Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.861
Filter
1.
Sci Rep ; 14(1): 10755, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729989

ABSTRACT

Predicting the course of neurodegenerative disorders early has potential to greatly improve clinical management and patient outcomes. A key challenge for early prediction in real-world clinical settings is the lack of labeled data (i.e., clinical diagnosis). In contrast to supervised classification approaches that require labeled data, we propose an unsupervised multimodal trajectory modeling (MTM) approach based on a mixture of state space models that captures changes in longitudinal data (i.e., trajectories) and stratifies individuals without using clinical diagnosis for model training. MTM learns the relationship between states comprising expensive, invasive biomarkers (ß-amyloid, grey matter density) and readily obtainable cognitive observations. MTM training on trajectories stratifies individuals into clinically meaningful clusters more reliably than MTM training on baseline data alone and is robust to missing data (i.e., cognitive data alone or single assessments). Extracting an individualized cognitive health index (i.e., MTM-derived cluster membership index) allows us to predict progression to AD more precisely than standard clinical assessments (i.e., cognitive tests or MRI scans alone). Importantly, MTM generalizes successfully from research cohort to real-world clinical data from memory clinic patients with missing data, enhancing the clinical utility of our approach. Thus, our multimodal trajectory modeling approach provides a cost-effective and non-invasive tool for early dementia prediction without labeled data (i.e., clinical diagnosis) with strong potential for translation to clinical practice.


Subject(s)
Brain , Dementia , Magnetic Resonance Imaging , Humans , Male , Female , Dementia/diagnosis , Dementia/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Aged , Magnetic Resonance Imaging/methods , Cognition/physiology , Disease Progression , Biomarkers , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/metabolism
2.
Hum Brain Mapp ; 45(7): e26709, 2024 May.
Article in English | MEDLINE | ID: mdl-38746977

ABSTRACT

The high prevalence of conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) makes early prevention of AD extremely critical. Neuroticism, a heritable personality trait associated with mental health, has been considered a risk factor for conversion from aMCI to AD. However, whether the neuroticism genetic risk could predict the conversion of aMCI and its underlying neural mechanisms is unclear. Neuroticism polygenic risk score (N-PRS) was calculated in 278 aMCI patients with qualified genomic and neuroimaging data from ADNI. After 1-year follow-up, N-PRS in patients of aMCI-converted group was significantly greater than those in aMCI-stable group. Logistic and Cox survival regression revealed that N-PRS could significantly predict the early-stage conversion risk from aMCI to AD. These results were well replicated in an internal dataset and an independent external dataset of 933 aMCI patients from the UK Biobank. One sample Mendelian randomization analyses confirmed a potentially causal association from higher N-PRS to lower inferior parietal surface area to higher conversion risk of aMCI patients. These analyses indicated that neuroticism genetic risk may increase the conversion risk from aMCI to AD by impairing the inferior parietal structure.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Multifactorial Inheritance , Neuroticism , Parietal Lobe , Humans , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Male , Female , Aged , Parietal Lobe/diagnostic imaging , Parietal Lobe/pathology , Aged, 80 and over , Mendelian Randomization Analysis , Middle Aged , Genetic Predisposition to Disease
3.
Alzheimers Res Ther ; 16(1): 100, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711107

ABSTRACT

BACKGROUND: Retinal microvascular signs are accessible measures of early alterations in microvascular dysregulation and have been associated with dementia; it is unclear if they are associated with AD (Alzheimer's disease) pathogenesis as a potential mechanistic link. This study aimed to test the association of retinal microvascular abnormalities in mid and late life and late life cerebral amyloid. METHODS: Participants from the ARIC-PET (Atherosclerosis Risk in Communities-Positron Emission Tomography) study with a valid retinal measure (N = 285) were included. The associations of mid- and late-life retinal signs with late-life amyloid-ß (Aß) by florbetapir PET were tested. Two different measures of Aß burden were included: (1) elevated amyloid (SUVR > 1.2) and (2) continuous amyloid SUVR. The retinal measures' association with Aß burden was assessed using logistic and robust linear regression models. A newly created retinal score, incorporating multiple markers of retinal abnormalities, was also evaluated in association with greater Aß burden. RESULTS: Retinopathy in midlife (OR (95% CI) = 0.36 (0.08, 1.40)) was not significantly associated with elevated amyloid burden. In late life, retinopathy was associated with increased continuous amyloid standardized value uptake ratio (SUVR) (ß (95%CI) = 0.16 (0.02, 0.32)) but not elevated amyloid burden (OR (95%CI) = 2.37 (0.66, 9.88)) when accounting for demographic, genetic and clinical risk factors. A high retinal score in late life, indicating a higher burden of retinal abnormalities, was also significantly associated with increased continuous amyloid SUVR (ß (95% CI) = 0.16 (0.04, 0.32)) independent of vascular risk factors. CONCLUSIONS: Retinopathy in late life may be an easily obtainable marker to help evaluate the mechanistic vascular pathway between retinal measures and dementia, perhaps acting via AD pathogenesis. Well-powered future studies with a greater number of retinal features and other microvascular signs are needed to test these findings.


Subject(s)
Amyloid beta-Peptides , Aniline Compounds , Brain , Positron-Emission Tomography , Retinal Vessels , Humans , Female , Male , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography/methods , Aged , Middle Aged , Brain/diagnostic imaging , Brain/metabolism , Retinal Vessels/diagnostic imaging , Retinal Diseases/diagnostic imaging , Retinal Diseases/metabolism , Microvessels/diagnostic imaging , Microvessels/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Ethylene Glycols
4.
Brain Behav ; 14(5): e3533, 2024 May.
Article in English | MEDLINE | ID: mdl-38715429

ABSTRACT

AIM: Although there exists substantial epidemiological evidence indicating an elevated risk of dementia in individuals with diabetes, our understanding of the neuropathological underpinnings of the association between Type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) remains unclear. This study aims to unveil the microstructural brain changes associated with T2DM in AD and identify the clinical variables contributing to these changes. METHODS: In this retrospective study involving 64 patients with AD, 31 individuals had concurrent T2DM. The study involved a comparative analysis of diffusion tensor imaging (DTI) images and clinical features between patients with and without T2DM. The FSL FMRIB software library was used for comprehensive preprocessing and tractography analysis of DTI data. After eddy current correction, the "bedpost" model was utilized to model diffusion parameters. Linear regression analysis with a stepwise method was used to predict the clinical variables that could lead to microstructural white matter changes. RESULTS: We observed a significant impairment in the left superior longitudinal fasciculus (SLF) among patients with AD who also had T2DM. This impairment in patients with AD and T2DM was associated with an elevation in creatine levels. CONCLUSION: The white matter microstructure in the left SLF appears to be sensitive to the impairment of kidney function associated with T2DM in patients with AD. The emergence of AD in association with T2DM may be driven by mechanisms distinct from the typical AD pathology. Compromised renal function in AD could potentially contribute to impaired white matter integrity.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Diffusion Tensor Imaging , White Matter , Humans , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Male , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Female , Aged , Retrospective Studies , Brain/diagnostic imaging , Brain/pathology , Middle Aged , Aged, 80 and over , Creatine/metabolism
5.
Sci Rep ; 14(1): 10083, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698190

ABSTRACT

Differentiating clinical stages based solely on positive findings from amyloid PET is challenging. We aimed to investigate the neuroanatomical characteristics at the whole-brain level that differentiate prodromal Alzheimer's disease (AD) from cognitively unimpaired amyloid-positive individuals (CU A+) in relation to amyloid deposition and regional atrophy. We included 45 CU A+ participants and 135 participants with amyloid-positive prodromal AD matched 1:3 by age, sex, and education. All participants underwent 18F-florbetaben positron emission tomography and 3D structural T1-weighted magnetic resonance imaging. We compared the standardized uptake value ratios (SUVRs) and volumes in 80 regions of interest (ROIs) between CU A+ and prodromal AD groups using independent t-tests, and employed the least absolute selection and shrinkage operator (LASSO) logistic regression model to identify ROIs associated with prodromal AD in relation to amyloid deposition, regional atrophy, and their interaction. After applying False Discovery Rate correction at < 0.1, there were no differences in global and regional SUVR between CU A+ and prodromal AD groups. Regional volume differences between the two groups were observed in the amygdala, hippocampus, entorhinal cortex, insula, parahippocampal gyrus, and inferior temporal and parietal cortices. LASSO logistic regression model showed significant associations between prodromal AD and atrophy in the entorhinal cortex, inferior parietal cortex, both amygdalae, and left hippocampus. The mean SUVR in the right superior parietal cortex (beta coefficient = 0.0172) and its interaction with the regional volume (0.0672) were also selected in the LASSO model. The mean SUVR in the right superior parietal cortex was associated with an increased likelihood of prodromal AD (Odds ratio [OR] 1.602, p = 0.014), particularly in participants with lower regional volume (OR 3.389, p < 0.001). Only regional volume differences, not amyloid deposition, were observed between CU A+ and prodromal AD. The reduced volume in the superior parietal cortex may play a significant role in the progression to prodromal AD through its interaction with amyloid deposition in that region.


Subject(s)
Alzheimer Disease , Aniline Compounds , Magnetic Resonance Imaging , Positron-Emission Tomography , Prodromal Symptoms , Stilbenes , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Male , Female , Aged , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Middle Aged , Atrophy , Amyloid beta-Peptides/metabolism , Cognition , Aged, 80 and over , Amyloid/metabolism
6.
Sci Rep ; 14(1): 9970, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38693203

ABSTRACT

Alzheimer's disease (AD) shows a high pathological and symptomatological heterogeneity. To study this heterogeneity, we have developed a patient stratification technique based on one of the most significant risk factors for the development of AD: genetics. We addressed this challenge by including network biology concepts, mapping genetic variants data into a brain-specific protein-protein interaction (PPI) network, and obtaining individualized PPI scores that we then used as input for a clustering technique. We then phenotyped each obtained cluster regarding genetics, sociodemographics, biomarkers, fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging, and neurocognitive assessments. We found three clusters defined mainly by genetic variants found in MAPT, APP, and APOE, considering known variants associated with AD and other neurodegenerative disease genetic architectures. Profiling of these clusters revealed minimal variation in AD symptoms and pathology, suggesting different biological mechanisms may activate the neurodegeneration and pathobiological patterns behind AD and result in similar clinical and pathological presentations, even a shared disease diagnosis. Lastly, our research highlighted MAPT, APP, and APOE as key genes where these genetic distinctions manifest, suggesting them as potential targets for personalized drug development strategies to address each AD subgroup individually.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Positron-Emission Tomography , tau Proteins , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Humans , tau Proteins/genetics , Apolipoproteins E/genetics , Male , Female , Aged , Genetic Predisposition to Disease , Amyloid beta-Protein Precursor/genetics , Protein Interaction Maps/genetics , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism
7.
BMC Med Imaging ; 24(1): 103, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702626

ABSTRACT

OBJECTIVE: This study aimed to identify features of white matter network attributes based on diffusion tensor imaging (DTI) that might lead to progression from mild cognitive impairment (MCI) and construct a comprehensive model based on these features for predicting the population at high risk of progression to Alzheimer's disease (AD) in MCI patients. METHODS: This study enrolled 121 MCI patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Among them, 36 progressed to AD after four years of follow-up. A brain network was constructed for each patient based on white matter fiber tracts, and network attribute features were extracted. White matter network features were downscaled, and white matter markers were constructed using an integrated downscaling approach, followed by forming an integrated model with clinical features and performance evaluation. RESULTS: APOE4 and ADAS scores were used as independent predictors and combined with white matter network markers to construct a comprehensive model. The diagnostic efficacy of the comprehensive model was 0.924 and 0.919, sensitivity was 0.864 and 0.900, and specificity was 0.871 and 0.815 in the training and test groups, respectively. The Delong test showed significant differences (P < 0.05) in the diagnostic efficacy of the combined model and APOE4 and ADAS scores, while there was no significant difference (P > 0.05) between the combined model and white matter network biomarkers. CONCLUSIONS: A comprehensive model constructed based on white matter network markers can identify MCI patients at high risk of progression to AD and provide an adjunct biomarker helpful in early AD detection.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diffusion Tensor Imaging , Disease Progression , White Matter , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging/methods , Female , Male , Aged , Aged, 80 and over , Sensitivity and Specificity , Apolipoprotein E4/genetics
8.
Alzheimers Res Ther ; 16(1): 97, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702802

ABSTRACT

BACKGROUND: The locus coeruleus (LC) and the nucleus basalis of Meynert (NBM) are altered in early stages of Alzheimer's disease (AD). Little is known about LC and NBM alteration in limbic-predominant age-related TDP-43 encephalopathy (LATE) and frontotemporal dementia (FTD). The aim of the present study is to investigate in vivo LC and NBM integrity in patients with suspected-LATE, early-amnestic AD and FTD in comparison with controls. METHODS: Seventy-two participants (23 early amnestic-AD patients, 17 suspected-LATE, 17 FTD patients, defined by a clinical-biological diagnosis reinforced by amyloid and tau PET imaging, and 15 controls) underwent neuropsychological assessment and 3T brain MRI. We analyzed the locus coeruleus signal intensity (LC-I) and the NBM volume as well as their relation with cognition and with medial temporal/cortical atrophy. RESULTS: We found significantly lower LC-I and NBM volume in amnestic-AD and suspected-LATE in comparison with controls. In FTD, we also observed lower NBM volume but a slightly less marked alteration of the LC-I, independently of the temporal or frontal phenotype. NBM volume was correlated with the global cognitive efficiency in AD patients. Strong correlations were found between NBM volume and that of medial temporal structures, particularly the amygdala in both AD and FTD patients. CONCLUSIONS: The alteration of LC and NBM in amnestic-AD, presumed-LATE and FTD suggests a common vulnerability of these structures to different proteinopathies. Targeting the noradrenergic and cholinergic systems could be effective therapeutic strategies in LATE and FTD.


Subject(s)
Alzheimer Disease , Basal Nucleus of Meynert , Frontotemporal Dementia , Locus Coeruleus , Magnetic Resonance Imaging , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Male , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Female , Aged , Magnetic Resonance Imaging/methods , Basal Nucleus of Meynert/diagnostic imaging , Basal Nucleus of Meynert/pathology , Middle Aged , Neuropsychological Tests , Amnesia/diagnostic imaging , Positron-Emission Tomography/methods
9.
Hum Brain Mapp ; 45(7): e26689, 2024 May.
Article in English | MEDLINE | ID: mdl-38703095

ABSTRACT

Tau pathology and its spatial propagation in Alzheimer's disease (AD) play crucial roles in the neurodegenerative cascade leading to dementia. However, the underlying mechanisms linking tau spreading to glucose metabolism remain elusive. To address this, we aimed to examine the association between pathologic tau aggregation, functional connectivity, and cascading glucose metabolism and further explore the underlying interplay mechanisms. In this prospective cohort study, we enrolled 79 participants with 18F-Florzolotau positron emission tomography (PET), 18F-fluorodeoxyglucose PET, resting-state functional, and anatomical magnetic resonance imaging (MRI) images in the hospital-based Shanghai Memory Study. We employed generalized linear regression and correlation analyses to assess the associations between Florzolotau accumulation, functional connectivity, and glucose metabolism in whole-brain and network-specific manners. Causal mediation analysis was used to evaluate whether functional connectivity mediates the association between pathologic tau and cascading glucose metabolism. We examined 22 normal controls and 57 patients with AD. In the AD group, functional connectivity was associated with Florzolotau covariance (ß = .837, r = 0.472, p < .001) and glucose covariance (ß = 1.01, r = 0.499, p < .001). Brain regions with higher tau accumulation tend to be connected to other regions with high tau accumulation through functional connectivity or metabolic connectivity. Mediation analyses further suggest that functional connectivity partially modulates the influence of tau accumulation on downstream glucose metabolism (mediation proportion: 49.9%). Pathologic tau may affect functionally connected neurons directly, triggering downstream glucose metabolism changes. This study sheds light on the intricate relationship between tau pathology, functional connectivity, and downstream glucose metabolism, providing critical insights into AD pathophysiology and potential therapeutic targets.


Subject(s)
Alzheimer Disease , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Nerve Net , Positron-Emission Tomography , tau Proteins , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Male , Female , Aged , tau Proteins/metabolism , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Nerve Net/physiopathology , Glucose/metabolism , Connectome , Prospective Studies , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Aged, 80 and over
10.
Alzheimers Res Ther ; 16(1): 99, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704569

ABSTRACT

BACKGROUND: Patients with sporadic cerebral amyloid angiopathy (sCAA) frequently report cognitive or neuropsychiatric symptoms. The aim of this study is to investigate whether in patients with sCAA, cognitive impairment and neuropsychiatric symptoms are associated with a cerebrospinal fluid (CSF) biomarker profile associated with Alzheimer's disease (AD). METHODS: In this cross-sectional study, we included participants with sCAA and dementia- and stroke-free, age- and sex-matched controls, who underwent a lumbar puncture, brain MRI, cognitive assessments, and self-administered and informant-based-questionnaires on neuropsychiatric symptoms. CSF phosphorylated tau, total tau and Aß42 levels were used to divide sCAA patients in two groups: CAA with (CAA-AD+) or without a CSF biomarker profile associated with AD (CAA-AD-). Performance on global cognition, specific cognitive domains (episodic memory, working memory, processing speed, verbal fluency, visuoconstruction, and executive functioning), presence and severity of neuropsychiatric symptoms, were compared between groups. RESULTS: sCAA-AD+ (n=31; mean age: 72 ± 6; 42%, 61% female) and sCAA-AD- (n=23; 70 ± 5; 42% female) participants did not differ with respect to global cognition or type of affected cognitive domain(s). The number or severity of neuropsychiatric symptoms also did not differ between sCAA-AD+ and sCAA-AD- participants. These results did not change after exclusion of patients without prior ICH. CONCLUSIONS: In participants with sCAA, a CSF biomarker profile associated with AD does not impact global cognition or specific cognitive domains, or the presence of neuropsychiatric symptoms.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Cerebral Amyloid Angiopathy , Neuropsychological Tests , tau Proteins , Humans , Female , Male , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Aged , Cross-Sectional Studies , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/etiology , Peptide Fragments/cerebrospinal fluid , Cognition/physiology , Middle Aged , Magnetic Resonance Imaging
11.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(4. Vyp. 2): 33-40, 2024.
Article in Russian | MEDLINE | ID: mdl-38696149

ABSTRACT

OBJECTIVE: To study the severity and localization of dilated perivascular spaces (DPVS), the levels of protein markers of amyloidosis and neurodegeneration in the cerebrospinal fluid (CSF) at different daily blood pressure (BP) profiles in patients with Alzheimer's disease (AD) and other types of cognitive impairment. MATERIAL AND METHODS: A total of 119 people, aged 53 to 92 years, including 55 patients with AD, 27 patients with vascular cognitive disorders (VCD), 19 patients with frontotemporal degeneration (FTD). All patients underwent BP monitoring for 24 hours using a standard oscillometric measurement method, lumbar puncture to assess Aß-42 and Aß-40 amyloid protein, total and phosphorylated tau protein in the CSF, magnetic resonance imaging tomography of the brain with subsequent assessment of the severity of expansion and localization of DPVS according to the G.M. Potter scale. RESULTS: In 58.3% of patients with AD, there is no adequate reduction in BP at night in comparison with patients with VCD (p<0.05). A significant degree of expansion of the DPVS turned out to be most typical for patients with AD: grade 3 was detected in 45.7% of patients, and the maximum, grade 4, was detected in 13.4%. At the same time, DPVSs were significantly more often detected in the group of subjects with insufficient reduction in diastolic BP (DBP) at night. A strong inverse correlation was established between the level of Aß-42 in the CSF and the variability of DBP at night (r= -0.92; p<0.05). The decrease in the level of Aß-42 in AD, especially at the prodromal stage, is directly related to the low variability of DBP at night, which is more characteristic of an insufficient decrease or increase in BP during night sleep. CONCLUSION: Patients with AD were characterized by an insufficient decrease in BP at night, which is associated with the severity and degree of maximum expansion of the DPVS. A decrease in the level of Aß-42 amyloid protein in the CSF strongly correlates with the variability of DBP at night.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Hypertension , tau Proteins , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Aged , Female , Male , Middle Aged , Amyloid beta-Peptides/cerebrospinal fluid , Hypertension/complications , Hypertension/cerebrospinal fluid , Aged, 80 and over , tau Proteins/cerebrospinal fluid , Magnetic Resonance Imaging , Glymphatic System/diagnostic imaging , Blood Pressure/physiology , Peptide Fragments/cerebrospinal fluid , Dementia, Vascular/cerebrospinal fluid , Dementia, Vascular/diagnostic imaging , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Brain/pathology
12.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(4. Vyp. 2): 17-24, 2024.
Article in Russian | MEDLINE | ID: mdl-38696147

ABSTRACT

OBJECTIVE: To investigate the pattern and connections of neuropsychological and metabolic indices in patients with cognitive disorders of Alzheimer's and vascular (subcortical-cortical) types of different severity. MATERIAL AND METHODS: A total of 177 patients were examined, including 85 patients with Alzheimer's disease (AD) and 92 patients with vascular cognitive impairment (VCI). All patients underwent complex neuropsychological examination; 18F-FDG PET was performed in 17 patients with AD and 15 patients with VCI. RESULTS: The greatest changes in patients with AD were noted in the mnestic sphere, and the indicators significantly differed from the results of the study of patients with VCI already at the pre-dementia stage. Neurodynamic and dysregulatory disorders prevailed in patients with VCI. Patients with AD showed bilateral symmetrical reduction of metabolic activity in the cortex of parietal and temporal lobes, often in combination with marked hypometabolism in the hippocampal region. In patients with VCI, there were areas of decreased brain tissue metabolism of different localization and size, mainly in the projection of the basal ganglia and in the prefrontal and parietal cortex, as well as in the cingulate gyrus, which indirectly confirms the mechanism of disconnection of subcortical and cortical structures. In AD, impaired metabolic activity in the hippocampal region correlated with impaired temporal and spatial orientation (ρ=-0.54, p<0.05), memory impairment (ρ=-0.71, p<0.005). Hypometabolism of the parietal lobe cortex was associated with total MMSE score (ρ=-0.8, p<0.001), 10-word test (ρ=-0.89, p<0.001 and ρ=-0.82, p<0.001), visual-spatial impairment (ρ=-0.64, p<0.01), categorical association test (ρ=-0.73, p<0.005). In patients with VCI, dysregulatory disorders correlated with hypometabolism in the thalamic projection (ρ=-0.56, p<0.05), prefrontal cortex (ρ=-0.64, p<0.05) and in the cingulate gyrus (anterior regions) (ρ=-0.53, p<0.05). CONCLUSION: The results indicate the presence of differences in cognitive impairment and cerebral metabolism in patients with AD and VCI.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Fluorodeoxyglucose F18 , Neuropsychological Tests , Positron-Emission Tomography , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Male , Female , Aged , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Dementia, Vascular/diagnostic imaging , Dementia, Vascular/metabolism , Dementia, Vascular/physiopathology , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Aged, 80 and over
13.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(4. Vyp. 2): 56-63, 2024.
Article in Russian | MEDLINE | ID: mdl-38696152

ABSTRACT

The most common cause of severe cognitive impairment in adults is Alzheimer's disease (AD). Depending on the age of onset, AD is divided into early (<65 years) and late (≥65 years) forms. Early-onset AD (EOAD) is significantly less common than later-onset AD (LOAD) and accounts for only about 5-10% of cases. However, its medical and social significance, as a disease leading to loss of ability to work and legal capacity, as well as premature death in patients aged 40-64 years, is extremely high. Patients with EOAD compared with LOAD have a greater number of atypical clinical variants - 25% and 6-12.5%, respectively, which complicates the differential diagnosis of EOAD with other neurodegenerative diseases. However, the typical classical amnestic variant predominates in both EOAD and LOAD. Also, patients with EOAD have peculiarities according to neuroimaging data: when performing MRI of the brain, patients with EOAD often have more pronounced parietal atrophy and less pronounced hippocampal atrophy compared to patients with LOAD. The article pays attention to the features of the clinical and neuroimaging data in patients with EOAD; a case of a patient with EOAD is presented.


Subject(s)
Age of Onset , Alzheimer Disease , Magnetic Resonance Imaging , Neuroimaging , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diagnosis , Neuroimaging/methods , Middle Aged , Atrophy/diagnostic imaging , Diagnosis, Differential , Male , Brain/diagnostic imaging , Brain/pathology , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology
14.
Front Neural Circuits ; 18: 1345692, 2024.
Article in English | MEDLINE | ID: mdl-38694272

ABSTRACT

Novel brain clearing methods revolutionize imaging by increasing visualization throughout the brain at high resolution. However, combining the standard tool of immunostaining targets of interest with clearing methods has lagged behind. We integrate whole-mount immunostaining with PEGASOS tissue clearing, referred to as iPEGASOS (immunostaining-compatible PEGASOS), to address the challenge of signal quenching during clearing processes. iPEGASOS effectively enhances molecular-genetically targeted fluorescent signals that are otherwise compromised during conventional clearing procedures. Additionally, we demonstrate the utility of iPEGASOS for visualizing neurochemical markers or viral labels to augment visualization that transgenic mouse lines cannot provide. Our study encompasses three distinct applications, each showcasing the versatility and efficacy of this approach. We employ whole-mount immunostaining to enhance molecular signals in transgenic reporter mouse lines to visualize the whole-brain spatial distribution of specific cellular populations. We also significantly improve the visualization of neural circuit connections by enhancing signals from viral tracers injected into the brain. Last, we show immunostaining without genetic markers to selectively label beta-amyloid deposits in a mouse model of Alzheimer's disease, facilitating the comprehensive whole-brain study of pathological features.


Subject(s)
Alzheimer Disease , Brain , Mice, Transgenic , Animals , Brain/metabolism , Brain/diagnostic imaging , Mice , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Immunohistochemistry , Neuroimaging/methods , Amyloid beta-Peptides/metabolism , Mice, Inbred C57BL
15.
Alzheimers Res Ther ; 16(1): 96, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698406

ABSTRACT

BACKGROUND: Irregular word reading has been used to estimate premorbid intelligence in Alzheimer's disease (AD) dementia. However, reading models highlight the core influence of semantic abilities on irregular word reading, which shows early decline in AD. The primary objective of this study is to ascertain whether irregular word reading serves as an indicator of cognitive and semantic decline in AD, potentially discouraging its use as a marker for premorbid intellectual abilities. METHOD: Six hundred eighty-one healthy controls (HC), 104 subjective cognitive decline, 290 early and 589 late mild cognitive impairment (EMCI, LMCI) and 348 AD participants from the Alzheimer's Disease Neuroimaging Initiative were included. Irregular word reading was assessed with the American National Adult Reading Test (AmNART). Multiple linear regressions were conducted predicting AmNART score using diagnostic category, general cognitive impairment and semantic tests. A generalized logistic mixed-effects model predicted correct reading using extracted psycholinguistic characteristics of each AmNART words. Deformation-based morphometry was used to assess the relationship between AmNART scores and voxel-wise brain volumes, as well as with the volume of a region of interest placed in the left anterior temporal lobe (ATL), a region implicated in semantic memory. RESULTS: EMCI, LMCI and AD patients made significantly more errors in reading irregular words compared to HC, and AD patients made more errors than all other groups. Across the AD continuum, as well as within each diagnostic group, irregular word reading was significantly correlated to measures of general cognitive impairment / dementia severity. Neuropsychological tests of lexicosemantics were moderately correlated to irregular word reading whilst executive functioning and episodic memory were respectively weakly and not correlated. Age of acquisition, a primarily semantic variable, had a strong effect on irregular word reading accuracy whilst none of the phonological variables significantly contributed. Neuroimaging analyses pointed to bilateral hippocampal and left ATL volume loss as the main contributors to decreased irregular word reading performances. CONCLUSIONS: While the AmNART may be appropriate to measure premorbid intellectual abilities in cognitively unimpaired individuals, our results suggest that it captures current semantic decline in MCI and AD patients and may therefore underestimate premorbid intelligence. On the other hand, irregular word reading tests might be clinically useful to detect semantic impairments in individuals on the AD continuum.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Magnetic Resonance Imaging , Neuropsychological Tests , Reading , Semantics , Humans , Alzheimer Disease/psychology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diagnosis , Male , Female , Aged , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Cognitive Dysfunction/etiology , Aged, 80 and over , Intelligence/physiology , Brain/diagnostic imaging , Brain/pathology
16.
J Appl Clin Med Phys ; 25(5): e14368, 2024 May.
Article in English | MEDLINE | ID: mdl-38657114

ABSTRACT

OBJECTIVE: Alzheimer's disease, an irreversible neurological condition, demands timely diagnosis for effective clinical intervention. This study employs radiomics analysis to assess image features in default mode network cerebral perfusion imaging among individuals with cognitive impairment. METHODS: A radiomics analysis of cerebral perfusion imaging was conducted on 117 patients with cognitive impairment. They were divided into training and validation sets in a 7:3 ratio. Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest were employed to select and model image features, followed by logistic regression analysis of LASSO and Random Forest results. Diagnostic performance was assessed by calculating the area under the curve (AUC). RESULTS: In the training set, LASSO achieved AUC of 0.978, Random Forest had an AUC of 0.933. In the validation set, LASSO had AUC of 0.859, Random Forest had AUC of 0.986. By conducting Logistic Regression analysis in combination with LASSO and Random Forest, we identified a total of five radiomics features, with four related to morphology and one to textural features, originating from the medial prefrontal cortex and middle temporal gyrus. In the training set, Logistic Regression achieved AUC of 0.911, while in the validation set, it attained AUC of 0.925. CONCLUSION: The medial prefrontal cortex and middle temporal gyrus are the two brain regions within the default mode network that hold the highest significance for Alzheimer's disease diagnosis. Radiomics analysis contributes to the clinical assessment of Alzheimer's disease by delving into image data to extract deeper layers of information.


Subject(s)
Alzheimer Disease , Perfusion Imaging , Humans , Alzheimer Disease/diagnostic imaging , Female , Male , Aged , Perfusion Imaging/methods , Image Processing, Computer-Assisted/methods , Cerebrovascular Circulation/physiology , Middle Aged , Cognitive Dysfunction/diagnostic imaging , Aged, 80 and over , Magnetic Resonance Imaging/methods , Prognosis , Radiomics
17.
J Alzheimers Dis ; 99(1): 113-115, 2024.
Article in English | MEDLINE | ID: mdl-38607759

ABSTRACT

Excess cortisol is associated with more severe cognitive decline, Alzheimer's disease, and related dementia phenotypes. The intracellular enzyme 11ß-HSD1 regenerates active cortisol from inactive cortisone. In this current issue, high regional brain occupancy of Xanamemtrademark, determined by [11C]TARACT PET imaging of 11ß-HSD1, in cognitively normal individuals and mild cognitive impartment/Alzheimer's disease (AD) patients is presented. In the future, comprehensive kinetic modeling using arterial sampling for occupancy studies, and whole-body PET imaging of 11ß-HSD1 enzyme levels, in combination with stable isotope studies of cortisol metabolism, can provide broad insight into enzyme levels and activity in AD and other relevant diseases.


Subject(s)
Alzheimer Disease , Hydrocortisone , Positron-Emission Tomography , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Humans , Positron-Emission Tomography/methods , Hydrocortisone/metabolism , Brain/metabolism , Brain/diagnostic imaging , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism
18.
Aging Clin Exp Res ; 36(1): 94, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630202

ABSTRACT

BACKGROUND: Although donepezil is a commonly used drug for treating Alzheimer's disease (AD), the mechanisms by which it affects patients' functional brain activity, and thus modulates clinical symptoms, remain unclear. METHODS: In the present study, we used resting-state functional magnetic resonance imaging (MRI) and regional homogeneity (ReHo) to investigate the effects of donepezil on local brain activity in AD patients. Resting-state functional MRI data were collected from 32 subjects: 16 healthy controls and 16 AD patients. All 16 AD patients underwent 6 months of donepezil treatment and received two MRI scans (pre- and post-intervention). Analysis of covariance and post hoc analyses were used to compare ReHo differences among the healthy controls, pre-intervention AD patients, and post-intervention AD patients. Pearson correlation analysis was used to examine relationships between ReHo values in differential brain regions and clinical symptoms. RESULTS: Compared with healthy controls, post-intervention AD patients had reduced ReHo in the orbital part of the inferior frontal gyrus, and pre-intervention AD patients had reduced ReHo in the orbital part of the right inferior frontal gyrus. Pattern recognition models revealed that pre-intervention ReHo values in abnormal brain regions of AD patients were 76% accurate for predicting the efficacy of donepezil on cognitive function and 65% accurate for predicting its efficacy on depressive symptoms. CONCLUSIONS: These findings deepen our understanding of the brain mechanisms underlying the clinical efficacy of donepezil in AD patients, and provide a novel way to predict its clinical efficacy in such patients.


Subject(s)
Alzheimer Disease , Humans , Donepezil/therapeutic use , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Prefrontal Cortex/diagnostic imaging , Brain , Cognition
19.
Alzheimers Dement ; 20(5): 3687-3695, 2024 May.
Article in English | MEDLINE | ID: mdl-38574400

ABSTRACT

INTRODUCTION: Cerebral small vessel disease (SVD) and amyloid beta (Aß) pathology frequently co-exist. The impact of concurrent pathology on the pattern of hippocampal atrophy, a key substrate of memory impacted early and extensively in dementia, remains poorly understood. METHODS: In a unique cohort of mixed Alzheimer's disease and moderate-severe SVD, we examined whether total and regional neuroimaging measures of SVD, white matter hyperintensities (WMH), and Aß, as assessed by 18F-AV45 positron emission tomography, exert additive or synergistic effects on hippocampal volume and shape. RESULTS: Frontal WMH, occipital WMH, and Aß were independently associated with smaller hippocampal volume. Frontal WMH had a spatially distinct impact on hippocampal shape relative to Aß. In contrast, hippocampal shape alterations associated with occipital WMH spatially overlapped with Aß-vulnerable subregions. DISCUSSION: Hippocampal degeneration is differentially sensitive to SVD and Aß pathology. The pattern of hippocampal atrophy could serve as a disease-specific biomarker, and thus guide clinical diagnosis and individualized treatment strategies for mixed dementia.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cerebral Small Vessel Diseases , Hippocampus , Positron-Emission Tomography , Humans , Hippocampus/pathology , Hippocampus/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Male , Aged , Female , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , White Matter/pathology , White Matter/diagnostic imaging , Atrophy/pathology , Magnetic Resonance Imaging , Aged, 80 and over , Neuroimaging , Cohort Studies
20.
Alzheimers Dement ; 20(5): 3429-3441, 2024 May.
Article in English | MEDLINE | ID: mdl-38574374

ABSTRACT

INTRODUCTION: To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-ß (Aß) accumulation based on Centiloids (CL) in pre-dementia populations. METHODS: A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease-Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95th percentile of longitudinal measurements in sub-populations (NPNHS = 101/750, NInsight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. RESULTS: Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aß-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. DISCUSSION: Our results support a 12-20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Aniline Compounds , Positron-Emission Tomography , Humans , Male , Female , Aged , Amyloid beta-Peptides/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Prognosis , Middle Aged , Longitudinal Studies , Stilbenes , Brain/diagnostic imaging , Brain/metabolism , Benzothiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...