Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.373
Filter
1.
J Math Biol ; 89(1): 3, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740613

ABSTRACT

Dynamical systems on networks typically involve several dynamical processes evolving at different timescales. For instance, in Alzheimer's disease, the spread of toxic protein throughout the brain not only disrupts neuronal activity but is also influenced by neuronal activity itself, establishing a feedback loop between the fast neuronal activity and the slow protein spreading. Motivated by the case of Alzheimer's disease, we study the multiple-timescale dynamics of a heterodimer spreading process on an adaptive network of Kuramoto oscillators. Using a minimal two-node model, we establish that heterogeneous oscillatory activity facilitates toxic outbreaks and induces symmetry breaking in the spreading patterns. We then extend the model formulation to larger networks and perform numerical simulations of the slow-fast dynamics on common network motifs and on the brain connectome. The simulations corroborate the findings from the minimal model, underscoring the significance of multiple-timescale dynamics in the modeling of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Brain , Computer Simulation , Mathematical Concepts , Models, Neurological , Neurons , Humans , Alzheimer Disease/physiopathology , Neurons/physiology , Brain/physiopathology , Connectome , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/pathology , Nerve Net/physiopathology , Nerve Net/physiology
2.
PLoS One ; 19(5): e0293053, 2024.
Article in English | MEDLINE | ID: mdl-38768123

ABSTRACT

Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females.


Subject(s)
Alzheimer Disease , Machine Learning , Magnetic Resonance Imaging , Schizophrenia , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Female , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Male , Magnetic Resonance Imaging/methods , Aged , Middle Aged , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Connectome/methods , Rest/physiology , Case-Control Studies
3.
PLoS One ; 19(5): e0303278, 2024.
Article in English | MEDLINE | ID: mdl-38771733

ABSTRACT

Currently, numerous studies focus on employing fMRI-based deep neural networks to diagnose neurological disorders such as Alzheimer's Disease (AD), yet only a handful have provided results regarding explainability. We address this gap by applying several prevalent explainability methods such as gradient-weighted class activation mapping (Grad-CAM) to an fMRI-based 3D-VGG16 network for AD diagnosis to improve the model's explainability. The aim is to explore the specific Region of Interest (ROI) of brain the model primarily focuses on when making predictions, as well as whether there are differences in these ROIs between AD and normal controls (NCs). First, we utilized multiple resting-state functional activity maps including ALFF, fALFF, ReHo, and VMHC to reduce the complexity of fMRI data, which differed from many studies that utilized raw fMRI data. Compared to methods utilizing raw fMRI data, this manual feature extraction approach may potentially alleviate the model's burden. Subsequently, 3D-VGG16 were employed for AD classification, where the final fully connected layers were replaced with a Global Average Pooling (GAP) layer, aimed at mitigating overfitting while preserving spatial information within the feature maps. The model achieved a maximum of 96.4% accuracy on the test set. Finally, several 3D CAM methods were employed to interpret the models. In the explainability results of the models with relatively high accuracy, the highlighted ROIs were primarily located in the precuneus and the hippocampus for AD subjects, while the models focused on the entire brain for NC. This supports current research on ROIs involved in AD. We believe that explaining deep learning models would not only provide support for existing research on brain disorders, but also offer important referential recommendations for the study of currently unknown etiologies.


Subject(s)
Alzheimer Disease , Brain Mapping , Magnetic Resonance Imaging , Neural Networks, Computer , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/classification , Alzheimer Disease/physiopathology , Humans , Magnetic Resonance Imaging/methods , Female , Male , Brain Mapping/methods , Aged , Brain/diagnostic imaging , Brain/physiopathology
4.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(4. Vyp. 2): 72-76, 2024.
Article in Russian | MEDLINE | ID: mdl-38696154

ABSTRACT

The prevalence of cognitive impairment is steadily increasing compared to previous years. According to the World Health Organization, the number of people living with dementia will increase reaching 82 million in 2030 and 152 million in 2050. The most common cause is Alzheimer's disease (AD). The pathophysiological process in AD begins several years before the onset of clinical symptoms; so identifying it at an early stage would likely improve the clinical prognosis. The article presents EEG changes in patients with AD, and discusses the possibility of using EEG as a screening method for examining patients with cognitive impairment.


Subject(s)
Alzheimer Disease , Electroencephalography , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnosis , Humans , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnosis , Prognosis
5.
Exp Brain Res ; 242(6): 1507-1515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719948

ABSTRACT

Alzheimer's disease is a progressive neurodegenerative disorder characterized by impairments in synaptic plasticity and cognitive performance. Current treatments are unable to achieve satisfactory therapeutic effects or reverse the progression of the disease. Calcineurin has been implicated as part of a critical signaling pathway for learning and memory, and neuronal calcineurin may be hyperactivated in AD. To investigate the effects and underlying mechanisms of FK506, a calcineurin inhibitor, on Alzheimer-like behavior and synaptic dysfunction in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease, we investigated the effect of FK506 on cognitive function and synaptic plasticity in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease. The results showed that FK506 treatment ameliorated cognitive deficits, as indicated by the decreased latency in the water maze, and attenuated tau hyperphosphorylation in 3 × Tg-AD mice. Treatment with FK506 also reduced the levels of certain markers of postsynaptic deficits, including PSD-95 and NR2B, and reversed the long-term potentiation deficiency and dendritic spine impairments in 3 × Tg-AD mice. These findings suggest that treatment with calcineurin inhibitors such as FK506 can be an effective therapeutic strategy to rescue synaptic deficit and cognitive impairment in familial Alzheimer's disease and related tauopathies.


Subject(s)
Alzheimer Disease , Calcineurin Inhibitors , Disease Models, Animal , Mice, Transgenic , Tacrolimus , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Tacrolimus/pharmacology , Calcineurin Inhibitors/pharmacology , Mice , Maze Learning/drug effects , Maze Learning/physiology , Calcineurin/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , tau Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Male , Synapses/drug effects , Synapses/metabolism , Disks Large Homolog 4 Protein/metabolism
6.
PLoS Comput Biol ; 20(5): e1012085, 2024 May.
Article in English | MEDLINE | ID: mdl-38709845

ABSTRACT

Alzheimer's Disease (AD) is characterized by a range of behavioral alterations, including memory loss and psychiatric symptoms. While there is evidence that molecular pathologies, such as amyloid beta (Aß), contribute to AD, it remains unclear how this histopathology gives rise to such disparate behavioral deficits. One hypothesis is that Aß exerts differential effects on neuronal circuits across brain regions, depending on the neurophysiology and connectivity of different areas. To test this, we recorded from large neuronal populations in dorsal CA1 (dCA1) and ventral CA1 (vCA1), two hippocampal areas known to be structurally and functionally diverse, in the APP/PS1 mouse model of amyloidosis. Despite similar levels of Aß pathology, dCA1 and vCA1 showed distinct disruptions in neuronal population activity as animals navigated a virtual reality environment. In dCA1, pairwise correlations and entropy, a measure of the diversity of activity patterns, were decreased in APP/PS1 mice relative to age-matched C57BL/6 controls. However, in vCA1, APP/PS1 mice had increased pair-wise correlations and entropy as compared to age matched controls. Finally, using maximum entropy models, we connected the microscopic features of population activity (correlations) to the macroscopic features of the population code (entropy). We found that the models' performance increased in predicting dCA1 activity, but decreased in predicting vCA1 activity, in APP/PS1 mice relative to the controls. Taken together, we found that Aß exerts distinct effects across different hippocampal regions, suggesting that the various behavioral deficits of AD may reflect underlying heterogeneities in neuronal circuits and the different disruptions that Aß pathology causes in those circuits.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , CA1 Region, Hippocampal , Disease Models, Animal , Mice, Inbred C57BL , Mice, Transgenic , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Mice , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiopathology , CA1 Region, Hippocampal/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Male , Computational Biology , Neurons/metabolism , Neurons/pathology
7.
Brain Behav ; 14(5): e3524, 2024 May.
Article in English | MEDLINE | ID: mdl-38702902

ABSTRACT

INTRODUCTION: The combination of apolipoprotein E ε4 (ApoE ε4) status, odor identification, and odor familiarity predicts conversion to mild cognitive impairment (MCI) and Alzheimer's disease (AD). METHODS: To further understand olfactory disturbances and AD risk, ApoE ε4 carrier (mean age 76.38 ± 5.21) and ε4 non-carrier (mean age 76.8 ± 3.35) adults were given odor familiarity and identification tests and performed an odor identification task during fMRI scanning. Five task-related functional networks were detected using independent components analysis. Main and interaction effects of mean odor familiarity ratings, odor identification scores, and ε4 status on network activation and task-modulation of network functional connectivity (FC) during correct and incorrect odor identification (hits and misses), controlling for age and sex, were explored using multiple linear regression. RESULTS: Findings suggested that sensory-olfactory network activation was positively associated with odor identification scores in ε4 carriers with intact odor familiarity. The FC of sensory-olfactory, multisensory-semantic integration, and occipitoparietal networks was altered in ε4 carriers with poorer odor familiarity and identification. In ε4 carriers with poorer familiarity, connectivity between superior frontal areas and the sensory-olfactory network was negatively associated with odor identification scores. CONCLUSIONS: The results contribute to the clarification of the neurocognitive structure of odor identification processing and suggest that poorer odor familiarity and identification in ε4 carriers may signal multi-network dysfunction. Odor familiarity and identification assessment in ε4 carriers may contribute to the predictive value of risk for MCI and AD due to the breakdown of sensory-cognitive network integration. Additional research on olfactory processing in those at risk for AD is warranted.


Subject(s)
Apolipoprotein E4 , Magnetic Resonance Imaging , Humans , Female , Male , Aged , Apolipoprotein E4/genetics , Olfactory Perception/physiology , Smell/physiology , Recognition, Psychology/physiology , Aged, 80 and over , Cognitive Dysfunction/physiopathology , Odorants , Alzheimer Disease/physiopathology , Alzheimer Disease/genetics , Heterozygote , Brain/diagnostic imaging , Brain/physiopathology
8.
Alzheimers Res Ther ; 16(1): 102, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725033

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) increases risk for cognitive decline and Alzheimer's disease (AD). While the underlying mechanisms remain unclear, hypoxemia during OSA has been implicated in cognitive impairment. OSA during rapid eye movement (REM) sleep is usually more severe than in non-rapid eye movement (NREM) sleep, but the relative effect of oxyhemoglobin desaturation during REM versus NREM sleep on memory is not completely characterized. Here, we examined the impact of OSA, as well as the moderating effects of AD risk factors, on verbal memory in a sample of middle-aged and older adults with heightened AD risk. METHODS: Eighty-one adults (mean age:61.7 ± 6.0 years, 62% females, 32% apolipoprotein E ε4 allele (APOE4) carriers, and 70% with parental history of AD) underwent clinical polysomnography including assessment of OSA. OSA features were derived in total, NREM, and REM sleep. REM-NREM ratios of OSA features were also calculated. Verbal memory was assessed with the Rey Auditory Verbal Learning Test (RAVLT). Multiple regression models evaluated the relationships between OSA features and RAVLT scores while adjusting for sex, age, time between assessments, education years, body mass index (BMI), and APOE4 status or parental history of AD. The significant main effects of OSA features on RAVLT performance and the moderating effects of AD risk factors (i.e., sex, age, APOE4 status, and parental history of AD) were examined. RESULTS: Apnea-hypopnea index (AHI), respiratory disturbance index (RDI), and oxyhemoglobin desaturation index (ODI) during REM sleep were negatively associated with RAVLT total learning and long-delay recall. Further, greater REM-NREM ratios of AHI, RDI, and ODI (i.e., more events in REM than NREM) were related to worse total learning and recall. We found specifically that the negative association between REM ODI and total learning was driven by adults 60 + years old. In addition, the negative relationships between REM-NREM ODI ratio and total learning, and REM-NREM RDI ratio and long-delay recall were driven by APOE4 carriers. CONCLUSION: Greater OSA severity, particularly during REM sleep, negatively affects verbal memory, especially for people with greater AD risk. These findings underscore the potential importance of proactive screening and treatment of REM OSA even if overall AHI appears low.


Subject(s)
Alzheimer Disease , Polysomnography , Sleep Apnea, Obstructive , Sleep, REM , Humans , Female , Male , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Alzheimer Disease/complications , Middle Aged , Sleep, REM/physiology , Aged , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/genetics , Risk Factors , Verbal Learning/physiology , Apolipoprotein E4/genetics , Memory/physiology , Severity of Illness Index , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/genetics
9.
JAMA Netw Open ; 7(5): e249220, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38709534

ABSTRACT

Importance: Repetitive transcranial magnetic stimulation (rTMS) has emerged as a safe and promising intervention for Alzheimer disease (AD). Objective: To investigate the effect of a 4-week personalized hippocampal network-targeted rTMS on cognitive and functional performance, as well as functional connectivity in AD. Design, Setting, and Participants: This randomized clinical trial, which was sham-controlled and masked to participants and evaluators, was conducted between May 2020 and April 2022 at a single Korean memory clinic. Eligible participants were between ages 55 and 90 years and had confirmed early AD with evidence of an amyloid biomarker. Participants who met the inclusion criteria were randomly assigned to receive hippocampal network-targeted rTMS or sham stimulation. Participants received 4-week rTMS treatment, with assessment conducted at weeks 4 and 8. Data were analyzed between April 2022 and January 2024. Interventions: Each patient received 20 sessions of personalized rTMS targeting the left parietal area, functionally connected to the hippocampus, based on fMRI connectivity analysis over 4 weeks. The sham group underwent the same procedure, excluding actual magnetic stimulation. A personalized 3-dimensional printed frame to fix the TMS coil to the optimal target site was produced. Main Outcomes and Measures: The primary outcome was the change in the AD Assessment Scale-Cognitive Subscale test (ADAS-Cog) after 8 weeks from baseline. Secondary outcomes included changes in the Clinical Dementia Rating-Sum of Boxes (CDR-SOB) and Seoul-Instrumental Activity Daily Living (S-IADL) scales, as well as resting-state fMRI connectivity between the hippocampus and cortical areas. Results: Among 30 participants (18 in the rTMS group; 12 in the sham group) who completed the 8-week trial, the mean (SD) age was 69.8 (9.1) years; 18 (60%) were female. As the primary outcome, the change in ADAS-Cog at the eighth week was significantly different between the rTMS and sham groups (coefficient [SE], -5.2 [1.6]; P = .002). The change in CDR-SOB (-4.5 [1.4]; P = .007) and S-IADL (1.7 [0.7]; P = .004) were significantly different between the groups favoring rTMS groups. The fMRI connectivity analysis revealed that rTMS increased the functional connectivity between the hippocampus and precuneus, with its changes associated with improvements in ADAS-Cog (r = -0.57; P = .005). Conclusions and Relevance: This randomized clinical trial demonstrated the positive effects of rTMS on cognitive and functional performance, and the plastic changes in the hippocampal-cortical network. Our results support the consideration of rTMS as a potential treatment for AD. Trial Registration: ClinicalTrials.gov Identifier: NCT04260724.


Subject(s)
Alzheimer Disease , Hippocampus , Transcranial Magnetic Stimulation , Humans , Alzheimer Disease/therapy , Alzheimer Disease/physiopathology , Female , Male , Aged , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Transcranial Magnetic Stimulation/methods , Middle Aged , Magnetic Resonance Imaging/methods , Aged, 80 and over , Treatment Outcome
10.
Hum Brain Mapp ; 45(7): e26689, 2024 May.
Article in English | MEDLINE | ID: mdl-38703095

ABSTRACT

Tau pathology and its spatial propagation in Alzheimer's disease (AD) play crucial roles in the neurodegenerative cascade leading to dementia. However, the underlying mechanisms linking tau spreading to glucose metabolism remain elusive. To address this, we aimed to examine the association between pathologic tau aggregation, functional connectivity, and cascading glucose metabolism and further explore the underlying interplay mechanisms. In this prospective cohort study, we enrolled 79 participants with 18F-Florzolotau positron emission tomography (PET), 18F-fluorodeoxyglucose PET, resting-state functional, and anatomical magnetic resonance imaging (MRI) images in the hospital-based Shanghai Memory Study. We employed generalized linear regression and correlation analyses to assess the associations between Florzolotau accumulation, functional connectivity, and glucose metabolism in whole-brain and network-specific manners. Causal mediation analysis was used to evaluate whether functional connectivity mediates the association between pathologic tau and cascading glucose metabolism. We examined 22 normal controls and 57 patients with AD. In the AD group, functional connectivity was associated with Florzolotau covariance (ß = .837, r = 0.472, p < .001) and glucose covariance (ß = 1.01, r = 0.499, p < .001). Brain regions with higher tau accumulation tend to be connected to other regions with high tau accumulation through functional connectivity or metabolic connectivity. Mediation analyses further suggest that functional connectivity partially modulates the influence of tau accumulation on downstream glucose metabolism (mediation proportion: 49.9%). Pathologic tau may affect functionally connected neurons directly, triggering downstream glucose metabolism changes. This study sheds light on the intricate relationship between tau pathology, functional connectivity, and downstream glucose metabolism, providing critical insights into AD pathophysiology and potential therapeutic targets.


Subject(s)
Alzheimer Disease , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Nerve Net , Positron-Emission Tomography , tau Proteins , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Male , Female , Aged , tau Proteins/metabolism , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Nerve Net/physiopathology , Glucose/metabolism , Connectome , Prospective Studies , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Aged, 80 and over
11.
Commun Biol ; 7(1): 528, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704445

ABSTRACT

Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-ß (Aß) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aß and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aß-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Brain , tau Proteins , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Humans , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/diagnostic imaging , Brain/pathology , Male , Female , Aged , Magnetic Resonance Imaging , Middle Aged , Positron-Emission Tomography , Models, Neurological , Biomarkers/blood , Aged, 80 and over , Electroencephalography , Neurons/metabolism
12.
Expert Opin Drug Discov ; 19(5): 587-602, 2024 May.
Article in English | MEDLINE | ID: mdl-38590098

ABSTRACT

INTRODUCTION: Microglia, the primary immune cells in the brain, play multifaceted roles in Alzheimer's disease (AD). Microglia can potentially mitigate the pathological progression of AD by clearing amyloid beta (Aß) deposits in the brain and through neurotrophic support. In contrast, disproportionate activation of microglial pro-inflammatory pathways, as well as excessive elimination of healthy synapses, can exacerbate neurodegeneration in AD. The challenge, therefore, lies in discerning the precise regulation of the contrasting microglial properties to harness their therapeutic potential in AD. AREAS COVERED: This review examines the evidence relevant to the disease-modifying effects of microglial manipulators in AD preclinical models. The deleterious pro-inflammatory effects of microglia in AD can be ameliorated via direct suppression or indirectly through metabolic manipulation, epigenetic targeting, and modulation of the gut-brain axis. Furthermore, microglial clearance of Aß deposits in AD can be enhanced via strategically targeting microglial membrane receptors, lysosomal functions, and metabolism. EXPERT OPINION: Given the intricate and diverse nature of microglial responses throughout the course of AD, therapeutic interventions directed at microglia warrant a tactical approach. This could entail employing therapeutic regimens, which concomitantly suppress pro-inflammatory microglial responses while selectively enhancing Aß phagocytosis.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Microglia , Molecular Targeted Therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Humans , Microglia/drug effects , Microglia/metabolism , Animals , Amyloid beta-Peptides/metabolism , Brain/metabolism , Disease Progression , Drug Development
13.
Comput Methods Programs Biomed ; 250: 108197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688139

ABSTRACT

BACKGROUND AND OBJECTIVE: Alzheimer's disease (AD) is a neurological disorder that impairs brain functions associated with cognition, memory, and behavior. Noninvasive neurophysiological techniques like magnetoencephalography (MEG) and electroencephalography (EEG) have shown promise in reflecting brain changes related to AD. These techniques are usually assessed at two levels: local activation (spectral, nonlinear, and dynamic properties) and global synchronization (functional connectivity, frequency-dependent network, and multiplex network organization characteristics). Nonetheless, the understanding of the organization formed by the existing relationships between these levels, henceforth named neurophysiological organization, remains unexplored. This work aims to assess the alterations AD causes in the resting-state neurophysiological organization. METHODS: To that end, three datasets from healthy controls (HC) and patients with dementia due to AD were considered: MEG database (55 HC and 87 patients with AD), EEG1 database (51 HC and 100 patients with AD), and EEG2 database (45 HC and 82 patients with AD). To explore the alterations induced by AD in the relationships between several features extracted from M/EEG data, association networks (ANs) were computed. ANs are graphs, useful to quantify and visualize the intricate relationships between multiple features. RESULTS: Our results suggested a disruption in the neurophysiological organization of patients with AD, exhibiting a greater inclination towards the local activation level; and a significant decrease in the complexity and diversity of the ANs (p-value ¡ 0.05, Mann-Whitney U-test, Bonferroni correction). This effect might be due to a shift of the neurophysiological organization towards more regular configurations, which may increase its vulnerability. Moreover, our findings support the crucial role played by the local activation level in maintaining the stability of the neurophysiological organization. Classification performance exhibited accuracy values of 83.91%, 73.68%, and 72.65% for MEG, EEG1, and EEG2 databases, respectively. CONCLUSION: This study introduces a novel, valuable methodology able to integrate parameters characterize different properties of the brain activity and to explore the intricate organization of the neurophysiological organization at different levels. It was noted that AD increases susceptibility to changes in functional neural organization, suggesting a greater ease in the development of severe impairments. Therefore, ANs could facilitate a deeper comprehension of the complex interactions in brain function from a global standpoint.


Subject(s)
Alzheimer Disease , Brain , Electroencephalography , Magnetoencephalography , Alzheimer Disease/physiopathology , Humans , Magnetoencephalography/methods , Brain/physiopathology , Aged , Male , Female , Case-Control Studies , Databases, Factual
14.
Expert Opin Drug Discov ; 19(6): 639-647, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685682

ABSTRACT

INTRODUCTION: In the last decade, the efforts conducted for discovering Alzheimer's Disease (AD) treatments targeting the best-known pathogenic factors [amyloid-ß (Aß), tau protein, and neuroinflammation] were mostly unsuccessful. Given that a systemic failure of Aß clearance was supposed to primarily contribute to AD development and progression, disease-modifying therapies with anti-Aß monoclonal antibodies (e.g. solanezumab, bapineuzumab, gantenerumab, aducanumab, lecanemab and donanemab) are ongoing in randomized clinical trials (RCTs) with contrasting results. AREAS COVERED: The present Drug Discovery Case History analyzes the failures of RCTs of solanezumab on AD. Furthermore, the authors review the pharmacokinetics, pharmacodynamics, and tolerability effect of solanezumab from preclinical studies with its analogous m266 in mice. Finally, they describe the RCTs with cognitive, cerebrospinal fluid and neuroimaging findings in mild-to-moderate AD (EXPEDITION studies) and in secondary prevention studies (A4 and DIAN-TU). EXPERT OPINION: Solanezumab was one of the first anti-Aß monoclonal antibodies to be tested in preclinical and clinical AD showing to reduce brain Aß level by acting on soluble monomeric form of Aß peptide without significant results on deposits. Unfortunately, this compound showed to accelerate cognitive decline in both asymptomatic and symptomatic trial participants, and this failure of solanezumab further questioned the Aß cascade hypothesis of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Antibodies, Monoclonal, Humanized , Randomized Controlled Trials as Topic , Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Animals , Amyloid beta-Peptides/metabolism , Mice , Treatment Failure , Disease Progression
15.
Lancet Healthy Longev ; 5(5): e336-e345, 2024 May.
Article in English | MEDLINE | ID: mdl-38582095

ABSTRACT

BACKGROUND: Many studies have reported that impaired gait precedes cognitive impairment in older people. We aimed to characterise the time course of cognitive and motor decline in older individuals and the association of these declines with the pathologies of Alzheimer's disease and related dementias. METHODS: This multicohort study used data from three community-based cohort studies (Religious Orders Study, Rush Memory and Aging Project, and Minority Aging Research Study, all in the USA). The inclusion criteria for all three cohorts were no clinical dementia at the time of enrolment and consent to annual clinical assessments. Eligible participants consented to post-mortem brain donation and had post-mortem pathological assessments and three or more repeated annual measures of cognition and motor functions. Clinical and post-mortem data were analysed using functional mixed-effects models. Global cognition was based on 19 neuropsychological tests, a hand strength score was based on grip and pinch strength, and a gait score was based on the number of steps and time to walk 8 feet and turn 360°. Brain pathologies of Alzheimer's disease and related dementias were assessed at autopsy. FINDINGS: From 1994 to 2022, there were 1570 eligible cohort participants aged 65 years or older, 1303 of whom had cognitive and motor measurements and were included in the analysis. Mean age at death was 90·3 years (SD 6·3), 905 (69%) participants were female, and 398 (31%) were male. Median follow-up time was 9 years (IQR 5-11). On average, cognition was stable from 25 to 15 years before death, when cognition began to decline. By contrast, gait function and hand strength declined during the entire study. The combinations of pathologies of Alzheimer's disease and related dementias associated with cognitive and motor decline and their onsets of associations varied; only tau tangles, Parkinson's disease pathology, and macroinfarcts were associated with decline of all three phenotypes. Tau tangles were significantly associated with cognitive decline, gait function decline, and hand function decline (p<0·0001 for each); however, the association with cognitive decline persisted for more than 11 years before death, but the association with hand strength only began 3·57 years before death and the association with gait began 3·49 years before death. By contrast, the association of macroinfarcts with declining gait function began 9·25 years before death (p<0·0001) compared with 6·65 years before death (p=0·0005) for cognitive decline and 2·66 years before death (p=0·024) for decline in hand strength. INTERPRETATION: Our findings suggest that average motor decline in older adults precedes cognitive decline. Macroinfarcts but not tau tangles are associated with declining gait function that precedes cognitive decline. This suggests the need for further studies to test if gait impairment is a clinical proxy for preclinical vascular cognitive impairment. FUNDING: National Institutes of Health.


Subject(s)
Cognitive Dysfunction , Humans , Male , Female , Aged , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Aged, 80 and over , Cohort Studies , Brain/pathology , Brain/physiopathology , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Neuropsychological Tests/statistics & numerical data , Aging/pathology , Aging/physiology , Gait/physiology , Cognition/physiology , Time Factors , Hand Strength/physiology
16.
Article in Russian | MEDLINE | ID: mdl-38676671

ABSTRACT

Modern research raises the question of the potentially significant role of glymphatic dysfunction in the development of neurodegeneration and pathological aging. The exact molecular mechanisms are not yet fully understood, but there is ample evidence of a link between sleep deprivation and decreased clearance of ß-amyloid and other neurotoxin proteins that are associated with the development of neurodegenerative diseases, particularly Alzheimer's disease. The review analyzes current scientific information in this area of research, describes the latest scientific discoveries of the features of the glymphatic system, and also illustrates studies of markers that presumably indicate a deterioration in the glymphatic system. The relationship between sleep deprivation and pathophysiological mechanisms associated with neurodegenerative diseases is considered, and potential targets that can be used to treat or delay the development of these disorders are noted.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Glymphatic System , Sleep Wake Disorders , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/metabolism , Glymphatic System/physiopathology , Glymphatic System/metabolism , Sleep Wake Disorders/physiopathology , Sleep Wake Disorders/metabolism , Amyloid beta-Peptides/metabolism , Sleep Deprivation/physiopathology , Sleep Deprivation/complications , Sleep Deprivation/metabolism
17.
Clin Nucl Med ; 49(6): 521-528, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38584352

ABSTRACT

PURPOSE OF THE REPORT: Although early detection of individuals at risk of dementia conversion is important in patients with Parkinson's disease (PD), there is still no consensus on neuroimaging biomarkers for predicting future cognitive decline. We aimed to investigate whether cerebral perfusion patterns on early-phase 18 F-N-(3-fluoropropyl)-2ß-carboxymethoxy-3ß-(4-iodophenyl) nortropane ( 18 F-FP-CIT) PET have the potential to serve as a neuroimaging predictor for early dementia conversion in patients with PD. MATERIALS AND METHODS: In this retrospective analysis, we enrolled 187 patients with newly diagnosed PD who underwent dual-phase 18 F-FP-CIT PET at initial assessment and serial cognitive assessments during the follow-up period (>5 years). Patients with PD were classified into 2 groups: the PD with dementia (PDD)-high-risk (PDD-H; n = 47) and the PDD-low-risk (PDD-L; n = 140) groups according to dementia conversion within 5 years of PD diagnosis. We explored between-group differences in the regional uptake in the early-phase 18 F-FP-CIT PET images. We additionally performed a linear discriminant analysis to develop a prediction model for early PDD conversion. RESULTS: The PDD-H group exhibited hypoperfusion in Alzheimer's disease (AD)-prone regions (inferomedial temporal and posterior cingulate cortices, and insula) compared with the PDD-L group. A prediction model using regional uptake in the right entorhinal cortex, left amygdala, and left isthmus cingulate cortex could optimally distinguish the PDD-H group from the PDD-L group. CONCLUSIONS: Regional hypoperfusion in the AD-prone regions on early-phase 18 F-FP-CIT PET can be a useful biomarker for predicting early dementia conversion in patients with PD.


Subject(s)
Alzheimer Disease , Parkinson Disease , Positron-Emission Tomography , Humans , Male , Female , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Parkinson Disease/complications , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Dementia/diagnostic imaging , Dementia/physiopathology , Middle Aged , Cerebrovascular Circulation , Tropanes , Retrospective Studies
18.
Prog Neurobiol ; 236: 102601, 2024 May.
Article in English | MEDLINE | ID: mdl-38570083

ABSTRACT

Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.


Subject(s)
Alzheimer Disease , Hippocampus , Neurogenesis , Neurogenesis/physiology , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/pathology , Animals , Dementia/physiopathology , Memory/physiology
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 281-287, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686408

ABSTRACT

Alzheimer's disease (AD) is a common and serious form of elderly dementia, but early detection and treatment of mild cognitive impairment can help slow down the progression of dementia. Recent studies have shown that there is a relationship between overall cognitive function and motor function and gait abnormalities. We recruited 302 cases from the Rehabilitation Hospital Affiliated to National Rehabilitation Aids Research Center and included 193 of them according to the screening criteria, including 137 patients with MCI and 56 healthy controls (HC). The gait parameters of the participants were collected during performing single-task (free walking) and dual-task (counting backwards from 100) using a wearable device. By taking gait parameters such as gait cycle, kinematics parameters, time-space parameters as the focus of the study, using recursive feature elimination (RFE) to select important features, and taking the subject's MoCA score as the response variable, a machine learning model based on quantitative evaluation of cognitive level of gait features was established. The results showed that temporal and spatial parameters of toe-off and heel strike had important clinical significance as markers to evaluate cognitive level, indicating important clinical application value in preventing or delaying the occurrence of AD in the future.


Subject(s)
Cognitive Dysfunction , Gait , Machine Learning , Humans , Cognitive Dysfunction/diagnosis , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnosis , Biomechanical Phenomena , Gait Analysis/methods , Male , Aged , Female , Cognition , Walking , Wearable Electronic Devices
20.
Neuroimage ; 292: 120609, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38614371

ABSTRACT

Current diagnostic systems for Alzheimer's disease (AD) rely upon clinical signs and symptoms, despite the fact that the multiplicity of clinical symptoms renders various neuropsychological assessments inadequate to reflect the underlying pathophysiological mechanisms. Since putative neuroimaging biomarkers play a crucial role in understanding the etiology of AD, we sought to stratify the diverse relationships between AD biomarkers and cognitive decline in the aging population and uncover risk factors contributing to the diversities in AD. To do so, we capitalized on a large amount of neuroimaging data from the ADNI study to examine the inflection points along the dynamic relationship between cognitive decline trajectories and whole-brain neuroimaging biomarkers, using a state-of-the-art statistical model of change point detection. Our findings indicated that the temporal relationship between AD biomarkers and cognitive decline may differ depending on the synergistic effect of genetic risk and biological sex. Specifically, tauopathy-PET biomarkers exhibit a more dynamic and age-dependent association with Mini-Mental State Examination scores (p<0.05), with inflection points at 72, 78, and 83 years old, compared with amyloid-PET and neurodegeneration (cortical thickness from MRI) biomarkers. In the landscape of health disparities in AD, our analysis indicated that biological sex moderates the rate of cognitive decline associated with APOE4 genotype. Meanwhile, we found that higher education levels may moderate the effect of APOE4, acting as a marker of cognitive reserve.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Cognitive Dysfunction , Aged , Aged, 80 and over , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Apolipoproteins E/genetics , Biomarkers , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Magnetic Resonance Imaging , Neuroimaging , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...