N-linked glycans. eBD2 and -3 also caused the aggregation of EHV1 virions on the cell surface of RK13 cells. Pretreatment of primary equine respiratory epithelial cells (EREC) with eBD1, -2, and -3 resulted in increased EHV1 virion binding to and infection of these cells. EHV1-infected EREC, in turn, showed an increased production of eBD2 and -3 compared to that seen in mock- and influenza virus-infected EREC. In addition, these eBDs attracted leukocytes, which are essential for EHV1 dissemination and which serve as latent infection reservoirs. These novel mechanisms provide new insights into herpesvirus respiratory tract infection and pathogenesis.IMPORTANCE How herpesviruses circumvent mucosal defenses to promote infection of new hosts through the respiratory tract remains unknown due to a lack of host-specific model systems. We used the alphaherpesvirus equine herpesvirus type 1 (EHV1) and equine respiratory tissues to decipher this key event in general alphaherpesvirus pathogenesis. In contrast to several respiratory viruses and bacteria, EHV1 resisted potent antimicrobial equine ß-defensins (eBDs) eBD2 and eBD3 by the action of glycoprotein M. Instead, eBD2 and -3 facilitated EHV1 particle aggregation and infection of rabbit kidney (RK13) cells. In addition, virion binding to and subsequent infection of respiratory epithelial cells were increased upon preincubation of these cells with eBD1, -2, and -3. Infected cells synthesized eBD2 and -3, promoting further host cell invasion by EHV1. Finally, eBD1, -2, and -3 recruited leukocytes, which are well-known EHV1 dissemination and latency vessels. The exploitation of host innate defenses by herpesviruses during the early phase of host colonization indicates that highly specialized strategies have developed during host-pathogen coevolution.


Subject(s)
Alphaherpesvirinae/physiology , Anti-Infective Agents/pharmacology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , beta-Defensins/pharmacology , Animals , Anti-Infective Agents/adverse effects , Cell Line , Epithelial Cells/virology , Herpesviridae Infections/virology , Herpesvirus 1, Equid , Horse Diseases/virology , Horses , Host-Pathogen Interactions/physiology , Immune Evasion , Rabbits , Respiratory Tract Infections/drug therapy , Viral Envelope Proteins , beta-Defensins/adverse effects
11.
J Neurovirol ; 26(2): 297-309, 2020 04.
Article in English | MEDLINE | ID: mdl-31502208

ABSTRACT

Meeting Report on the 9th Annual Symposium of the Colorado Alphaherpesvirus Latency Society (CALS) held on May 8-11, 2019, in Vail, CO.


Subject(s)
Alphaherpesvirinae/physiology , Herpesviridae Infections/virology , Virus Latency , Colorado , Humans , Societies, Medical
12.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31748393

ABSTRACT

Viruses may hijack glycolysis, glutaminolysis, or fatty acid ß-oxidation of host cells to provide the energy and macromolecules required for efficient viral replication. Marek's disease virus (MDV) causes a deadly lymphoproliferative disease in chickens and modulates metabolism of host cells. Metabolic analysis of MDV-infected chicken embryonic fibroblasts (CEFs) identified elevated levels of metabolites involved in glutamine catabolism, such as glutamic acid, alanine, glycine, pyrimidine, and creatine. In addition, our results demonstrate that glutamine uptake is elevated by MDV-infected cells in vitro Although glutamine, but not glucose, deprivation significantly reduced cell viability in MDV-infected cells, both glutamine and glucose were required for virus replication and spread. In the presence of minimum glutamine requirements based on optimal cell viability, virus replication was partially rescued by the addition of the tricarboxylic acid (TCA) cycle intermediate, α-ketoglutarate, suggesting that exogenous glutamine is an essential carbon source for the TCA cycle to generate energy and macromolecules required for virus replication. Surprisingly, the inhibition of carnitine palmitoyltransferase 1a (CPT1a), which is elevated in MDV-infected cells, by chemical (etomoxir) or physiological (malonyl-CoA) inhibitors, did not reduce MDV replication, indicating that MDV replication does not require fatty acid ß-oxidation. Taken together, our results demonstrate that MDV infection activates anaplerotic substrate from glucose to glutamine to provide energy and macromolecules required for MDV replication, and optimal MDV replication occurs when the cells do not depend on mitochondrial ß-oxidation.IMPORTANCE Viruses can manipulate host cellular metabolism to provide energy and essential biosynthetic requirements for efficient replication. Marek's disease virus (MDV), an avian alphaherpesvirus, causes a deadly lymphoma in chickens and hijacks host cell metabolism. This study provides evidence for the importance of glycolysis and glutaminolysis, but not fatty acid ß-oxidation, as an essential energy source for the replication and spread of MDV. Moreover, it suggests that in MDV infection, as in many tumor cells, glutamine is used for generation of energetic and biosynthetic requirements of the MDV infection, while glucose is used biosynthetically.


Subject(s)
Glucose/metabolism , Glutamine/metabolism , Mardivirus/physiology , Alphaherpesvirinae/metabolism , Alphaherpesvirinae/physiology , Animals , Chick Embryo , Chickens/virology , Glucose/physiology , Glutamine/physiology , Glycolysis/physiology , Herpesvirus 2, Gallid/metabolism , Herpesvirus 2, Gallid/physiology , Mardivirus/metabolism , Marek Disease/metabolism , Marek Disease/virology , Viral Proteins/metabolism , Virus Replication/physiology
13.
Viruses ; 11(12)2019 12 17.
Article in English | MEDLINE | ID: mdl-31861082

ABSTRACT

The Alphaherpesvirinae include the neurotropic pathogens herpes simplex virus and varicella zoster virus of humans and pseudorabies virus of swine. These viruses establish lifelong latency in the nuclei of peripheral ganglia, but utilize the peripheral tissues those neurons innervate for productive replication, spread, and transmission. Delivery of virions from replicative pools to the sites of latency requires microtubule-directed retrograde axonal transport from the nerve terminus to the cell body of the sensory neuron. As a corollary, during reactivation newly assembled virions must travel along axonal microtubules in the anterograde direction to return to the nerve terminus and infect peripheral tissues, completing the cycle. Neurotropic alphaherpesviruses can therefore exploit neuronal microtubules and motors for long distance axonal transport, and alternate between periods of sustained plus end- and minus end-directed motion at different stages of their infectious cycle. This review summarizes our current understanding of the molecular details by which this is achieved.


Subject(s)
Alphaherpesvirinae/physiology , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Host-Pathogen Interactions , Microtubules/metabolism , Nervous System Diseases/metabolism , Nervous System Diseases/virology , Alphaherpesvirinae/ultrastructure , Animals , Axons/metabolism , Biomarkers , Capsid/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Disease Susceptibility , Exocytosis , Humans , Life Cycle Stages , Neurons/metabolism , Neurons/virology , Protein Transport
14.
Antiviral Res ; 171: 104606, 2019 11.
Article in English | MEDLINE | ID: mdl-31520682

ABSTRACT

Nucleoside analogues have been the cornerstone of clinical treatment of herpesvirus infections since the 1970s. However, severe side effects and emergence of drug resistant viruses raise the need for alternative treatment options. We recently investigated the broad and strong antiherpesviral activity of the optimized artesunate derivative TF27 in vitro. TF27 efficiently inhibited replication of the highly oncogenic Marek's disease virus (MDV), a virus that infects chickens, causes deadly lymphomas and threatens poultry populations worldwide. In this study, we used this natural virus-host model for herpesvirus-induced cancer by infecting chickens with MDV, and evaluated the protective efficacy of TF27 and the nucleoside analogue valganciclovir (VGCV) on virus replication and tumorigenesis. We could demonstrate that both drugs reduced viral load in the blood and prevented tumor development in a large portion of the animals. Antiviral treatment also had a positive impact on body weight gain, while no negative compound-associated side effects were observed. This research provides the first evidence that the artesunate derivative TF27 and VGCV can be used in avian species and that they inhibit MDV replication and tumorigenesis. In addition, our study paves the way for promising approaches in future antiherpesviral drug development.


Subject(s)
Alphaherpesvirinae/drug effects , Alphaherpesvirinae/physiology , Antiviral Agents/pharmacology , Artesunate/pharmacology , Herpesviridae Infections/veterinary , Poultry Diseases/virology , Virus Replication/drug effects , Animals , Artesunate/analogs & derivatives , Cell Transformation, Viral , Incidence , Neoplasms/veterinary , Poultry Diseases/drug therapy , Poultry Diseases/metabolism
15.
Article in English | MEDLINE | ID: mdl-30711046

ABSTRACT

Latent infection is a common mechanism used by several alphaherpesviruses to persist in their host but it is not clear whether this mechanism is also triggered in heterologous infections. Cross-species infections have been documented repeatedly for alphaherpesviruses of ruminants, a group of closely related viruses. Herewith we report latent infection with bubaline alphaherpesvirus 1 (BuHV-1) in experimentally infected goats and subsequent virus reactivation after treatment with dexamethasone (DMS) at 10 months after infection. After DMS treatment, the virus was isolated in one such animal in the nasal swabs from day 3 to 9 post treatment and in the ocular swabs at day 6. The goat was euthanized 48 days after DMS treatment and viral DNA was detected by PCR in the trigeminal ganglia and in two cervical ganglia. Additionally, BuHV-1 DNA was detected by PCR in the trigeminal ganglia of the other 3 goats.


Subject(s)
Alphaherpesvirinae/physiology , Animal Diseases/virology , Herpesviridae Infections/veterinary , Virus Activation , Virus Latency , Alphaherpesvirinae/classification , Animal Diseases/immunology , Animals , Cell Line , Goats , Neutralization Tests , Viral Load
16.
Mol Immunol ; 106: 87-98, 2019 02.
Article in English | MEDLINE | ID: mdl-30593933

ABSTRACT

TLR21 can recognize unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODN) and activates NF-κB immune signaling pathway. However, the function of TLR21 in duck remains largely unclear. Here, the complete duck TLR21 (duTLR21) cDNA was cloned from Cherry Valley duck for the first time, and its immune response was preliminarily studied. Tissue specificity analysis showed duTLR21 was higher expressed in the peripheral blood, spleen, bursa of Fabricius and cecum. The expression of duTLR21 was significantly upregulated after stimulation with CpG-ODN or duck plague virus (DPV), but not Tembusu virus (TMUV), LPS or Poly (I:C). In addition, the transfection of DEF with duTLR21 stimulated by CpG-ODN activated NF-κB, through this signal pathway, the transcription of IL-1ß, IL-6 and IFN-α were promoted, whereas knockdown of duTLR21 impaired the transcription of these genes. Furthermore, the overexpression of duTLR21 inhibited the replication of the DPV and the knockdown of duTLR21 by shRNA significantly promoted DPV replication in vitro. Altogether, these results indicate that duTLR21 can be activated by CpG-ODN, which mediates activation of NF-κB signaling pathway, and plays an important role in the host defence of DPV infection.


Subject(s)
Alphaherpesvirinae/physiology , Avian Proteins/immunology , Ducks/immunology , Herpesviridae Infections/immunology , NF-kappa B/immunology , Oligodeoxyribonucleotides/pharmacokinetics , Poultry Diseases/immunology , Signal Transduction/drug effects , Toll-Like Receptors/immunology , Virus Replication/drug effects , Animals , Avian Proteins/agonists , Avian Proteins/genetics , Cytokines/genetics , Cytokines/immunology , Ducks/genetics , Ducks/virology , Herpesviridae Infections/genetics , Herpesviridae Infections/pathology , Herpesviridae Infections/veterinary , NF-kappa B/genetics , Poultry Diseases/genetics , Poultry Diseases/pathology , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptors/agonists , Toll-Like Receptors/genetics , Virus Replication/genetics , Virus Replication/immunology
17.
J Neurovirol ; 24(6): 797-812, 2018 12.
Article in English | MEDLINE | ID: mdl-30414047

ABSTRACT

Meeting Report on the 8th Annual Symposium of the Colorado Alphaherpesvirus Latency Society (CALS), held on May 16-19, 2018, in Vail, Colorado.


Subject(s)
Alphaherpesvirinae/physiology , Herpesviridae Infections/virology , Virus Latency/physiology , Colorado , Humans
18.
Adv Exp Med Biol ; 1045: 85-102, 2018.
Article in English | MEDLINE | ID: mdl-29896664

ABSTRACT

Herpes simplex virus (HSV) encephalitis is the most common cause of sporadic fatal encephalitis worldwide, and central nervous system (CNS) involvement is observed in approximately one-third of neonatal HSV infections . In recent years, single-gene inborn errors of innate immunity have been shown to be associated with susceptibility to HSV encephalitis . Temporal lobe abnormalities revealed by magnetic resonance imaging-the most sensitive imaging method for HSV encephalitis-are considered strong evidence for the disease. Detection of HSV DNA in the cerebrospinal fluid by polymerase chain reaction (PCR) is the gold standard for the diagnosis of HSV encephalitis and neonatal meningoencephalitis. Intravenous acyclovir for 14-21 days is the standard treatment in HSV encephalitis. Neurological outcomes in neonates are improved by intravenous high-dose acyclovir for 21 days followed by oral acyclovir suppressive therapy for 6 months. Varicella-zoster virus (VZV) causes a wide range of CNS manifestations. VZV encephalitis typically occurs after primary infection, and reactivation of VZV may cause encephalitis. On the other hand, VZV infection of cerebral arteries produces vasculopathy, which can manifest as ischemic stroke. Vasculopathy can occur after primary infection or reactivation of VZV. PCR detection of VZV DNA in the cerebrospinal fluid can be used for the diagnosis of encephalitis or vasculopathy. Although there are no controlled treatment trials to assess VZV treatments of encephalitis or vasculopathy, intravenous acyclovir is a common treatment.


Subject(s)
Alphaherpesvirinae/physiology , Herpesviridae Infections/virology , Nervous System Diseases/virology , Alphaherpesvirinae/drug effects , Alphaherpesvirinae/genetics , Animals , Antiviral Agents/therapeutic use , Herpesviridae Infections/diagnostic imaging , Herpesviridae Infections/drug therapy , Humans , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/drug therapy
19.
Viruses ; 10(2)2018 02 13.
Article in English | MEDLINE | ID: mdl-29438303

ABSTRACT

Actin filaments, microtubules and intermediate filaments form the cytoskeleton of vertebrate cells. Involved in maintaining cell integrity and structure, facilitating cargo and vesicle transport, remodelling surface structures and motility, the cytoskeleton is necessary for the successful life of a cell. Because of the broad range of functions these filaments are involved in, they are common targets for viral pathogens, including the alphaherpesviruses. Human-tropic alphaherpesviruses are prevalent pathogens carried by more than half of the world's population; comprising herpes simplex virus (types 1 and 2) and varicella-zoster virus, these viruses are characterised by their ability to establish latency in sensory neurons. This review will discuss the known mechanisms involved in subversion of and transport via the cytoskeleton during alphaherpesvirus infections, focusing on protein-protein interactions and pathways that have recently been identified. Studies on related alphaherpesviruses whose primary host is not human, along with comparisons to more distantly related beta and gammaherpesviruses, are also presented in this review. The need to decipher as-yet-unknown mechanisms exploited by viruses to hijack cytoskeletal components-to reveal the hidden cytoskeletons in the closet-will also be addressed.


Subject(s)
Alphaherpesvirinae/physiology , Cytoskeleton/metabolism , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Actins/metabolism , Animals , Host-Pathogen Interactions , Humans , Intermediate Filaments/metabolism , Microtubules/metabolism , Models, Biological , Myosins/metabolism , Protein Binding , Protein Transport
20.
Sci Rep ; 7(1): 16656, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192251

ABSTRACT

The respiratory epithelium of humans and animals is frequently exposed to alphaherpesviruses, originating from either external exposure or reactivation from latency. To date, the polarity of alphaherpesvirus infection in the respiratory epithelium and the role of respiratory epithelial integrity herein has not been studied. Equine herpesvirus type 1 (EHV1), a well-known member of the alphaherpesvirus family, was used to infect equine respiratory mucosal explants and primary equine respiratory epithelial cells (EREC), grown at the air-liquid interface. EHV1 binding to and infection of mucosal explants was greatly enhanced upon destruction of the respiratory epithelium integrity with EGTA or N-acetylcysteine. EHV1 preferentially bound to and entered EREC at basolateral cell surfaces. Restriction of infection via apical inoculation was overcome by disruption of intercellular junctions. Finally, basolateral but not apical EHV1 infection of EREC was dependent on cellular N-linked glycans. Overall, our findings demonstrate that integrity of the respiratory epithelium is crucial in the host's innate defence against primary alphaherpesvirus infections. In addition, by targeting a basolaterally located receptor in the respiratory epithelium, alphaherpesviruses have generated a strategy to efficiently escape from host defence mechanisms during reactivation from latency.


Subject(s)
Alphaherpesvirinae/physiology , Intercellular Junctions/metabolism , Receptors, Virus/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Animals , Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/physiology , Horse Diseases/metabolism , Horse Diseases/virology , Horses , Intercellular Junctions/drug effects , Polysaccharides/metabolism , Receptors, Virus/chemistry , Respiratory Mucosa/drug effects , Respiratory Mucosa/pathology , Viral Load , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...