Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 303
Filter
1.
Int J Biol Sci ; 20(8): 3126-3139, 2024.
Article in English | MEDLINE | ID: mdl-38904011

ABSTRACT

Although many cohort studies have reported that long-term exposure to particulate matter (PM) causes lung cancer, the molecular mechanisms underlying the PM-induced increases in lung cancer progression remain unclear. We applied the lung cancer cell line A549 (Parental; A549.Par) to PM for an extended period to establish a mimic PM-exposed lung cancer cell line, A549.PM. Our results indicate that A549.PM exhibits higher cell growth and proliferation abilities compared to A549.Par cells in vitro and in vivo. The RNA sequencing analysis found amphiregulin (AREG) plays a critical role in PM-induced cell proliferation. We observed that PM increases AREG-dependent lung cancer proliferation through glutamine metabolism. In addition, the EGFR/PI3K/AKT/mTOR signaling pathway is involved in PM-induced solute carrier family A1 member 5 (SLC1A5) expression and glutamine metabolism. Our findings offer important insights into how lung cancer proliferation develops upon exposure to PM.


Subject(s)
Amphiregulin , Cell Proliferation , Glutamine , Lung Neoplasms , Particulate Matter , Amphiregulin/metabolism , Humans , Glutamine/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Animals , Particulate Matter/adverse effects , A549 Cells , Signal Transduction , Mice , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/genetics , Minor Histocompatibility Antigens
2.
J Transl Med ; 22(1): 543, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844930

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a common malignant tumor, and glutamine is vital for tumor cells. The role of glutamine transporter SLC1A5 in tumor progression and transarterial chemoembolization (TACE) efficacy is under study. This research seeks to determine the impact of SLC1A5 expression on the prognosis and TACE efficacy of HCC and elucidate its mechanisms. METHODS: SLC1A5 expression in HCC, correlation with patient outcomes, and response to TACE were studied in an open access liver cancer dataset and confirmed in our cohort. Additionally, the correlation between SLC1A5 expression and hypoxia, angiogenesis and immune infiltration was analyzed and verified by immunohistochemistry, immunofluorescence and transcriptome sequencing. Liver cancer cell lines with SLC1A5 expression knockdown or overexpression were constructed, and cell proliferation, colony formation, apoptosis, migration and drug sensitivity as well as in vivo xenograft tumor were measured. A gene set enrichment analysis was conducted to determine the signaling pathway influenced by SLC1A5, and a western blot analysis was performed to detect protein expression alterations. RESULTS: SLC1A5 expression was higher in HCC tissue and associated with poor survival and TACE resistance. Hypoxia could stimulate the upregulation of glutamine transport, angiogenesis and SLC1A5 expression. The SLC1A5 expression was positively correlated with hypoxia and angiogenesis-related genes, immune checkpoint pathways, macrophage, Tregs, and other immunosuppressive cells infiltration. Knockdown of SLC1A5 decreased proliferation, colony formation, and migration, but increased apoptosis and increased sensitivity to chemotherapy drugs. Downregulation of SLC1A5 resulted in a decrease in Vimentin and N-cadherin expression, yet an increase in E-cadherin expression. Upregulation of SLC1A5 increased Vimentin and N-cadherin expression, while decreasing E-cadherin. Overexpression of ß-catenin in SLC1A5-knockdown HCC cell lines could augment Vimentin and N-cadherin expression, suppress E-cadherin expression, and increase the migration and drug resistance. CONCLUSIONS: Elevated SLC1A5 was linked to TACE resistance and survival shortening in HCC patients. SLC1A5 was positively correlated with hypoxia, angiogenesis, and immunosuppression. SLC1A5 may mediate HCC cell migration and drug resistance via Epithelial-mesenchymal transition (EMT) pathway.


Subject(s)
Amino Acid Transport System ASC , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Drug Resistance, Neoplasm , Liver Neoplasms , Minor Histocompatibility Antigens , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/blood supply , Humans , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/genetics , Animals , Cell Line, Tumor , Prognosis , Male , Female , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics , Gene Expression Regulation, Neoplastic , Middle Aged , Mice, Nude , Cell Proliferation , Cell Movement , Apoptosis , Mice , Mice, Inbred BALB C , Up-Regulation/genetics
3.
J Am Chem Soc ; 146(26): 17854-17865, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38776361

ABSTRACT

Pancreatic cancer is a highly fatal disease, and existing treatment methods are ineffective, so it is urgent to develop new effective treatment strategies. The high dependence of pancreatic cancer cells on glucose and glutamine suggests that disrupting this dependency could serve as an alternative strategy for pancreatic cancer therapy. We identified the vital genes glucose transporter 1 (GLUT1) and alanine-serine-cysteine transporter 2 (ASCT2) through bioinformatics analysis, which regulate glucose and glutamine metabolism in pancreatic cancer, respectively. Human serum albumin nanoparticles (HSA NPs) for delivery of GLUT1 and ASCT2 inhibitors, BAY-876/V-9302@HSA NPs, were prepared by a self-assembly process. This nanodrug inhibits glucose and glutamine uptake of pancreatic cancer cells through the released BAY-876 and V-9302, leading to nutrition deprivation and oxidative stress. The inhibition of glutamine leads to the inhibition of the synthesis of the glutathione, which further aggravates oxidative stress. Both of them lead to a significant increase in reactive oxygen species, activating caspase 1 and GSDMD and finally inducing pyroptosis. This study provides a new effective strategy for orthotopic pancreatic cancer treatment by dual starvation-induced pyroptosis. The study for screening metabolic targets using bioinformatics analysis followed by constructing nanodrugs loaded with inhibitors will inspire future targeted metabolic therapy for pancreatic cancer.


Subject(s)
Glucose , Glutamine , Pancreatic Neoplasms , Pyroptosis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans , Glutamine/chemistry , Glutamine/metabolism , Glucose/metabolism , Pyroptosis/drug effects , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/antagonists & inhibitors , Nanoparticles/chemistry , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/antagonists & inhibitors , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Minor Histocompatibility Antigens/metabolism , Amino Acid Transport System y+
4.
J Biol Chem ; 300(6): 107382, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763337

ABSTRACT

ASCT2 (alanine serine cysteine transporter 2), a member of the solute carrier 1 family, mediates Na+-dependent exchange of small neutral amino acids across cell membranes. ASCT2 was shown to be highly expressed in tumor cells, making it a promising target for anticancer therapies. In this study, we explored the binding mechanism of the high-affinity competitive inhibitor L-cis hydroxyproline biphenyl ester (Lc-BPE) with ASCT2, using electrophysiological and rapid kinetic methods. Our investigations reveal that Lc-BPE binding requires one or two Na+ ions initially bound to the apo-transporter with high affinity, with Na1 site occupancy being more critical for inhibitor binding. In contrast to the amino acid substrate bound form, the final, third Na+ ion cannot bind, due to distortion of its binding site (Na2), thus preventing the formation of a translocation-competent complex. Based on the rapid kinetic analysis, the application of Lc-BPE generated outward transient currents, indicating that despite its net neutral nature, the binding of Lc-BPE in ASCT2 is weakly electrogenic, most likely because of asymmetric charge distribution within the amino acid moiety of the inhibitor. The preincubation with Lc-BPE also led to a decrease of the turnover rate of substrate exchange and a delay in the activation of substrate-induced anion current, indicating relatively slow Lc-BPE dissociation kinetics. Overall, our results provide new insight into the mechanism of binding of a prototypical competitive inhibitor to the ASCT transporters.


Subject(s)
Amino Acid Transport System ASC , Minor Histocompatibility Antigens , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/antagonists & inhibitors , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/chemistry , Kinetics , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/chemistry , Humans , Sodium/metabolism , Sodium/chemistry , Animals , Binding, Competitive
5.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792190

ABSTRACT

As a conformationally restricted amino acid, hydroxy-l-proline is a versatile scaffold for the synthesis of diverse multi-functionalized pyrrolidines for probing the ligand binding sites of biological targets. With the goal to develop new inhibitors of the widely expressed amino acid transporters SLC1A4 and SLC1A5 (also known as ASCT1 and ASCT2), we synthesized and functionally screened synthetic hydroxy-l-proline derivatives using electrophysiological and radiolabeled uptake methods against amino acid transporters from the SLC1, SLC7, and SLC38 solute carrier families. We have discovered a novel class of alkoxy hydroxy-pyrrolidine carboxylic acids (AHPCs) that act as selective high-affinity inhibitors of the SLC1 family neutral amino acid transporters SLC1A4 and SLC1A5. AHPCs were computationally docked into a homology model and assessed with respect to predicted molecular orientation and functional activity. The series of hydroxyproline analogs identified here represent promising new agents to pharmacologically modulate SLC1A4 and SLC1A5 amino acid exchangers which are implicated in numerous pathophysiological processes such as cancer and neurological diseases.


Subject(s)
Amino Acid Transport System ASC , Minor Histocompatibility Antigens , Amino Acid Transport System ASC/antagonists & inhibitors , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/chemistry , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/chemistry , Humans , Proline/chemistry , Proline/analogs & derivatives , Animals , Molecular Docking Simulation , Structure-Activity Relationship , HEK293 Cells , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Pyrrolidines/chemical synthesis , Drug Discovery , Amino Acid Transport Systems, Neutral/antagonists & inhibitors , Amino Acid Transport Systems, Neutral/chemistry , Amino Acid Transport Systems, Neutral/metabolism , Amino Acid Transport Systems, Neutral/genetics
6.
Am J Physiol Cell Physiol ; 327(1): C34-C47, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38646787

ABSTRACT

The dystrophin gene (Dmd) is recognized for its significance in Duchenne muscular dystrophy (DMD), a lethal and progressive skeletal muscle disease. Some patients with DMD and model mice with muscular dystrophy (mdx) spontaneously develop various types of tumors, among which rhabdomyosarcoma (RMS) is the most prominent. By contrast, spindle cell sarcoma (SCS) has rarely been reported in patients or mdx mice. In this study, we aimed to use metabolomics to better understand the rarity of SCS development in mdx mice. Gas chromatography-mass spectrometry was used to compare the metabolic profiles of spontaneously developed SCS and RMS tumors from mdx mice, and metabolite supplementation assays and silencing experiments were used to assess the effects of metabolic differences in SCS tumor-derived cells. The levels of 75 metabolites exhibited differences between RMS and SCS, 25 of which were significantly altered. Further characterization revealed downregulation of nonessential amino acids, including alanine, in SCS tumors. Alanine supplementation enhanced the growth, epithelial mesenchymal transition, and invasion of SCS cells. Reduction of intracellular alanine via knockdown of the alanine transporter Slc1a5 reduced the growth of SCS cells. Lower metabolite secretion and reduced proliferation of SCS tumors may explain the lower detection rate of SCS in mdx mice. Targeting of alanine depletion pathways may have potential as a novel treatment strategy.NEW & NOTEWORTHY To the best of our knowledge, SCS has rarely been identified in patients with DMD or mdx mice. We observed that RMS and SCS tumors that spontaneously developed from mdx mice with the same Dmd genetic background exhibited differences in metabolic secretion. We proposed that, in addition to dystrophin deficiency, the levels of secreted metabolites may play a role in the determination of tumor-type development in a Dmd-deficient background.


Subject(s)
Mice, Inbred mdx , Rhabdomyosarcoma , Sarcoma , Animals , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma/genetics , Mice , Sarcoma/metabolism , Sarcoma/pathology , Sarcoma/genetics , Metabolomics/methods , Cell Line, Tumor , Mice, Inbred C57BL , Disease Models, Animal , Cell Proliferation , Male , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/genetics , Epithelial-Mesenchymal Transition , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/genetics
7.
Elife ; 122024 Apr 23.
Article in English | MEDLINE | ID: mdl-38650461

ABSTRACT

Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.


Subject(s)
Amino Acid Transport System ASC , Monocarboxylic Acid Transporters , Serine , Serine/metabolism , Monocarboxylic Acid Transporters/metabolism , Amino Acid Transport System ASC/metabolism , Animals , Humans , Kidney/metabolism , Mice , Sodium/metabolism , Biological Transport , Male
8.
Br J Cancer ; 130(11): 1744-1757, 2024 May.
Article in English | MEDLINE | ID: mdl-38582810

ABSTRACT

BACKGROUND: Mitochondrial dynamics play a fundamental role in determining stem cell fate. However, the underlying mechanisms of mitochondrial dynamics in the stemness acquisition of cancer cells are incompletely understood. METHODS: Metabolomic profiling of cells were analyzed by MS/MS. The genomic distribution of H3K27me3 was measured by CUT&Tag. Oral squamous cell carcinoma (OSCC) cells depended on glucose or glutamine fueling TCA cycle were monitored by 13C-isotope tracing. Organoids and tumors from patients and mice were treated with DRP1 inhibitors mdivi-1, ferroptosis inducer erastin, or combination with mdivi-1 and erastin to evaluate treatment effects. RESULTS: Mitochondria of OSCC stem cells own fragment mitochondrial network and DRP1 is required for maintenance of their globular morphology. Imbalanced mitochondrial dynamics induced by DRP1 knockdown suppressed stemness of OSCC cells. Elongated mitochondria increased α-ketoglutarate levels and enhanced glutaminolysis to fuel the TCA cycle by increasing glutamine transporter ASCT2 expression. α-KG promoted the demethylation of histone H3K27me3, resulting in downregulation of SNAI2 associated with stemness and EMT. Significantly, suppressing DRP1 enhanced the anticancer effects of ferroptosis. CONCLUSION: Our study reveals a novel mechanism underlying mitochondrial dynamics mediated cancer stemness acquisition and highlights the therapeutic potential of mitochondria elongation to increase the susceptibility of cancer cells to ferroptosis.


Subject(s)
Carcinoma, Squamous Cell , Dynamins , Ferroptosis , Glutamine , Mitochondria , Mitochondrial Dynamics , Mouth Neoplasms , Neoplastic Stem Cells , Ferroptosis/drug effects , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/drug therapy , Animals , Dynamins/antagonists & inhibitors , Dynamins/genetics , Dynamins/metabolism , Mice , Glutamine/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Cell Line, Tumor , Mitochondrial Dynamics/drug effects , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/drug therapy , Citric Acid Cycle/drug effects , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/antagonists & inhibitors , Ketoglutaric Acids/metabolism , Quinazolinones/pharmacology , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics , Piperazines/pharmacology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy
9.
Cancer Lett ; 588: 216727, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38431035

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a formidable cancer type that poses significant treatment challenges, including radiotherapy (RT) resistance. The metabolic characteristics of tumors present substantial obstacles to cancer therapy, and the relationship between RT and tumor metabolism in HNSCC remains elusive. Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging disease-modulatory mechanism. Here, we report that after RT, glutamine levels rise in HNSCC, and the glutamine transporter protein SLC1A5 is upregulated. Notably, blocking glutamine significantly enhances the therapeutic efficacy of RT in HNSCC. Furthermore, inhibition of glutamine combined with RT triggers immunogenic tumor ferroptosis, a form of nonapoptotic regulated cell death. Mechanistically, RT increases interferon regulatory factor (IRF) 1 expression by activating the interferon signaling pathway, and glutamine blockade augments this efficacy. IRF1 drives transferrin receptor expression, elevating intracellular Fe2+ concentration, disrupting iron homeostasis, and inducing cancer cell ferroptosis. Importantly, the combination treatment-induced ferroptosis is dependent on IRF1 expression. Additionally, blocking glutamine combined with RT boosts CD47 expression and hinders macrophage phagocytosis, attenuating the treatment effect. Dual-blocking glutamine and CD47 promote tumor remission and enhance RT-induced ferroptosis, thereby ameliorating the tumor microenvironment. Our work provides valuable insights into the metabolic and immunological mechanisms underlying RT-induced ferroptosis, highlighting a promising strategy to augment RT efficacy in HNSCC.


Subject(s)
Ferroptosis , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Glutamine/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , CD47 Antigen , Cell Line, Tumor , Iron/metabolism , Tumor Microenvironment , Minor Histocompatibility Antigens/metabolism , Amino Acid Transport System ASC/metabolism
10.
Carcinogenesis ; 45(6): 409-423, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38366384

ABSTRACT

In recent decades, considerable evidence has emerged indicating the involvement of tRNA-derived fragments (tRFs) in cancer progression through various mechanisms. However, the biological effects and mechanisms of tRFs in lung adenocarcinoma (LUAD) remain unclear. In this study, we screen out tRF-29-79, a 5'-tRF derived from tRNAGlyGCC, through profiling the tRF expressions in three pairs of LUAD tissues. We show that tRF-29-79 is downregulated in LUAD and downregulation of tRF-29-79 is associated with poorer prognosis. In vivo and in vitro assay reveal that tRF-29-79 inhibits proliferation, migration and invasion of LUAD cells. Mechanistically, we discovered that tRF-29-79 interacts with the RNA-binding protein PTBP1 and facilitates the transportation of PTBP1 from nucleus to cytoplasm, which regulates alternative splicing in the 3' untranslated region (UTR) of SLC1A5 pre-mRNA. Given that SLC1A5 is a core transporter of glutamine, we proved that tRF-29-79 mediate glutamine metabolism of LUAD through affecting the stability of SLC1A5 mRNA, thus exerts its anticancer function. In summary, our findings uncover the novel mechanism that tRF-29-79 participates in glutamine metabolism through interacting with PTBP1 and regulating alternative splicing in the 3' UTR of SLC1A5 pre-mRNA.


Subject(s)
Adenocarcinoma of Lung , Amino Acid Transport System ASC , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoproteins , Lung Neoplasms , Polypyrimidine Tract-Binding Protein , Humans , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Animals , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Cell Movement , Prognosis , Cell Line, Tumor , Alternative Splicing , Female , Glutamine/metabolism , Male
11.
Biosci Rep ; 44(3)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38415405

ABSTRACT

Endometrial carcinoma (EC) is a common malignancy that originates from the endometrium and grows in the female reproductive system. Surgeries, as current treatments for cancer, however, cannot meet the fertility needs of young women patients. Thus, progesterone (P4) therapy is indispensable due to its effective temporary preservation of female fertility. Many cancer cells are often accompanied by changes in metabolic phenotypes, and abnormally dependent on the amino acid glutamine. However, whether P4 exerts an effect on EC via glutamine metabolism is unknown. In the present study, we found that P4 could inhibit glutamine metabolism in EC cells and down-regulate the expression of the glutamine transporter ASCT2. This regulation of ASCT2 affects the uptake of glutamine. Furthermore, the in vivo xenograft studies showed that P4 inhibited tumor growth and the expression of key enzymes involved in glutamine metabolism. Our study demonstrated that the direct regulation of glutamine metabolism by P4 and its anticancer effect was mediated through the inhibition of ASCT2. These results provide a mechanism underlying the effects of P4 therapy on EC from the perspective of glutamine metabolism.


Subject(s)
Amino Acid Transport System ASC , Endometrial Neoplasms , Glutamine , Progesterone , Female , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Endometrial Neoplasms/drug therapy , Glutamine/antagonists & inhibitors , Glutamine/metabolism , Progesterone/pharmacology , Progesterone/therapeutic use , Amino Acid Transport System ASC/drug effects , Amino Acid Transport System ASC/metabolism , Minor Histocompatibility Antigens
12.
Adv Sci (Weinh) ; 11(3): e2306715, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37997289

ABSTRACT

Targeting the niche components surrounding glioblastoma stem cells (GSCs) helps to develop more effective glioblastoma treatments. However, the mechanisms underlying the crosstalk between GSCs and microenvironment remain largely unknown. Clarifying the extracellular molecules binding to GSCs marker CD133 helps to elucidate the mechanism of the communication between GSCs and the microenvironment. Here, it is found that the extracellular domain of high mannose type CD133 physically interacts with Collagen 1 (COL1) in GSCs. COL1, mainly secreted by cancer-associated fibroblasts, is a niche component for GSCs. COL1 enhances the interaction between CD133 and p85 and activates Akt phosphorylation. Activation of Akt pathway increases transcription factor ATF4 protein level, subsequently enhances SLC1A5-dependent glutamine uptake and glutathione synthesis. The inhibition of CD133-COL1 interaction or down-regulation of SLC1A5 reduces COL1-accelerated GSCs self-renewal and tumorigenesis. Analysis of glioma samples reveals that the level of COL1 is correlated with histopathological grade of glioma and the expression of SLC1A5. Collectively, COL1, a niche component for GSCs, enhances the tumorigenesis of GSCs partially through CD133-Akt-SLC1A5 signaling axis, providing a new mechanism underlying the cross-talk between GSCs and extracellular matrix (ECM) microenvironment.


Subject(s)
Glioblastoma , Glioma , Humans , Glioblastoma/metabolism , Glutamine/metabolism , Mannose/metabolism , Mannose/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Neoplastic Stem Cells/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic , Glioma/metabolism , Collagen/metabolism , Tumor Microenvironment , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/pharmacology , Amino Acid Transport System ASC/metabolism
13.
J Biol Chem ; 300(2): 105602, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159852

ABSTRACT

In humans, skeletal muscles comprise nearly 40% of total body mass, which is maintained throughout adulthood by a balance of muscle protein synthesis and breakdown. Cellular amino acid (AA) levels are critical for these processes, and mammalian cells contain transporter proteins that import AAs to maintain homeostasis. Until recently, the control of transporter regulation has largely been studied at the transcriptional and posttranslational levels. However, here, we report that the RNA-binding protein YBX3 is critical to sustain intracellular AAs in mouse skeletal muscle cells, which aligns with our recent findings in human cells. We find that YBX3 directly binds the solute carrier (SLC)1A5 AA transporter messenger (m)RNA to posttranscriptionally control SLC1A5 expression during skeletal muscle cell differentiation. YBX3 regulation of SLC1A5 requires the 3' UTR. Additionally, intracellular AAs transported by SLC1A5, either directly or indirectly through coupling to other transporters, are specifically reduced when YBX3 is depleted. Further, we find that reduction of the YBX3 protein reduces proliferation and impairs differentiation in skeletal muscle cells, and that YBX3 and SLC1A5 protein expression increase substantially during skeletal muscle differentiation, independently of their respective mRNA levels. Taken together, our findings suggest that YBX3 regulates AA transport in skeletal muscle cells, and that its expression is critical to maintain skeletal muscle cell proliferation and differentiation.


Subject(s)
Amino Acid Transport System ASC , Muscle Fibers, Skeletal , RNA-Binding Proteins , Animals , Humans , Mice , Amino Acid Transport System ASC/metabolism , Amino Acids/metabolism , Muscle Fibers, Skeletal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Gene Expression Regulation/genetics , NIH 3T3 Cells , HCT116 Cells , Cell Proliferation/genetics , Cell Differentiation/genetics
14.
Discov Med ; 35(179): 995-1014, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058065

ABSTRACT

BACKGROUND: Hypoxia is a pivotal factor influencing cellular gene expression and contributing to the malignant progression of tumors. Metabolic anomalies under hypoxic conditions are predominantly mediated by mitochondria. Nonetheless, the exploration of hypoxia-induced long noncoding RNAs (lncRNAs) associated with mitochondria remains largely uncharted. METHODS: We established hypoxia cell models using primary human hepatocytes (PHH) and hepatocellular carcinoma (HCC) cell lines. We isolated mitochondria for high-throughput sequencing to investigate the roles of candidate lncRNAs in HCC progression. We employed in vitro and in vivo assays to evaluate the functions of solute carrier family 1 member 5 antisense lncRNA (SLC1A5-AS). RNA-seq was utilized to scrutinize the comprehensive genome profile regulated by SLC1A5-AS in HCC. Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were utilized to validate the expression of alanine-serine-cysteine transporter 2 (ASCT2, encoded by the SLC1A5 gene), and a glutamine uptake assay was employed to estimate the glutamine uptake capacity of Huh-7 cells after SLC1A5-AS overexpression. To delve into the mechanisms governing the regulation of SLC1A5 expression by SLC1A5-AS, we employed a biotin-labeled SLC1A5-AS probe in conjunction with a western blot assay to confirm the interactions between SLC1A5-AS and candidate transcription factors. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) were utilized to authenticate the effects of the predicted transcription factors on SLC1A5 promoter activity. RESULTS: Following the screening, we identified CTB-147N14.6, derived from the antisense strand of the SLC1A5 gene, which we have named SLC1A5-AS. SLC1A5-AS exhibited significantly elevated expression levels in HCC tissue and was associated with poor prognosis in HCC patients. In vitro and in vivo assays revealed that the overexpression of SLC1A5-AS significantly heightened cell invasion and metastasis. RNA-seq data unveiled SLC1A5-AS involvement in glutamine metabolism, left-handed amino (L-amino) acid transmembrane transporter activity, and the nuclear factor kappa-B (NF-κB) signaling pathway. Overexpression of SLC1A5-AS markedly increased ASCT2 mRNA/protein levels, thereby enhancing glutamine uptake and promoting the growth and metastasis of HCC cells. Mechanistically, higher RNA levels of SLC1A5-AS directly bound with myeloid zinc finger 1 (MZF1), acting as a transcriptional repressor, thus diminishing its binding to the SLC1A5 promoter region. CONCLUSIONS: Our findings unveil a novel role for the lncRNA SLC1A5-AS in glutamine metabolism, suggesting that targeting SLC1A5-AS/MZF1, in conjunction with ASCT2 inhibitor treatment, could be a potential therapeutic strategy for this disease.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , RNA, Long Noncoding/genetics , Liver Neoplasms/pathology , Glutamine/genetics , Glutamine/metabolism , Glutamine/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/pharmacology , Hypoxia/genetics , Cell Proliferation , Cell Line, Tumor , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/pharmacology , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/pharmacology
15.
Life Sci ; 335: 122256, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37949210

ABSTRACT

Diabetic kidney disease (DKD) is a leading diabetic complication causing significant mortality among people around the globe. People with poor glycemic control accompanied by hyperinsulinemia, dyslipidemia, hypertension, and obesity develop diabetic complications. These diabetic patients develop epigenetic changes and suffer from diabetic kidney complications even after subsequent glucose control, the phenomenon that is recognized as metabolic memory. DNA methylation is an essential epigenetic modification that contributes to the development and progression of several diabetic complications, including DKD. The aberrant DNA methylation pattern at CpGs sites within several genes, such as mTOR, RPTOR, IRS2, GRK5, SLC27A3, LCAT, and SLC1A5, associated with the accompanying risk factors exacerbate the DKD progression. Although drugs such as azacytidine and decitabine have been approved to target DNA methylation for diseases such as hematological malignancies, none have been approved for the treatment of DKD. More importantly, no DNA hypomethylation-targeting drugs have been approved for any disease conditions. Understanding the alteration in DNA methylation and its association with the disease risk factors is essential to target DKD effectively. This review has discussed the abnormal DNA methylation pattern and the kidney tissue-specific expression of critical genes involved in DKD onset and progression. Moreover, we also discuss the new possible therapeutic approach that can be exploited for treating DNA methylation aberrancy in a site-specific manner against DKD.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , DNA Methylation , Kidney/metabolism , Diabetes Complications/metabolism , Epigenesis, Genetic , Diabetes Mellitus/metabolism , Minor Histocompatibility Antigens/metabolism , Amino Acid Transport System ASC/metabolism
16.
Biochem Pharmacol ; 216: 115767, 2023 10.
Article in English | MEDLINE | ID: mdl-37634599

ABSTRACT

Oral lichen planus (OLP) is a T cell-mediated autoimmune disease of oral mucosa concerning with the redox imbalance. Although glutamine uptake mediated by alanine-serine-cysteine transporter 2 (ASCT2) is critical to T cell differentiation, the exact mechanism remains ambiguous. Here, we elucidate a novel regulatory mechanism of ASCT2-mediated uptake in the differentiation and proliferation of T cells through maintaining redox balance in OLP. The results of immunohistochemistry (IHC) showed that both ASCT2 and glutaminase (GLS) were obviously upregulated compared to controls in OLP. Moreover, correlation analyses indicated that ASCT2 expression was significantly related to GLS level. Interestingly, the upregulation of glutamine metabolism in epithelial layer was consistent with that in lamina propria. Functional assays in vitro revealed the positive association between glutamine metabolism and lymphocytes infiltration. Additionally, multiplex immunohistochemistry (mIHC) uncovered a stronger colocalization among ASCT2 and CD4 and IFN-γ, which was further demonstrated by human Th1 differentiation assay in vitro. Mechanistically, targeting glutamine uptake through interference with ASCT2 using L-γ-Glutamyl-p-nitroanilide (GPNA) decreased the glutamine uptake of T cells and leaded to the accumulation of intracellular reactive oxygen species (ROS), which promoted dual specificity phosphatase 2 (DUSP2/PAC1) expression through activation of early growth response 1 (EGR1) to induce dephosphorylation of signal transducer and activator of transcription 3 (STAT3) and inhibit Th1 differentiation in turn. These results demonstrated that glutamine uptake mediated by ASCT2 induced Th1 differentiation by ROS-EGR1-PAC1 pathway, and restoring the redox dynamic balance through targeting ASCT2 may be a potential treatment for T cell-mediated autoimmune diseases.


Subject(s)
Amino Acid Transport System ASC , Glutamine , Lichen Planus, Oral , Humans , Alanine , Cell Differentiation , Cysteine , Early Growth Response Protein 1 , Glutamine/metabolism , Reactive Oxygen Species/metabolism , Amino Acid Transport System ASC/metabolism
17.
J Nanobiotechnology ; 21(1): 214, 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37420266

ABSTRACT

Despite rapid advances in metabolic therapies over the past decade, their efficacy in melanoma has been modest, largely due to the interaction between cancer-associated fibroblasts (CAFs) and cancer cells to promote cancer growth. Altering the tumor microenvironment (TME) is challenging and elusive. CAFs is critical for glutamine deprivation survival in melanoma. In this research, we assembled a CAFs-targeted, controlled-release nanodroplets for the combined delivery of the amino acid transporter ASCT2 (SLC1A5) inhibitor V9302 and GLULsiRNA (siGLUL). The application of ultrasound-targeted microbubble disruption (UTMD) allows for rapid release of V9302 and siGLUL, jointly breaking the glutamine metabolism interaction between CAFs and cancer cells on one hand, on the other hand, blocking activated CAFs and reducing the expression of extracellular matrix (ECM) to facilitate drug penetration. In addition, ultrasound stimulation made siGLUL more accessible to tumor cells and CAFs, downregulating GLUL expression in both cell types. FH-V9302-siGLUL-NDs also serve as contrast-enhanced ultrasound imaging agents for tumor imaging. Our study developed and reported FH-NDs as nanocarriers for V9302 and siGLUL, demonstrating that FH-V9302-siGLUL-NDs have potential bright future applications for integrated diagnostic therapy. Graphical Abstract.


Subject(s)
Cancer-Associated Fibroblasts , Melanoma , Neoplasms , Humans , Cancer-Associated Fibroblasts/pathology , Glutamine , Tumor Microenvironment/physiology , Neoplasms/pathology , Melanoma/metabolism , Ultrasonography , Minor Histocompatibility Antigens/metabolism , Amino Acid Transport System ASC/metabolism
18.
Am J Respir Cell Mol Biol ; 69(4): 441-455, 2023 10.
Article in English | MEDLINE | ID: mdl-37459644

ABSTRACT

The neutral amino acid glutamine plays a central role in TGF-ß (transforming growth factor-ß)-induced myofibroblast activation and differentiation. Cells take up glutamine mainly through a transporter expressed on the cell surface known as solute carrier SLC1A5 (solute carrier transporter 1A5). In the present work, we demonstrated that profibrotic actions of TGF-ß are mediated, at least in part, through a metabolic maladaptation of SLC1A5 and that targeting SLC1A5 abrogates multiple facets of fibroblast activation. This approach could thus represent a novel therapeutic strategy to treat patients with fibroproliferative diseases. We found that SLC1A5 was highly expressed in fibrotic lung fibroblasts and fibroblasts isolated from idiopathic pulmonary fibrosis lungs. The expression of profibrotic targets, cell migration, and anchorage-independent growth by TGF-ß required the activity of SLC1A5. Loss or inhibition of SLC1A5 function enhanced fibroblast susceptibility to autophagy; suppressed mTOR, HIF (hypoxia-inducible factor), and Myc signaling; and impaired mitochondrial function, ATP production, and glycolysis. Pharmacological inhibition of SLC1A5 by the small-molecule inhibitor V-9302 shifted fibroblast transcriptional profiles from profibrotic to fibrosis resolving and attenuated fibrosis in a bleomycin-treated mouse model of lung fibrosis. This is the first study, to our knowledge, to demonstrate the utility of a pharmacological inhibitor of glutamine transport in fibrosis, providing a framework for new paradigm-shifting therapies targeting cellular metabolism for this devastating disease.


Subject(s)
Glutamine , Idiopathic Pulmonary Fibrosis , Lung , Animals , Humans , Mice , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , Bleomycin/adverse effects , Bleomycin/therapeutic use , Fibroblasts/metabolism , Fibrosis , Glutamine/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung/pathology , Minor Histocompatibility Antigens/adverse effects , Minor Histocompatibility Antigens/metabolism , Proto-Oncogene Proteins c-myc/adverse effects , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism
19.
Toxicol Appl Pharmacol ; 474: 116611, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37385477

ABSTRACT

The placenta is a critical organ for fetal development and a healthy pregnancy, and has multifaceted functions (e.g., substance exchange and hormone secretion). Syncytialization of trophoblasts is important for maintaining placental functions. Epilepsy is one of the most common neurological conditions worldwide. Therefore, this study aimed to reveal the influence of antiepileptic drugs, including valproic acid (VPA), carbamazepine, lamotrigine, gabapentin, levetiracetam, topiramate, lacosamide, and clobazam, at clinically relevant concentrations on syncytialization using in vitro models of trophoblasts. To induce differentiation into syncytiotrophoblast-like cells, BeWo cells were treated with forskolin. Exposure to VPA was found to dose-dependently influence syncytialization-associated genes (ERVW-1, ERVFRD-1, GJA1, CGB, CSH, SLC1A5, and ABCC4) in differentiated BeWo cells. Herein, the biomarkers between differentiated BeWo cells and the human trophoblast stem model (TSCT) were compared. In particular, MFSD2A levels were low in BeWo cells but abundant in TSCT cells. VPA exposure affected the expression of ERVW-1, ERVFRD-1, GJA1, CSH, MFSD2A, and ABCC4 in differentiated cells (ST-TSCT). Furthermore, VPA exposure attenuated BeWo and TSCT cell fusion. Finally, the relationships between neonatal/placental parameters and the expression of syncytialization markers in human term placentas were analyzed. MFSD2A expression was positively correlated with neonatal body weight, head circumference, chest circumference, and placental weight. Our findings have important implications for better understanding the mechanisms of toxicity of antiepileptic drugs and predicting the risks to placental and fetal development.


Subject(s)
Placenta , Trophoblasts , Infant, Newborn , Humans , Pregnancy , Female , Placenta/metabolism , Valproic Acid/toxicity , Anticonvulsants/pharmacology , Cell Line , ATP-Binding Cassette Transporters/metabolism , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/pharmacology , Amino Acid Transport System ASC/metabolism
20.
Acta Pharmacol Sin ; 44(11): 2282-2295, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37280363

ABSTRACT

Abnormalities of FGFR1 have been reported in multiple malignancies, suggesting FGFR1 as a potential target for precision treatment, but drug resistance remains a formidable obstacle. In this study, we explored whether FGFR1 acted a therapeutic target in human T-cell acute lymphoblastic leukemia (T-ALL) and the molecular mechanisms underlying T-ALL cell resistance to FGFR1 inhibitors. We showed that FGFR1 was significantly upregulated in human T-ALL and inversely correlated with the prognosis of patients. Knockdown of FGFR1 suppressed T-ALL growth and progression both in vitro and in vivo. However, the T-ALL cells were resistant to FGFR1 inhibitors AZD4547 and PD-166866 even though FGFR1 signaling was specifically inhibited in the early stage. Mechanistically, we found that FGFR1 inhibitors markedly increased the expression of ATF4, which was a major initiator for T-ALL resistance to FGFR1 inhibitors. We further revealed that FGFR1 inhibitors induced expression of ATF4 through enhancing chromatin accessibility combined with translational activation via the GCN2-eIF2α pathway. Subsequently, ATF4 remodeled the amino acid metabolism by stimulating the expression of multiple metabolic genes ASNS, ASS1, PHGDH and SLC1A5, maintaining the activation of mTORC1, which contributed to the drug resistance in T-ALL cells. Targeting FGFR1 and mTOR exhibited synergistically anti-leukemic efficacy. These results reveal that FGFR1 is a potential therapeutic target in human T-ALL, and ATF4-mediated amino acid metabolic reprogramming contributes to the FGFR1 inhibitor resistance. Synergistically inhibiting FGFR1 and mTOR can overcome this obstacle in T-ALL therapy.


Subject(s)
Amino Acids , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Cell Line, Tumor , Minor Histocompatibility Antigens , Amino Acid Transport System ASC/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Activating Transcription Factor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...