Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 289
Filter
1.
Parasit Vectors ; 17(1): 200, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704595

ABSTRACT

BACKGROUND: Mayaro virus (MAYV) is an emerging alphavirus, primarily transmitted by the mosquito Haemagogus janthinomys in Central and South America. However, recent studies have shown that Aedes aegypti, Aedes albopictus and various Anopheles mosquitoes can also transmit the virus under laboratory conditions. MAYV causes sporadic outbreaks across the South American region, particularly in areas near forests. Recently, cases have been reported in European and North American travelers returning from endemic areas, raising concerns about potential introductions into new regions. This study aims to assess the vector competence of three potential vectors for MAYV present in Europe. METHODS: Aedes albopictus from Italy, Anopheles atroparvus from Spain and Culex pipiens biotype molestus from Belgium were exposed to MAYV and maintained under controlled environmental conditions. Saliva was collected through a salivation assay at 7 and 14 days post-infection (dpi), followed by vector dissection. Viral titers were determined using focus forming assays, and infection rates, dissemination rates, and transmission efficiency were calculated. RESULTS: Results indicate that Ae. albopictus and An. atroparvus from Italy and Spain, respectively, are competent vectors for MAYV, with transmission possible starting from 7 dpi under laboratory conditions. In contrast, Cx. pipiens bioform molestus was unable to support MAYV infection, indicating its inability to contribute to the transmission cycle. CONCLUSIONS: In the event of accidental MAYV introduction in European territories, autochthonous outbreaks could potentially be sustained by two European species: Ae. albopictus and An. atroparvus. Entomological surveillance should also consider certain Anopheles species when monitoring MAYV transmission.


Subject(s)
Aedes , Alphavirus Infections , Alphavirus , Culex , Mosquito Vectors , Animals , Aedes/virology , Mosquito Vectors/virology , Alphavirus/physiology , Alphavirus/isolation & purification , Culex/virology , Europe , Alphavirus Infections/transmission , Alphavirus Infections/virology , Saliva/virology , Anopheles/virology , Spain , Italy , Female , Belgium
2.
Med Vet Entomol ; 38(2): 234-243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489505

ABSTRACT

Mayaro virus (MAYV; Alphavirus: Togaviridae) is an emerging pathogen in Latin America, causing fever and polyarthritis. Sporadic outbreaks of MAYV have occurred in the region, with reported human cases being imported to Europe and North America. Although primarily a risk for those residing in the Amazon basin's tropical forests, recent reports highlight that urbanization would increase the risk of MAYV transmission in Latin America. Urban emergence depends on human susceptibility and the ability of mosquitos like Aedes aegypti  (Linnaeus, 1762) (Diptera: Culicidae) to transmit MAYV. Despite the absence of active MAYV transmission in Argentine, the risk of introduction is substantial due to human movement and the presence of Ae. aegypti in the region. This study aimed to evaluate the susceptibility of different Argentine Ae. aegypti populations to MAYV genotype L (MAYV-L) using dose-response assays and determine barriers to virus infection, dissemination and transmission. Immature mosquito stages were collected in Buenos Aires, Córdoba and Rosario cities. Female Ae. aegypti (F2) were orally infected by feeding on five concentrations of MAYV-L, ranging from 1.0 to 6.0 log10 PFU/mL. Abdomens, legs and saliva were analysed using viral plaque assays. Results revealed that MAYV-L between infection and dissemination were associated with viral doses rather than the population origin. Infection rates varied between 3% and 65%, with a 50% infectious dose >5.5 log10 PFU/mL. Dissemination occurred at 39%, with a 50% dissemination dose of ~6.0 log10 PFU/mL. Dissemination among infected mosquitoes ranged from 60% to 86%, and transmission from disseminated mosquitoes ranged from 11% to 20%. Argentine Ae. aegypti populations exhibited a need for higher viral doses of MAYV-L than those typically found in humans to become infected. In addition, only a small proportion of infected mosquitoes were capable of transmitting the virus. Understanding MAYV transmission in urban areas is crucial for public health interventions.


Subject(s)
Aedes , Alphavirus , Mosquito Vectors , Animals , Aedes/virology , Aedes/physiology , Argentina , Mosquito Vectors/virology , Mosquito Vectors/physiology , Alphavirus/physiology , Female , Alphavirus Infections/transmission , Larva/virology , Larva/growth & development
3.
Viruses ; 16(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399981

ABSTRACT

Alphaviruses can replicate in arthropods and in many vertebrate species including humankind, but only in vertebrate cells do infections with these viruses result in a strong inhibition of host translation and transcription. Translation shutoff by alphaviruses is a multifactorial process that involves both host- and virus-induced mechanisms, and some of them are not completely understood. Alphavirus genomes contain cis-acting elements (RNA structures and dinucleotide composition) and encode protein activities that promote the translational and transcriptional resistance to type I IFN-induced antiviral effectors. Among them, IFIT1, ZAP and PKR have played a relevant role in alphavirus evolution, since they have promoted the emergence of multiple viral evasion mechanisms at the translational level. In this review, we will discuss how the adaptations of alphaviruses to vertebrate hosts likely involved the acquisition of new features in viral mRNAs and proteins to overcome the effect of type I IFN.


Subject(s)
Alphavirus , Interferon Type I , Animals , Alphavirus/physiology , Cell Line , Interferon Type I/genetics , Vertebrates , Tropism , Antiviral Agents/pharmacology , Virus Replication
4.
Cell ; 187(2): 360-374.e19, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38176410

ABSTRACT

The very-low-density lipoprotein receptor (VLDLR) comprises eight LDLR type A (LA) domains and supports entry of distantly related alphaviruses, including Eastern equine encephalitis virus (EEEV) and Semliki Forest virus (SFV). Here, by resolving multiple cryo-electron microscopy structures of EEEV-VLDLR complexes and performing mutagenesis and functional studies, we show that EEEV uses multiple sites (E1/E2 cleft and E2 A domain) to engage more than one LA domain simultaneously. However, no single LA domain is necessary or sufficient to support efficient EEEV infection. Whereas all EEEV strains show conservation of two VLDLR-binding sites, the EEEV PE-6 strain and a few other EEE complex members feature a single amino acid substitution that enables binding of LA domains to an additional site on the E2 B domain. These structural and functional analyses informed the design of a minimal VLDLR decoy receptor that neutralizes EEEV infection and protects mice from lethal challenge.


Subject(s)
Cryoelectron Microscopy , Encephalitis Virus, Eastern Equine , Encephalomyelitis, Equine , Receptors, LDL , Animals , Mice , Alphavirus/physiology , Encephalitis Virus, Eastern Equine/physiology , Encephalitis Virus, Eastern Equine/ultrastructure , Encephalomyelitis, Equine/metabolism , Horses , Protein Binding , Receptors, LDL/ultrastructure
5.
J Virol ; 97(12): e0069523, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38051046

ABSTRACT

IMPORTANCE: Relative humidity (RH) is an environmental variable that affects mosquito physiology and can impact pathogen transmission. Low RH can induce dehydration in mosquitoes, leading to alterations in physiological and behavioral responses such as blood-feeding and host-seeking behavior. We evaluated the effects of a temporal drop in RH (RH shock) on mortality and Mayaro virus vector competence in Ae. aegypti. While dehydration induced by humidity shock did not impact virus infection, we detected a significant effect of dehydration on mosquito mortality and blood-feeding frequency, which could significantly impact transmission dynamics.


Subject(s)
Aedes , Alphavirus , Mosquito Vectors , Animals , Aedes/physiology , Aedes/virology , Alphavirus/physiology , Dehydration
6.
J Virol ; 97(11): e0097923, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37902397

ABSTRACT

IMPORTANCE: Our study highlights the mechanisms behind the cell's resistance to stress granule (SG) formation after infection with Old World alphaviruses. Shortly after infection, the replication of these viruses hinders the cell's ability to form SGs, even when exposed to chemical inducers such as sodium arsenite. This resistance is primarily attributed to virus-induced transcriptional and translational shutoffs, rather than interactions between the viral nsP3 and the key components of SGs, G3BP1/2, or the ADP-ribosylhydrolase activity of nsP3 macro domain. While interactions between G3BPs and nsP3 are essential for the formation of viral replication complexes, their role in regulating SG development appears to be small, if any. Cells harboring replicating viruses or replicons with lower abilities to inhibit transcription and/or translation, but expressing wild-type nsP3, retain the ability for SG development. Understanding these mechanisms of regulation of SG formation contributes to our knowledge of viral replication and the intricate relationships between alphaviruses and host cells.


Subject(s)
Alphavirus , DNA Helicases , Host Microbial Interactions , Protein Biosynthesis , Stress Granules , Transcription, Genetic , Alphavirus/physiology , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Replicon , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Stress Granules/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication
7.
J Virol ; 97(5): e0196022, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37098948

ABSTRACT

Eilat virus (EILV) is an insect-specific alphavirus that has the potential to be developed into a tool to combat mosquito-borne pathogens. However, its mosquito host range and transmission routes are not well understood. Here, we fill this gap by investigating EILV's host competence and tissue tropism in five mosquito species: Aedes aegypti, Culex tarsalis, Anopheles gambiae, Anopheles stephensi, and Anopheles albimanus. Of the tested species, C. tarsalis was the most competent host for EILV. The virus was found in C. tarsalis ovaries, but no vertical or venereal transmission was observed. Culex tarsalis also transmitted EILV via saliva, suggesting the potential for horizontal transmission between an unknown vertebrate or invertebrate host. We found that reptile (turtle and snake) cell lines were not competent for EILV infection. We tested a potential invertebrate host (Manduca sexta caterpillars) but found they were not susceptible to EILV infection. Together, our results suggest that EILV could be developed as a tool to target pathogenic viruses that use Culex tarsalis as a vector. Our work sheds light on the infection and transmission dynamics of a poorly understood insect-specific virus and reveals it may infect a broader range of mosquito species than previously recognized. IMPORTANCE The recent discovery of insect-specific alphaviruses presents opportunities both to study the biology of virus host range and to develop them into tools against pathogenic arboviruses. Here, we characterize the host range and transmission of Eilat virus in five mosquito species. We find that Culex tarsalis-a vector of harmful human pathogens, including West Nile virus-is a competent host of Eilat virus. However, how this virus is transmitted between mosquitoes remains unclear. We find that Eilat virus infects the tissues necessary for both vertical and horizontal transmission-a crucial step in discerning how Eilat virus maintains itself in nature.


Subject(s)
Alphavirus , Culex , Mosquito Vectors , Animals , Humans , Alphavirus/physiology , Culex/virology
8.
Dev Comp Immunol ; 140: 104612, 2023 03.
Article in English | MEDLINE | ID: mdl-36473548

ABSTRACT

Salmon alphavirus (SAV) infection leads to severe pancreas disease (PD) with typical inflammatory responses in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Nsp2, an important nonstructural protein of SAV, can activate NF-κB signaling pathway to reduce inflammatory responses. However, the molecular mechanism remains unclear. In this study, the ML (279-421aa) of Nsp2 was revealed to be the key domain for activating NF-κB. We focused on a host protein, DEAD-box RNA helicase 3 (DDX3), that may interact with Nsp2 to regulate NF-κB-induced inflammatory. The interaction between DDX3 and Nsp2 was confirmed in vitro. Overexpression of DDX3 inhibited the activation of NF-κB by Nsp2. SAV Nsp2 relieves the inhibitory effect of DDX3 on NF-κB, thereby initiating the innate immune response. This study revealed the molecular mechanism of Nsp2-induced inflammatory response by targeting DDX3 to activate NF-κB, providing a theoretical basis for revealing the underlying infection mechanism and pathogenesis of SAV.


Subject(s)
Alphavirus Infections , Alphavirus , Fish Diseases , Oncorhynchus mykiss , Salmo salar , Animals , NF-kappa B , Alphavirus/physiology , Signal Transduction
9.
Fish Shellfish Immunol ; 129: 182-190, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058437

ABSTRACT

Salmonid alphavirus (SAV) infection of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) causes pancreas disease (PD) with typical inflammatory responses, such as necrosis of the exocrine pancreas, cardiomyopathy and skeletal myopathy. However, the pathogenic mechanism underlying SAV infection is still unclear. Inflammation may cause damage to the body, but it is a defense response against infection by pathogenic microorganisms, of which nuclear factor-kappa B (NF-κB) is the main regulator. This study revealed that SAV can activate NF-κB, of which the viral nonstructural protein Nsp2 is the major activating protein. SAV activates the NF-κB signaling pathway by simultaneously up-regulating TLR3, 7, 8 and then the expression of the signaling molecule myeloid differentiation factor 88 (Myd88) and tumor necrosis factor receptor-associated factor 6 (TRAF6). We found that Nsp2 can induce IκB degradation and p65 phosphorylation and transnucleation, and activate NF-κB downstream inflammatory cytokines. Nsp2 may simultaneously activate NF-κB through TLR3,7,8-dependent signaling pathways. Overexpression of Nsp2 can up-regulate mitochondrial antiviral signaling protein (MAVS) and then promote the expression of IFNa1 and antiviral protein Mx, which inhibits viral replication. This study shows that Nsp2 acts as a key activator protein for the NF-κB signaling pathway, which induces inflammation post-SAV infection. This study systematically analyzes the molecular mechanism of SAV activation of the NF-κB signaling pathway, and provides a theoretical basis for revealing the mechanism of innate immune response and inflammatory injury caused by SAV.


Subject(s)
Alphavirus Infections , Alphavirus , Fish Diseases , Oncorhynchus mykiss , Salmo salar , Alphavirus/physiology , Alphavirus Infections/veterinary , Animals , Antiviral Agents , Cytokines/metabolism , Inflammation/veterinary , Myeloid Differentiation Factor 88/metabolism , Myxovirus Resistance Proteins/metabolism , NF-kappa B/metabolism , Oncorhynchus mykiss/metabolism , Salmo salar/genetics , Salmo salar/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 3/metabolism , Viral Nonstructural Proteins
10.
Viruses ; 14(8)2022 08 16.
Article in English | MEDLINE | ID: mdl-36016409

ABSTRACT

Mayaro virus is an emerging arbovirus that causes nonspecific febrile illness or arthralgia syndromes similar to the Chikungunya virus, a virus closely related from the Togaviridae family. MAYV outbreaks occur more frequently in the northern and central-western states of Brazil; however, in recent years, virus circulation has been spreading to other regions. Due to the undifferentiated initial clinical symptoms between MAYV and other endemic pathogenic arboviruses with geographic overlapping, identification of patients infected by MAYV might be underreported. Additionally, the lack of specific prophylactic approaches or antiviral drugs limits the pharmacological management of patients to treat symptoms like pain and inflammation, as is the case with most pathogenic alphaviruses. In this context, this review aims to present the state-of-the-art regarding the screening and development of compounds/molecules which may present anti-MAYV activity and infection inhibition.


Subject(s)
Alphavirus Infections , Alphavirus , Arboviruses , Chikungunya virus , Alphavirus/physiology , Alphavirus Infections/drug therapy , Alphavirus Infections/epidemiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chikungunya virus/physiology , Drug Development , Humans
11.
Viruses ; 14(5)2022 04 23.
Article in English | MEDLINE | ID: mdl-35632622

ABSTRACT

Mayaro virus (MAYV) is an emerging mosquito-borne arbovirus and public health concern. We evaluated the influence of temperature on Aedes aegypti responses to MAYV oral infection and transmission at two constant temperatures (20 °C and 30 °C). Infection of mosquito tissues (bodies and legs) and salivary secretions with MAYV was determined at 3, 9, 15, 21, and 27 days post ingestion. At both temperatures, we observed a trend of increase in progression of MAYV infection and replication kinetics over time, followed by a decline during later periods. Peaks of MAYV infection, titer, and dissemination from the midgut were detected at 15 and 21 days post ingestion at 30 °C and 20 °C, respectively. Mosquitoes were able to transmit MAYV as early as day 3 at 30 °C, but MAYV was not detectable in salivary secretions until day 15 at 20 °C. Low rates of MAYV in salivary secretions collected from infected mosquitoes provided evidence supporting the notion that a substantial salivary gland barrier(s) in Florida Ae. aegypti can limit the risk of MAYV transmission. Our results provide insights into the effects of temperature and time on the progression of infection and replication of MAYV in Ae. aegypti vectors.


Subject(s)
Aedes , Alphavirus Infections , Alphavirus , Alphavirus/physiology , Animals , Florida , Mosquito Vectors , Temperature
12.
J Virol ; 96(6): e0006022, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35107376

ABSTRACT

The impact of the host microbiota on arbovirus infections is currently not well understood. Arboviruses are viruses transmitted through the bites of infected arthropods, predominantly mosquitoes or ticks. The first site of arbovirus inoculation is the biting site in the host skin, which is colonized by a complex microbial community that could possibly influence arbovirus infection. We demonstrated that preincubation of arboviruses with certain components of the bacterial cell wall, including lipopolysaccharides (LPS) of some Gram-negative bacteria and lipoteichoic acids or peptidoglycan of certain Gram-positive bacteria, significantly reduced arbovirus infectivity in vitro. This inhibitory effect was observed for arboviruses of different virus families, including chikungunya virus of the Alphavirus genus and Zika virus of the Flavivirus genus, showing that this is a broad phenomenon. A modest inhibitory effect was observed following incubation with a panel of heat-inactivated bacteria, including bacteria residing on the skin. No viral inhibition was observed after preincubation of cells with LPS. Furthermore, a virucidal effect of LPS on viral particles was noticed by electron microscopy. Therefore, the main inhibitory mechanism seems to be due to a direct effect on the virus particles. Together, these results suggest that bacteria are able to decrease the infectivity of alphaviruses and flaviviruses. IMPORTANCE During the past decades, the world has experienced a vast increase in epidemics of alphavirus and flavivirus infections. These viruses can cause severe diseases, such as hemorrhagic fever, encephalitis, and arthritis. Several alpha- and flaviviruses, such as chikungunya virus, Zika virus, and dengue virus, are significant global health threats because of their high disease burden, their widespread (re-)emergence, and the lack of (good) anti-arboviral strategies. Despite the clear health burden, alphavirus and flavivirus infection and disease are not fully understood. A knowledge gap in the interplay between the host and the arbovirus is the potential interaction with host skin bacteria. Therefore, we studied the effect of (skin) bacteria and bacterial cell wall components on alphavirus and flavivirus infectivity in cell culture. Our results show that certain bacterial cell wall components markedly reduced viral infectivity by interacting directly with the virus particle.


Subject(s)
Alphavirus , Arboviruses , Cell Wall , Flavivirus , Alphavirus/pathogenicity , Alphavirus/physiology , Animals , Arboviruses/pathogenicity , Arboviruses/physiology , Bacteria , Chikungunya virus , Flavivirus/pathogenicity , Flavivirus/physiology , Lipopolysaccharides , Microbiota , Zika Virus
13.
Viruses ; 14(2)2022 02 05.
Article in English | MEDLINE | ID: mdl-35215918

ABSTRACT

Getah virus (GETV) is a member of the alphavirus genus, and it infects a variety of animal species, including horses, pigs, cattle, and foxes. Human infection with this virus has also been reported. The structure of GETV has not yet been determined. In this study, we report the cryo-EM structure of GETV at a resolution of 3.5 Å. This structure reveals conformational polymorphism of the envelope glycoproteins E1 and E2 at icosahedral 3-fold and quasi-3-fold axes, which is believed to be a necessary organization in forming a curvature surface of virions. In our density map, three extra densities are identified, one of which is believed a "pocket factor"; the other two are located by domain D of E2, and they may maintain the stability of E1/E2 heterodimers. We also identify three N-glycosylations at E1 N141, E2 N200, and E2 N262, which might be associated with receptor binding and membrane fusion. The resolving of the structure of GETV provides new insights into the structure and assembly of alphaviruses and lays a basis for studying the differences of biology and pathogenicity between arthritogenic and encephalitic alphaviruses.


Subject(s)
Alphavirus Infections/veterinary , Alphavirus Infections/virology , Alphavirus/physiology , Alphavirus/ultrastructure , Virus Assembly , Alphavirus/classification , Alphavirus/genetics , Animals , Cattle/virology , Cryoelectron Microscopy , Dimerization , Foxes/virology , Horses/virology , Humans , Models, Molecular , Phylogeny , Swine/virology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virion/classification , Virion/genetics , Virion/physiology , Virion/ultrastructure
14.
J Virol ; 96(2): e0177421, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34757841

ABSTRACT

Alphaviruses and flaviviruses have class II fusion glycoproteins that are essential for virion assembly and infectivity. Importantly, the tip of domain II is structurally conserved between the alphavirus and flavivirus fusion proteins, yet whether these structural similarities between virus families translate to functional similarities is unclear. Using in vivo evolution of Zika virus (ZIKV), we identified several novel emerging variants, including an envelope glycoprotein variant in ß-strand c (V114M) of domain II. We have previously shown that the analogous ß-strand c and the ij loop, located in the tip of domain II of the alphavirus E1 glycoprotein, are important for infectivity. This led us to hypothesize that flavivirus E ß-strand c also contributes to flavivirus infection. We generated this ZIKV glycoprotein variant and found that while it had little impact on infection in mosquitoes, it reduced replication in human cells and mice and increased virus sensitivity to ammonium chloride, as seen for alphaviruses. In light of these results and given our alphavirus ij loop studies, we mutated a conserved alanine at the tip of the flavivirus ij loop to valine to test its effect on ZIKV infectivity. Interestingly, this mutation inhibited infectious virion production of ZIKV and yellow fever virus, but not West Nile virus. Together, these studies show that shared domains of the alphavirus and flavivirus class II fusion glycoproteins harbor structurally analogous residues that are functionally important and contribute to virus infection in vivo.IMPORTANCE Arboviruses are a significant global public health threat, yet there are no antivirals targeting these viruses. This problem is in part due to our lack of knowledge of the molecular mechanisms involved in the arbovirus life cycle. In particular, virus entry and assembly are essential processes in the virus life cycle and steps that can be targeted for the development of antiviral therapies. Therefore, understanding common, fundamental mechanisms used by different arboviruses for entry and assembly is essential. In this study, we show that flavivirus and alphavirus residues located in structurally conserved and analogous regions of the class II fusion proteins contribute to common mechanisms of entry, dissemination, and infectious-virion production. These studies highlight how class II fusion proteins function and provide novel targets for development of antivirals.


Subject(s)
Alphavirus/physiology , Flavivirus/physiology , Viral Fusion Proteins/metabolism , Virion/metabolism , Virus Replication , A549 Cells , Alphavirus/drug effects , Ammonium Chloride/pharmacology , Animals , Culicidae/virology , Flavivirus/drug effects , Humans , Interferon Type I/deficiency , Mice , Mice, Mutant Strains , Mutation , Protein Domains , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virion/genetics , Virus Assembly/genetics , Virus Internalization/drug effects , Virus Replication/genetics , Zika Virus/drug effects , Zika Virus/physiology , Zika Virus Infection/virology
15.
PLoS Negl Trop Dis ; 15(12): e0010016, 2021 12.
Article in English | MEDLINE | ID: mdl-34898602

ABSTRACT

Improving our understanding of Mayaro virus (MAYV) ecology is critical to guide surveillance and risk assessment. We conducted a PRISMA-adherent systematic review of the published and grey literature to identify potential arthropod vectors and non-human animal reservoirs of MAYV. We searched PubMed/MEDLINE, Embase, Web of Science, SciELO and grey-literature sources including PAHO databases and dissertation repositories. Studies were included if they assessed MAYV virological/immunological measured occurrence in field-caught, domestic, or sentinel animals or in field-caught arthropods. We conducted an animal seroprevalence meta-analysis using a random effects model. We compiled granular georeferenced maps of non-human MAYV occurrence and graded the quality of the studies using a customized framework. Overall, 57 studies were eligible out of 1523 screened, published between the years 1961 and 2020. Seventeen studies reported MAYV positivity in wild mammals, birds, or reptiles and five studies reported MAYV positivity in domestic animals. MAYV positivity was reported in 12 orders of wild-caught vertebrates, most frequently in the orders Charadriiformes and Primate. Sixteen studies detected MAYV in wild-caught mosquito genera including Haemagogus, Aedes, Culex, Psorophora, Coquillettidia, and Sabethes. Vertebrate animals or arthropods with MAYV were detected in Brazil, Panama, Peru, French Guiana, Colombia, Trinidad, Venezuela, Argentina, and Paraguay. Among non-human vertebrates, the Primate order had the highest pooled seroprevalence at 13.1% (95% CI: 4.3-25.1%). From the three most studied primate genera we found the highest seroprevalence was in Alouatta (32.2%, 95% CI: 0.0-79.2%), followed by Callithrix (17.8%, 95% CI: 8.6-28.5%), and Cebus/Sapajus (3.7%, 95% CI: 0.0-11.1%). We further found that MAYV occurs in a wide range of vectors beyond Haemagogus spp. The quality of evidence behind these findings was variable and prompts calls for standardization of reporting of arbovirus occurrence. These findings support further risk emergence prediction, guide field surveillance efforts, and prompt further in-vivo studies to better define the ecological drivers of MAYV maintenance and potential for emergence.


Subject(s)
Alphavirus Infections/veterinary , Alphavirus Infections/virology , Alphavirus/physiology , Arthropod Vectors/virology , Disease Reservoirs/virology , Mosquito Vectors/virology , Alphavirus/genetics , Alphavirus Infections/transmission , Animals , Arthropod Vectors/physiology , Birds/virology , Humans , Mammals/virology , Mosquito Vectors/physiology , Primates/virology , Reptiles/virology
16.
Viruses ; 13(12)2021 11 26.
Article in English | MEDLINE | ID: mdl-34960636

ABSTRACT

A key step during the entry of enveloped viruses into cells is the merger of viral and cell lipid bilayers. This process is driven by a dedicated membrane fusion protein (MFP) present at the virion surface, which undergoes a membrane-fusogenic conformational change triggered by interactions with the target cell. Viral MFPs have been extensively studied structurally, and are divided into three classes depending on their three-dimensional fold. Because MFPs of the same class are found in otherwise unrelated viruses, their intra-class structural homology indicates horizontal gene exchange. We focus this review on the class II fusion machinery, which is composed of two glycoproteins that associate as heterodimers. They fold together in the ER of infected cells such that the MFP adopts a conformation primed to react to specific clues only upon contact with a target cell, avoiding premature fusion in the producer cell. We show that, despite having diverged in their 3D fold during evolution much more than the actual MFP, the class II accompanying proteins (AP) also derive from a distant common ancestor, displaying an invariant core formed by a ß-ribbon and a C-terminal immunoglobulin-like domain playing different functional roles-heterotypic interactions with the MFP, and homotypic AP/AP contacts to form spikes, respectively. Our analysis shows that class II APs are easily identifiable with modern structural prediction algorithms, providing useful information in devising immunogens for vaccine design.


Subject(s)
Alphavirus/physiology , Bunyaviridae/physiology , Genome, Viral/genetics , Glycoproteins/chemistry , Viral Fusion Proteins/chemistry , Virus Internalization , Alphavirus/genetics , Animals , Biological Evolution , Bunyaviridae/genetics , Glycoproteins/metabolism , Humans , Lipid Bilayers/metabolism , Models, Structural , Protein Multimerization , Viral Fusion Proteins/metabolism , Virion
17.
Viruses ; 13(11)2021 10 21.
Article in English | MEDLINE | ID: mdl-34834929

ABSTRACT

Mayaro virus (MAYV) is a neglected arthropod-borne virus found in the Americas. MAYV infection results in Mayaro fever, a non-lethal debilitating disease characterized by a strong inflammatory response affecting the joints and muscles. MAYV was once considered endemic to forested areas in Brazil but has managed to adapt and spread to urban regions using new vectors, such as Aedes aegypti, and has the potential to cause serious epidemics in the future. Currently, there are no vaccines or specific treatments against MAYV. In this study, the antiviral activity of a series of synthetic cyclic ketones were evaluated for the first time against MAYV. Twenty-four compounds were screened in a cell viability assay, and eight were selected for further evaluation. Effective concentration (EC50) and selectivity index (SI) were calculated and compound 9-(5-(4-chlorophenyl]furan-2-yl)-3,6-dimethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2))-dione (9) (EC50 = 21.5 µmol·L-1, SI = 15.8) was selected for mechanism of action assays. The substance was able to reduce viral activity by approximately 70% in both pre-treatment and post-treatment assays.


Subject(s)
Alphavirus Infections/virology , Alphavirus/drug effects , Antiviral Agents/pharmacology , Ketones/pharmacology , Aedes/virology , Alphavirus/physiology , Alphavirus Infections/drug therapy , Alphavirus Infections/transmission , Animals , Antiviral Agents/chemistry , Brazil , Drug Evaluation, Preclinical , Humans , Ketones/chemistry , Mosquito Vectors/virology
18.
J Virol ; 95(22): e0106221, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34495691

ABSTRACT

Alphavirus capsid proteins (CPs) have two domains: the N-terminal domain (NTD), which interacts with the viral RNA, and the C-terminal domain (CTD), which forms CP-CP interactions and interacts with the cytoplasmic domain of the E2 spike protein (cdE2). In this study, we examine how mutations in the CP NTD affect CP CTD interactions with cdE2. We changed the length and/or charge of the NTD of Ross River virus CP and found that changing the charge of the NTD has a greater impact on core and virion assembly than changing the length of the NTD. The NTD CP insertion mutants are unable to form cytoplasmic cores during infection, but they do form cores or core-like structures in virions. Our results are consistent with cdE2 having a role in core maturation during virion assembly and rescuing core formation when cytoplasmic cores are not assembled. We go on to find that the isolated cores from some mutant virions are now assembly competent in that they can be disassembled and reassembled back into cores. These results show how the two domains of CP may have distinct yet coordinated roles. IMPORTANCE Structural viral proteins have multiple roles during entry and assembly. The capsid protein (CP) of alphaviruses has one domain that interacts with the viral genome and another domain that interacts with the E2 spike protein. In this work, we determined that the length and/or charge of the CP affects cytoplasmic core formation. However, defects in cytoplasmic core formation can be overcome by E2-CP interactions, thus assembling a core or core-like complex in the virion. In the absence of both cytoplasmic cores and CP-E2 interactions, CP is not even packaged in the released virions, but some infectious particles are still released, presumably as RNA packaged in a glycoprotein-containing membrane shell. This suggests that the virus has multiple mechanisms in place to ensure the viral genome is surrounded by a capsid core during its life cycle.


Subject(s)
Alphavirus Infections/virology , Alphavirus/physiology , Capsid Proteins/metabolism , Nucleocapsid/metabolism , Virus Assembly , Animals , Cell Line , Cricetinae
19.
J Microbiol ; 59(11): 1044-1055, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34570337

ABSTRACT

Getah virus (GETV), which was first isolated in Malaysia in 1955, and Sagiyama virus (SAGV), isolated in Japan in 1956, are members of the genus Alphavirus in the family Togaviridae. It is a consensus view that SAGV is a variant of GETV. In the present study, we determined the complete sequences of the prototype GETV MM2021 and SAGV M6-Mag132 genomic RNA extracted from plaque-purified viruses. The MM2021 genome was 11,692 nucleotides (nt) in length in the absence of 3' poly(A) tail, and the length of M6-Mag132 genome was 11,698 nt. Through sequence alignment of MM2021 and M6-Mag132, we located all the amino acid differences between these two strains, which were scattered in all the encoded proteins. Subsequently, we validated the close evolutionary relationship between GETV and SAGV by constructing phylogenetic trees based on either complete genomes or structural genomes. We eventually analyzed the growth kinetics of GETV and SAGV as well as other representative alphaviruses in various mammalian and insect cell lines. It was shown that human-oriented cell lines such as HEK-293T and Hela cells were relatively resistant to GETV and SAGV infection due to absence of proviral factors or species-specific barrier. On the other hand, both GETV and SAGV replicated efficiently in non-human cell lines. Our results provide essential genetic information for future epidemiological surveillance on Alphaviruses and lay the foundation for developing effective interventions against GETV and SAGV.


Subject(s)
Alphavirus/genetics , Genome, Viral , Host Specificity , Ross River virus/genetics , Alphavirus/classification , Alphavirus/isolation & purification , Alphavirus/physiology , Animals , Cell Line , Humans , Phylogeny , RNA, Viral/genetics , Ross River virus/classification , Ross River virus/isolation & purification , Ross River virus/physiology , Sequence Analysis, DNA
20.
Virol Sin ; 36(6): 1465-1474, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34374926

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. As an emerging virus, CHIKV imposes a threat to public health. Currently, there are no vaccines or antivirals available for the prevention of CHIKV infection. Lycorine, an alkaloid from Amaryllidaceae plants, has antiviral activity against a number of viruses such as coronavirus, flavivirus and enterovirus. In this study, we found that lycorine could inhibit CHIKV in cell culture at a concentration of 10 µmol/L without apparent cytotoxicity. In addition, it exhibited broad-spectrum anti-alphavirus activity, including Sindbis virus (SINV), Semliki Forest virus (SFV), and Venezuelan equine encephalomyelitis virus (VEEV). The time of addition studies indicated that lycorine functions at an early post-entry stage of CHIKV life cycle. The results based on two different CHIKV replicons provided further evidence that lycorine exerts its antiviral activity mainly by inhibiting CHIKV translation. Overall, our study extends the antiviral spectrum of lycorine.


Subject(s)
Alphavirus/drug effects , Amaryllidaceae Alkaloids/pharmacology , Chikungunya virus/drug effects , Phenanthridines/pharmacology , Virus Replication , Alphavirus/physiology , Animals , Cell Line , Chikungunya virus/physiology , Semliki forest virus , Sindbis Virus
SELECTION OF CITATIONS
SEARCH DETAIL
...