Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626829

ABSTRACT

The microbial toxin ß-N-methylamino-L-alanine (BMAA), which is derived from cyanobacteria, targets neuronal mitochondria, leading to the activation of neuronal innate immunity and, consequently, neurodegeneration. Although known to modulate brain inflammation, the precise role of aberrant microglial function in the neurodegenerative process remains elusive. To determine if neurons signal microglial cells, we treated primary cortical neurons with BMAA and then co-cultured them with the N9 microglial cell line. Our observations indicate that microglial cell activation requires initial neuronal priming. Contrary to what was observed in cortical neurons, BMAA was not able to activate inflammatory pathways in N9 cells. We observed that microglial activation is dependent on mitochondrial dysfunction signaled by BMAA-treated neurons. In this scenario, the NLRP3 pro-inflammatory pathway is activated due to mitochondrial impairment in N9 cells. These results demonstrate that microglia activation in the presence of BMAA is dependent on neuronal signaling. This study provides evidence that neurons may trigger microglia activation and subsequent neuroinflammation. In addition, we demonstrate that microglial activation may have a protective role in ameliorating neuronal innate immune activation, at least in the initial phase. This work challenges the current understanding of neuroinflammation by assigning the primary role to neurons.


Subject(s)
Amino Acids, Diamino , Cyanobacteria Toxins , Microglia , Mitochondria , Neurons , Microglia/metabolism , Microglia/drug effects , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Neurons/metabolism , Neurons/drug effects , Mice , Amino Acids, Diamino/pharmacology , Cell Line , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Coculture Techniques , Immunity, Innate/drug effects , Signal Transduction/drug effects , Cells, Cultured
2.
Ocul Surf ; 32: 182-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490477

ABSTRACT

PURPOSE: To explore novel role and molecular mechanism of a natural osmoprotectant ectoine in protecting corneal epithelial cell survival and barrier from hyperosmotic stress. METHODS: Primary human corneal epithelial cells (HCECs) were established from donor limbus. The confluent cultures in isosmolar medium were switched to hyperosmotic media (400-500 mOsM), with or without ectoine or rhIL-37 for different time periods. Cell viability and proliferation were evaluated by MTT or WST assay. The integrity of barrier proteins and the expression of cytokines and cathepsin S were evaluated by RT-qPCR, ELISA, and immunostaining with confocal microscopy. RESULTS: HCECs survived well in 450mOsM but partially damaged in 500mOsM medium. Ectoine well protected HCEC survival and proliferation at 500mOsM. The integrity of epithelial barrier was significantly disrupted in HCECs exposed to 450mOsM, as shown by 2D and 3D confocal immunofluorescent images of tight junction proteins ZO-1 and occludin. Ectoine at 5-20 mM well protected these barrier proteins under hyperosmotic stress. The expression of TNF-α, IL-1ß, IL-6 and IL-8 were dramatically stimulated by hyperosmolarity but significantly suppressed by Ectoine at 5-40 mM. Cathepsin S, which was stimulated by hyperosmolarity, directly disrupted epithelial barrier. Interestingly, anti-inflammatory cytokine IL-37 was suppressed by hyperosmolarity, but restored by ectoine at mRNA and protein levels. Furthermore, rhIL-37 suppressed cathepsin S and rescued cell survival and barrier in HCECs exposed to hyperosmolarity. CONCLUSION: Our findings demonstrate that ectoine protects HCEC survival and barrier from hyperosmotic stress by promoting IL-37. This provides new insight into pathogenesis and therapeutic potential for dry eye disease.


Subject(s)
Amino Acids, Diamino , Cell Survival , Epithelium, Corneal , Osmotic Pressure , Humans , Cell Survival/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/drug effects , Epithelium, Corneal/pathology , Cells, Cultured , Amino Acids, Diamino/pharmacology , Interleukin-1/metabolism , Interleukin-1/pharmacology , Enzyme-Linked Immunosorbent Assay , Microscopy, Confocal , Cell Proliferation/drug effects , Cytokines/metabolism
3.
FASEB J ; 36(5): e22270, 2022 05.
Article in English | MEDLINE | ID: mdl-35412656

ABSTRACT

Mutations in the CFTR gene lead to cystic fibrosis, a genetic disease associated with chronic infection and inflammation and ultimately respiratory failure. The most common CF-causing mutation is F508del and CFTR modulators (correctors and potentiators) are being developed to rescue its trafficking and activity defects. However, there are currently no modulators that stabilize the rescued membrane F508del-CFTR which is endocytosed and quickly degraded resulting in a shorter half-life than wild-type (WT). We previously reported that the extracellular signal-regulated kinase (ERK) MAPK pathway is involved in CFTR degradation upon cigarette smoke exposure. Interestingly, we found that ERK phosphorylation was increased in CF human bronchial epithelial (HBE) cells (CF-HBE41o- and primary CF-HBE) compared to non-CF controls, and this was likely due to signaling by the epidermal growth factor receptor (EGFR). EGFR can be activated by several ligands, and we provide evidence that amphiregulin (AREG) is important for activating this signaling axis in CF. The natural osmolyte ectoine stabilizes membrane macromolecules. We show that ectoine decreases ERK phosphorylation, increases the half-life of rescued CFTR, and increases CFTR-mediated chloride transport in combination with the CFTR corrector VX-661. Additionally, ectoine reduces production of AREG and interleukin-8 by CF primary bronchial epithelial cells. In conclusion, EGFR-ERK signaling negatively regulates CFTR and is hyperactive in CF, and targeting this axis with ectoine may prove beneficial for CF patients.


Subject(s)
Amino Acids, Diamino , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Amino Acids, Diamino/pharmacology , Amino Acids, Diamino/therapeutic use , Benzodioxoles , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Indoles , Mutation
4.
Res Microbiol ; 172(6): 103852, 2021.
Article in English | MEDLINE | ID: mdl-34246779

ABSTRACT

In contrast to mammalian cells, bacteria such as Escherichia coli have been shown to display tolerance towards the neurotoxin ß-methylamino-l-alanine (BMAA) suggesting that these prokaryotes possess a way to metabolise BMAA or its products, resulting in their export, degradation, or detoxification. Single gene deletion mutants of E. coli K-12 with inactivated amino acid biosynthesis pathways were treated with 500 µg/ml BMAA and the resulting growth was monitored. Wild type E. coli and most of the gene deletion mutants displayed unaltered growth in the presence of BMAA over 12 h. Conversely, deletion of genes in the cysteine biosynthesis pathway, cysE, cysK or cysM resulted in a BMAA dose-dependent growth delay in minimal medium. Through further studies of the ΔcysE strain, we observed increased susceptibility to oxidative stress from H2O2 in minimal medium, and disruptions in glutathione levels and oxidation state. The cysteine biosynthesis pathway is therefore linked to the tolerance of BMAA and oxidative stress in E. coli, which potentially represents a mechanism of BMAA detoxification.


Subject(s)
Amino Acids, Diamino/pharmacology , Cyanobacteria Toxins/pharmacology , Cysteine/biosynthesis , Escherichia coli/drug effects , Escherichia coli/metabolism , Amino Acids, Diamino/metabolism , Amino Acids, Diamino/toxicity , Culture Media , Cyanobacteria Toxins/metabolism , Cyanobacteria Toxins/toxicity , Cysteine Synthase/genetics , Drug Tolerance , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Gene Deletion , Glutathione/metabolism , Hydrogen Peroxide/pharmacology , Metabolic Networks and Pathways , Oxidation-Reduction , Oxidative Stress , Serine O-Acetyltransferase/genetics
5.
J Pharmacol Sci ; 146(4): 206-215, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34116734

ABSTRACT

AIMS: To investigate the effect of dencichine on osteoclastogenesis in vivo and in vitro. METHODS: RANKL-induced osteoclastogenesis were treated with different concentrations of dencichine. Pit forming assays were applied to evaluate the degree of bone resorption. Osteoclastogenic markers were detected by real-time quantitative PCR (RT-qPCR) and Western blot. Micro CT was conducted to investigate the effects of dencichine on osteoclastogenesis in ovariectomized (OVX) mice. RESULTS: Dencichine suppressed osteoclastogenesis through the inhibition of phosphorylation of p65, p50 (NF-κB pathway), p38, ERK and JNK (MAPKs pathway) in vitro. Furthermore, dencichine inhibited the function of osteoclasts in a dose-dependent manner. In addition, the expression levels of the nuclear factor of activated T cells 1 (NFATc1) and osteoclastogenesis markers were decreased by dencichine, including MMP-9, Cathepsin K (CTSK), Tartrate-Resistant Acid Phosphatase (TRAP), C-FOS, dendritic cell specific transmembrane protein (DC-STAMP). In vivo data proved that dencichine alleviated ovariectomy-induced bone loss and osteoclastogenesis in mice. CONCLUSION: Our results demonstrate that dencichine alleviates OVX-induced bone loss in mice and inhibits RANKL-mediated osteoclastogenesis via inhibition of NF-κB and MAPK pathways in vitro, suggesting that dencichine might serve as a promising candidate for treatment of bone loss diseases, including PMOP and rheumatoid arthritis.


Subject(s)
Amino Acids, Diamino/pharmacology , Amino Acids, Diamino/therapeutic use , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Osteoporosis, Postmenopausal/etiology , Osteoporosis, Postmenopausal/prevention & control , Ovariectomy/adverse effects , RANK Ligand/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Animals , Female , Humans , Mice , Mice, Inbred C57BL , Osteoporosis, Postmenopausal/genetics , RAW 264.7 Cells
6.
Toxins (Basel) ; 13(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946501

ABSTRACT

Non-proteinogenic neurotoxic amino acid ß-N-methylamino-L-alanine (BMAA) is synthesized by cyanobacteria, diatoms, and dinoflagellates, and is known to be a causative agent of human neurodegenerative diseases. Different phytoplankton organisms' ability to synthesize BMAA could indicate the importance of this molecule in the interactions between microalgae in nature. We were interested in the following: what kinds of mechanisms underline BMAA's action on cyanobacterial cells in different nitrogen supply conditions. Herein, we present a proteomic analysis of filamentous cyanobacteria Nostoc sp. PCC 7120 cells that underwent BMAA treatment in diazotrophic conditions. In diazotrophic growth conditions, to survive, cyanobacteria can use only biological nitrogen fixation to obtain nitrogen for life. Note that nitrogen fixation is an energy-consuming process. In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by using LC-MS/MS spectrometry. Among them, 123 proteins belonging to different functional categories were selected-due to their notable expression differences-for further functional analysis and discussion. The presented proteomic data evidences that BMAA treatment leads to very strong (up to 80%) downregulation of α (NifD) and ß (NifK) subunits of molybdenum-iron protein, which is known to be a part of nitrogenase. This enzyme is responsible for catalyzing nitrogen fixation. The genes nifD and nifK are under transcriptional control of a global nitrogen regulator NtcA. In this study, we have found that BMAA impacts in a total of 22 proteins that are under the control of NtcA. Moreover, BMAA downregulates 18 proteins that belong to photosystems I or II and light-harvesting complexes; BMAA treatment under diazotrophic conditions also downregulates five subunits of ATP synthase and enzyme NAD(P)H-quinone oxidoreductase. Therefore, we can conclude that the disbalance in energy and metabolite amounts leads to severe intracellular stress that induces the upregulation of stress-activated proteins, such as starvation-inducible DNA-binding protein, four SOS-response enzymes, and DNA repair enzymes, nine stress-response enzymes, and four proteases. The presented data provide new leads into the ecological impact of BMAA on microalgal communities that can be used in future investigations.


Subject(s)
Amino Acids, Diamino/pharmacology , Nitrogen Fixation/drug effects , Nostoc/drug effects , Bacterial Proteins/metabolism , Bicarbonates/metabolism , Carbohydrate Metabolism/drug effects , Carbon Dioxide/metabolism , Cyanobacteria Toxins , Down-Regulation/drug effects , Nitrogen/metabolism , Nitrogenase/metabolism , Nostoc/metabolism , Nostoc/physiology , Phosphorylation/drug effects , Photosynthesis/drug effects , Proteomics , Stress, Physiological/drug effects
7.
J Neuroinflammation ; 17(1): 332, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33153477

ABSTRACT

BACKGROUND: After decades of research recognizing it as a complex multifactorial disorder, sporadic Alzheimer's disease (sAD) still has no known etiology. Adding to the myriad of different pathways involved, bacterial neurotoxins are assuming greater importance in the etiology and/or progression of sAD. ß-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by some microorganisms namely cyanobacteria, was previously detected in the brains of AD patients. Indeed, the consumption of BMAA-enriched foods has been proposed to induce amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), which implicated this microbial metabolite in neurodegeneration mechanisms. METHODS: Freshly isolated mitochondria from C57BL/6 mice were treated with BMAA and O2 consumption rates were determined. O2 consumption and glycolysis rates were also measured in mouse primary cortical neuronal cultures. Further, mitochondrial membrane potential and ROS production were evaluated by fluorimetry and the integrity of mitochondrial network was examined by immunofluorescence. Finally, the ability of BMAA to activate neuronal innate immunity was quantified by addressing TLRs (Toll-like receptors) expression, p65 NF-κB translocation into the nucleus, increased expression of NLRP3 (Nod-like receptor 3), and pro-IL-1ß. Caspase-1 activity was evaluated using a colorimetric substrate and mature IL-1ß levels were also determined by ELISA. RESULTS: Treatment with BMAA reduced O2 consumption rates in both isolated mitochondria and in primary cortical cultures, with additional reduced glycolytic rates, decrease mitochondrial potential and increased ROS production. The mitochondrial network was found to be fragmented, which resulted in cardiolipin exposure that stimulated inflammasome NLRP3, reinforced by decreased mitochondrial turnover, as indicated by increased p62 levels. BMAA treatment also activated neuronal extracellular TLR4 and intracellular TLR3, inducing p65 NF-κB translocation into the nucleus and activating the transcription of NLRP3 and pro-IL-1ß. Increased caspase-1 activity resulted in elevated levels of mature IL-1ß. These alterations in mitochondrial metabolism and inflammation increased Tau phosphorylation and Aß peptides production, two hallmarks of AD. CONCLUSIONS: Here we propose a unifying mechanism for AD neurodegeneration in which a microbial toxin can induce mitochondrial dysfunction and activate neuronal innate immunity, which ultimately results in Tau and Aß pathology. Our data show that neurons, alone, can mount inflammatory responses, a role previously attributed exclusively to glial cells.


Subject(s)
Alzheimer Disease/pathology , Amino Acids, Diamino/pharmacology , Cerebral Cortex/drug effects , Immunity, Innate/drug effects , Mitochondria/drug effects , Neurons/drug effects , Alzheimer Disease/immunology , Animals , Cerebral Cortex/immunology , Cerebral Cortex/pathology , Cyanobacteria Toxins , Mice , Mitochondria/immunology , Mitochondria/pathology , Neurons/immunology , Neurons/pathology
8.
Toxins (Basel) ; 12(8)2020 08 13.
Article in English | MEDLINE | ID: mdl-32823543

ABSTRACT

Produced by cyanobacteria and some plants, BMAA is considered as an important environmental factor in the occurrence of some neurodegenerative diseases. Neither the underlying mechanism of its toxicity, nor its biosynthetic or metabolic pathway in cyanobacteria is understood. Interestingly, BMAA is found to be toxic to some cyanobacteria, making it possible to dissect the mechanism of BMAA metabolism by genetic approaches using these organisms. In this study, we used the cyanobacterium Anabaena PCC 7120 to isolate BMAA-resistant mutants. Following genomic sequencing, several mutations were mapped to two genes involved in amino acids transport, suggesting that BMAA was taken up through amino acid transporters. This conclusion was supported by the protective effect of several amino acids against BMAA toxicity. Furthermore, targeted inactivation of genes encoding different amino acid transport pathways conferred various levels of resistance to BMAA. One mutant inactivating all three major amino acid transport systems could no longer take up BMAA and gained full resistance to BMAA toxicity. Therefore, BMAA is a substrate of amino acid transporters, and cyanobacteria are interesting models for genetic analysis of BMAA transport and metabolism.


Subject(s)
Amino Acid Transport Systems/genetics , Amino Acids, Diamino/metabolism , Amino Acids/metabolism , Anabaena/genetics , Anabaena/metabolism , Amino Acids, Diamino/pharmacology , Anabaena/drug effects , Cyanobacteria Toxins , Genome, Bacterial , Mutation , Neurotoxins/metabolism
9.
J Biotechnol ; 322: 21-28, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32653639

ABSTRACT

Bacteria from the genus Halomonas hold promise in biotechnology as sources of salt-tolerant enzymes, biosurfactants, biopolymers, osmolytes, and as actors in bioremediation processes. In a previous work, we have identified Halomonas socia strain CKY01 having various hydrolase activities. Here, we aimed to study the survival strategies of marine bacteria. A deep genome sequencing study of H. socia CKY01 has revealed 4627 genes reaching 4,753,299 bp with 64 % of GC content. This strain produced polyhydroxybutyrate (PHB) having one gene clusters having phaC and phasin, and it has several genes responsible for the uptake, synthesis, and transport of the osmolytes such as betaine, choline, ectoine, carnitine, and proline in the bacterial genome. The addition of 60 mM glutamate, 60 mM proline and 60 mM ectoine enhanced growth 300.8 %, 294.2 % and 235.0 %, respectively, under 10 % saline conditions. In particular, ectoine and proline increased salt resistance and allowed cells to survive in more than 15 % NaCl. By combining experimental and genome sequencing data, we have investigated the importance of osmolytes on the survival of this Halomonas strain.


Subject(s)
Genome, Bacterial/genetics , Halomonas , Salt Tolerance , Amino Acids, Diamino/pharmacology , Halomonas/drug effects , Halomonas/genetics , Halomonas/physiology , Osmolar Concentration , Proline/pharmacology , Salinity , Salt Tolerance/drug effects , Salt Tolerance/physiology , Sodium Chloride/pharmacology , Whole Genome Sequencing
10.
World J Microbiol Biotechnol ; 36(6): 89, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32507915

ABSTRACT

Chaotropicity has long been recognised as a property of some compounds. Chaotropes tend to disrupt non-covalent interactions in biological macromolecules (e.g. proteins and nucleic acids) and supramolecular assemblies (e.g. phospholipid membranes). This results in the destabilisation and unfolding of these macromolecules and assemblies. Unsurprisingly, these compounds are typically harmful to living cells since they act against multiple targets, comprising cellular integrity and function. Kosmotropes are the opposite of chaotropes and these compounds promote the ordering and rigidification of biological macromolecules and assemblies. Since many biological macromolecules have optimum levels of flexibility, kosmotropes can also inhibit their activity and can be harmful to cells. Some products of industrial fermentations, most notably alcohols, are chaotropic. This property can be a limiting factor on rates of production and yields. It has been hypothesised that the addition of kosmotropes may mitigate the chaotropicity of some fermentation products. Some microbes naturally adapt to chaotropic environments by producing kosmotropic compatible solutes. Exploitation of this in industrial fermentations has been hampered by scientific and economic issues. The cost of the kosmotropes and their removal during purification needs to be considered. We lack a complete understanding of the chemistry of chaotropicity and a robust, quantitative framework for estimating overall chaotropicities of mixtures. This makes it difficult to predict the amount of kosmotrope required to neutralise the chaotropicity. This review considers examples of industrial fermentations where chaotropicity is an issue and suggests possible mitigations.


Subject(s)
Biofuels , Bioreactors/microbiology , Fermentation , Alcohols/metabolism , Amino Acids, Diamino/pharmacology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Biofuels/analysis , Biofuels/microbiology , Butanols/metabolism , Ethanol/metabolism , Genes, Bacterial , Genes, Fungal , Glycerol , Methylamines , Protein Structure, Secondary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sulfides/chemistry , Urea/chemistry , Water/chemistry , Yeasts/genetics , Yeasts/metabolism , Zymomonas/drug effects , Zymomonas/metabolism
11.
Toxins (Basel) ; 12(6)2020 06 04.
Article in English | MEDLINE | ID: mdl-32512731

ABSTRACT

All cyanobacteria produce a neurotoxic non-protein amino acid ß-N-methylamino-L-alanine (BMAA). However, the biological function of BMAA in the regulation of cyanobacteria metabolism still remains undetermined. It is known that BMAA suppresses the formation of heterocysts in diazotrophic cyanobacteria under nitrogen starvation conditions, and BMAA induces the formation of heterocyst-like cells under nitrogen excess conditions, by causing the expression of heterocyst-specific genes that are usually "silent" under nitrogen-replete conditions, as if these bacteria receive a nitrogen deficiency intracellular molecular signal. In order to find out the molecular mechanisms underlying this unexpected BMAA effect, we studied the proteome of cyanobacterium Nostoc sp. PCC 7120 grown under BMAA treatment in nitrogen-replete medium. Experiments were performed in two experimental settings: (1) in control samples consisted of cells grown without the BMAA treatment and (2) the treated samples consisted of cells grown with addition of an aqueous solution of BMAA (20 µM). In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by LC-MS/MS spectrometry. Among them, 80 proteins belonging to different functional categories were chosen for further functional analysis and interpretation of obtained proteomic data. Here, we provide the evidence that a pleiotropic regulatory effect of BMAA on the proteome of cyanobacterium was largely different under conditions of nitrogen-excess compared to its effect under nitrogen starvation conditions (that was studied in our previous work). The most significant difference in proteome expression between the BMAA-treated and untreated samples under different growth conditions was detected in key regulatory protein PII (GlnB). BMAA downregulates protein PII in nitrogen-starved cells and upregulates this protein in nitrogen-replete conditions. PII protein is a key signal transduction protein and the change in its regulation leads to the change of many other regulatory proteins, including different transcriptional factors, enzymes and transporters. Complex changes in key metabolic and regulatory proteins (RbcL, RbcS, Rca, CmpA, GltS, NodM, thioredoxin 1, RpbD, ClpP, MinD, RecA, etc.), detected in this experimental study, could be a reason for the appearance of the "starvation" state in nitrogen-replete conditions in the presence of BMAA. In addition, 15 proteins identified in this study are encoded by genes, which are under the control of NtcA-a global transcriptional regulator-one of the main protein partners and transcriptional regulators of PII protein. Thereby, this proteomic study gives a possible explanation of cyanobacterium starvation under nitrogen-replete conditions and BMAA treatment. It allows to take a closer look at the regulation of cyanobacteria metabolism affected by this cyanotoxin.


Subject(s)
Amino Acids, Diamino/pharmacology , Bacterial Proteins/metabolism , Nitrogen/metabolism , Nostoc/drug effects , Proteomics , Chromatography, High Pressure Liquid , Cyanobacteria Toxins , Glutamate Synthase/metabolism , Nostoc/metabolism , PII Nitrogen Regulatory Proteins/metabolism , Tandem Mass Spectrometry
12.
Biotechnol Lett ; 42(6): 1003-1017, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32062816

ABSTRACT

PURPOSE: Numerous applications of compatible salts (osmolytes) as ectoine in food and pharmaceutical industries have been intensively increased nowadays. Decreasing the cost of industrial production of ectoine using low-cost cultivation media and improving the yield through modeling procedures are the main scopes of the present study. METHODS: Three statistical design experiments have been successfully applied for screening the parameters affecting the production process, studying the relations among parameters and optimizing the production using response surface methodology. RESULTS: A novel semi-synthetic medium based on hydrolyzed corn gluten meal has been developed to cultivate moderate halophilic bacterial strains; Vibrio sp. CS1 and Salinivibrio costicola SH3, and support ectoine synthesis under salinity stress. Two regression equations describe the production process in the new medium have been formulated for each bacterial strain. Response surface optimizer of the central composite model predicts the maximum ectoine production is achieved at incubation time; 63.7 h, pH; 7.47 and salinity; 7.27% for Vibrio sp. CS1 whereas these variables should be adjusted at 56.95 h, 7.089 and 10.34%; on the same order regarding Salinivibrio costicola SH3. In application studies, 50 µg ectoine decreases RBCs hemolysis due to streptolysin O toxin by 21.7% within ten minutes. In addition, 2% ectoine succeeds to increase the viability of lactic acid bacteria in Yogurt as a classic example of functional food during the storage period (7 days). CONCLUSION: The present study emphasizes on modeling the process of ectoine production by halophilic bacteria as well as its activity as a cryoprotectant agent.


Subject(s)
Amino Acids, Diamino , Osmolar Concentration , Amino Acids, Diamino/biosynthesis , Amino Acids, Diamino/metabolism , Amino Acids, Diamino/pharmacology , Culture Media/chemistry , Culture Media/metabolism , Hydrogen-Ion Concentration , Lactobacillales/drug effects , Models, Statistical , Salinity , Vibrio/metabolism , Vibrionaceae/metabolism , Yogurt/microbiology
13.
World J Microbiol Biotechnol ; 36(1): 6, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31832888

ABSTRACT

This study presents an anhydrobiotic engineering approach aiming at conferring a high degree of desiccation tolerance to the Gram-negative endophyte Kosakonia radicincitans. In particular, pre-conditioning of bacteria under high salinities provides a remarkable positive influence on drying survival. The endophytic bacteria accumulate exogenous hydroxyectoine > 500 µmol g-1 dry weight cells exerted by osmotic stress at 4% NaCl. Microfermentation research demonstrated that hydroxyectoine provides positive effects on reducing the lag phase duration and alleviates the dissolved oxygen consumption under high salinity conditions. Beyond the amassing of hydroxyectoine, this work provides evidence supporting the notion that hydroxyectoine can produce significant changes in the endogenous bacterial metabolome during the exponential growth phase at high-osmolarity. Metabolome changes include alterations on tricarboxylic acid cycle, novo-synthesis of specific intracellular metabolites such as mannitol, myo-inositol and trehalose, and fold changes on amino acids such as L-leucine, L-asparagine, L-serine, L-methionine and L-proline. The significant fold change of L-aspartate suggests a potential acidic proteome at high-osmolarity environments, extending the knowledge of salt-stressed bacterial endophytes. Thus, these findings place the metabolic salt stress response and the hydroxyectoine accumulation by K. radicincitans into a physiological context, paving the way into the interaction between cellular phenotype associated with salt stress tolerance and drying survival capacity of Gram-negative endophytes.


Subject(s)
Amino Acids, Diamino/pharmacology , Endophytes/physiology , Enterobacteriaceae/physiology , Salt Tolerance/physiology , Desiccation , Fermentation , Metabolome , Osmolar Concentration , Osmotic Pressure , Salinity , Stress, Physiological/physiology , Trehalose/metabolism
14.
Sci Rep ; 9(1): 10743, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31341250

ABSTRACT

Cellular clearance mechanisms including the autophagy-lysosome pathway are impaired in amyotrophic lateral sclerosis (ALS). One of the most important proteins involved in the regulation of autophagy is the lysosomal Ca2+ channel Mucolipin TRP channel 1 (TRPML1). Therefore, we investigated the role of TRPML1 in a neuronal model of ALS/Parkinson-dementia complex reproduced by the exposure of motor neurons to the cyanobacterial neurotoxin beta-methylamino-L-alanine (L-BMAA). Under these conditions, L-BMAA induces a dysfunction of the endoplasmic reticulum (ER) leading to ER stress and cell death. Therefore we hypothesized a dysfunctional coupling between lysosomes and ER in L-BMAA-treated motor neurons. Here, we showed that in motor neuronal cells TRPML1 as well as the lysosomal protein LAMP1 co-localized with ER. In addition, TRPML1 co-immunoprecipitated with the ER Ca2+ sensor STIM1. Functionally, the TRPML1 agonist ML-SA1 induced lysosomal Ca2+ release in a dose-dependent way in motor neuronal cells. The SERCA inhibitor thapsigargin increased the fluorescent signal associated with lysosomal Ca2+ efflux in the cells transfected with the genetically encoded Ca2+ indicator GCaMP3-ML1, thus suggesting an interplay between the two organelles. Moreover, chronic exposure to L-BMAA reduced TRPML1 protein expression and produced an impairment of both lysosomal and ER Ca2+ homeostasis in primary motor neurons. Interestingly, the preincubation of ML-SA1, by an early activation of AMPK and beclin 1, rescued motor neurons from L-BMAA-induced cell death and reduced the expression of the ER stress marker GRP78. Finally, ML-SA1 reduced the accumulation of the autophagy-related proteins p62/SQSTM1 and LC3-II in L-BMAA-treated motor neurons. Collectively, we propose that the pharmacological stimulation of TRPML1 can rescue motor neurons from L-BMAA-induced toxicity by boosting autophagy and reducing ER stress.


Subject(s)
Amino Acids, Diamino/pharmacology , Autophagy/drug effects , Motor Neurons/drug effects , Transient Receptor Potential Channels/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Cyanobacteria Toxins , Disease Models, Animal , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Hybrid Cells , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Motor Neurons/metabolism , Neuroprotective Agents/pharmacology , Phthalimides/pharmacology , Quinolines/pharmacology , Rats , Rats, Wistar , Transient Receptor Potential Channels/drug effects
15.
Cell Death Dis ; 10(7): 478, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31209203

ABSTRACT

The widespread environmental contaminant ß-methylamino-L-alanine (BMAA) is a developmental neurotoxicant that can induce long-term learning and memory deficits. Studies have shown high transplacental transfer of 3H-BMAA and a significant uptake in fetal brain. Therefore, more information on how BMAA may influence growth and differentiation of neural stem cells is required for assessment of the risk to the developing brain. The aim of this study was to investigate direct and mitotically inherited effects of BMAA exposure using primary striatal neurons and embryonic neural stem cells. The neural stem cells were shown to be clearly more susceptible to BMAA exposure than primary neurons. Exposure to 250 µM BMAA reduced neural stem cell proliferation through apoptosis and G2/M arrest. At lower concentrations (50-100 µM), not affecting cell proliferation, BMAA reduced the differentiation of neural stem cells into astrocytes, oligodendrocytes, and neurons through glutamatergic mechanisms. Neurons that were derived from the BMAA-treated neuronal stem cells demonstrated morphological alterations including reduced neurite length, and decreased number of processes and branches per cell. Interestingly, the BMAA-induced changes were mitotically heritable to daughter cells. The results suggest that early-life exposure to BMAA impairs neuronal stem cell programming, which is vital for development of the nervous system and may result in long-term consequences predisposing for both neurodevelopmental disorders and neurodegenerative disease later in life. More attention should be given to the potential adverse effects of BMAA exposure on brain development.


Subject(s)
Amino Acids, Diamino/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Survival/drug effects , Cells, Cultured , Cyanobacteria Toxins , Flow Cytometry , Immunohistochemistry , Neural Stem Cells/metabolism , Rats , Rats, Wistar
16.
Sci Total Environ ; 683: 193-201, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31129327

ABSTRACT

DMSO is a very common solvent for hydrophobic chemicals that may pose a threat to aquatic organisms. Ectoine (ECT) is a protective amino acid produced by various strains of halophilic bacteria with high potential to alleviate detrimental effects induced by environmental stressors. This amino acid is used in many cosmetics and pharmaceuticals may enter aquatic ecosystems interacting with ions and macromolecules. Little is known on the effects of DMSO and its interaction with ECT on behavioral, physiological and biochemical endpoints of aquatic invertebrates. Therefore, the purpose of the present study was to determine protective effects of DMSO alone and in the combination with ECT on hopping frequency, swimming speed, heart rate, thoracic limb activity, catalase activity and NOx level in an animal model, Daphnia magna subjected to 0.1% and 1% DMSO alone and during combinatorial exposure to ECT (0-25 mg/L) and DMSO for 24 h and 48 h. The results showed that swimming speed, heart rate and thoracic limb activity were inhibited by both 0.1% and 1% DMSO alone however alleviating effects were observed in the combination DMSO + ECT. Thoracic limb activity was higher in the animals exposed to both solutions of DMSO alone, however the parameter was more stimulated at DMSO + ECT. The results suggest that DMSO alone may alter Daphnia behavior and physiological parameters, therefore use of the control group of non-treated animals with DMSO alone would be recommended to avoid data misinterpretation.


Subject(s)
Amino Acids, Diamino/pharmacology , Daphnia/drug effects , Dimethyl Sulfoxide/toxicity , Protective Agents/pharmacology , Water Pollutants, Chemical/toxicity , Animals , Arthropod Proteins/metabolism , Catalase/metabolism , Daphnia/enzymology , Daphnia/physiology , Heart Rate/drug effects , Locomotion/drug effects , Movement/drug effects , Nitric Oxide/metabolism , Swimming
17.
Sci Rep ; 9(1): 6594, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036876

ABSTRACT

Ectoine is a natural protectant expressed by halophile bacteria to resist challenges of their natural environments, such as drought, heat or high salt concentrations. As a compatible solute, ectoine does not interfere with the cell's metabolism even at high molar concentrations. External application of ectoine results in surface hydration and membrane stabilization. It can reduce inflammation processes and was recently tested in a pilot study for the prevention and treatment of chemotherapy-induced oral mucositis. Oral mucositis is especially frequent and severe in patients with head and neck squamous cell carcinoma (HNSCC), who receive radiotherapy or chemoradiation. It is extremely painful, can limit nutritional intake and may necessitate treatment interruptions, which can critically compromise outcome. As it was recently reported that in vitro ectoine has the ability to protect DNA against ionizing irradiation, it was the aim of this study to test whether ectoine may protect HNSCC cells from radiotherapy. Using HNSCC cell lines and primary human fibroblasts, we can show that in living cells ectoine does not impair DNA damage induction and cytotoxicity through ionizing radiation. We therefore conclude that testing the ectopic application of ectoine for its ability to alleviate early radiotherapy/chemoradiation-induced side effects is safe and feasible.


Subject(s)
Amino Acids, Diamino/pharmacology , Antineoplastic Agents/pharmacology , Inflammation/drug therapy , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , DNA Damage/radiation effects , Fibroblasts/drug effects , Fibroblasts/radiation effects , Humans , Inflammation/etiology , Inflammation/pathology , Primary Cell Culture , Radiation Injuries/drug therapy , Radiation, Ionizing , Radiotherapy/adverse effects , Squamous Cell Carcinoma of Head and Neck/complications , Squamous Cell Carcinoma of Head and Neck/pathology , Stomatitis/drug therapy , Stomatitis/etiology , Stomatitis/genetics , Stomatitis/pathology
18.
Exp Cell Res ; 379(2): 172-181, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30953622

ABSTRACT

The neurotoxin ß-N-methylamino-l-alanine replaces l-serine in proteins and produces Alzheimer-like pathology. In proteoglycans, e.g. glypican-1, this should preclude substitution with heparan sulfate chains. Reduced release of heparan sulfate should increase ß-secretase activity and processing of amyloid precursor protein. Cultured cells were treated with ß-N-methylamino-l-alanine during the growth-phase and the effect on heparan sulfate substitution and amyloid precursor protein processing was evaluated using antibodies specific for heparan sulfate, the N- and C-termini of the C-terminal fragment of ß-cleaved amyloid precursor protein, and amyloid beta followed by immunofluorescence microscopy, flow cytometry or SDS-PAGE. Mouse fibroblasts, N2a neuroblastoma cells and human neural stem cells released less heparan sulfate when grown in the presence of ß-N-methylamino-l-alanine. Cells expressing a recombinant, anchor-less glypican-1 secreted heparan sulfate-deficient glypican-1. There was increased processing of amyloid precursor protein in N2a cells when grown in the presence of the neurotoxin. The degradation products accumulated in cytoplasmic clusters. Secretion of amyloid beta increased approx. 3-fold. Human neural stem cells also developed cytoplasmic clusters containing degradation products of amyloid precursor protein. When non-dividing mouse N2a cells or cortical neurons were exposed to ß-N-methylamino-l-alanine there was no effect on heparan sulfate substitution in glypican-1 or on amyloid precursor protein processing.


Subject(s)
Amino Acids, Diamino/pharmacology , Amyloid beta-Protein Precursor/metabolism , Endosomes/drug effects , Glypicans/metabolism , Neurons/drug effects , Amyloid beta-Peptides/drug effects , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/drug effects , Animals , Carrier Proteins/metabolism , Cyanobacteria Toxins , Endosomes/metabolism , Heparitin Sulfate/metabolism , Humans , Mice , Neurons/metabolism , Proteoglycans/metabolism
19.
Biomed Pharmacother ; 114: 108801, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30928803

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is one of the most serious and dangerous chronic complications of diabetes mellitus.Panax notoginseng has been widely used with great efficacy in the long-term treatment of kidney disease. However, the mechanism by which it exerts its effects has not been fully elucidated. AIM: We sought to identify the major components ofPanax notoginseng that are effective in reducing the symptoms of DN in vitro and in vivo. METHODS: Inhibition of cell proliferation and collagen secretion were used to screen the ten most highly concentrated components ofPanax notoginseng. The STZ-induced DN rat model on a high-fat-high-glucose diet was used to investigate the renal protective effect of Panax notoginseng and dencichine and their underlying molecular mechanisms. RESULTS: Among the ten components analysed, dencichine (ß-N-oxalyl-L-α,ß-diaminopropionic acid) was the most protective against DN. Dencichine andPanax notoginseng attenuated glucose and lipid metabolic disorders in STZ-induced DN rats on a high-fat-high-glucose diet. In the untreated DN rats, we observed albuminuria, renal failure, and pathological changes. However, treatment with dencichine and Panax notoginseng alleviated these symptoms. We also observed that dencichine suppressed the expression of TGF-ß1 and Smad2/3, which mediates mesangial cell proliferation and extracellular matrix (ECM) accumulation in the glomerulus, and enhanced the expression of Smad7, the endogenous inhibitor of the TGF-ß1/Smad signalling pathway. CONCLUSION: From these results, we concluded that dencichine is the main compound inPanax notoginseng that is responsible for alleviating renal injury in the experimental DN model. Its mechanism may be related to the reduction of the deposition of ECM in glomeruli and inhibition of the epithelial mesenchymal transformation (EMT) by inhibition of the TGF-ß1/Smad signalling pathway.


Subject(s)
Amino Acids, Diamino/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/pharmacology , Kynuramine/pharmacology , Panax notoginseng/chemistry , Animals , Cell Line , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Extracellular Matrix/drug effects , Kidney/drug effects , Kidney/metabolism , Male , Rats , Rats, Sprague-Dawley , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , beta-Alanine/analogs & derivatives , beta-Alanine/pharmacology
20.
Photosynth Res ; 141(2): 165-179, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30701483

ABSTRACT

In the present study, we have investigated the effect of hydroxyectoine (Ect-OH), a heterocyclic amino acid, on oxygen evolution in photosystem II (PS II) membrane fragments and on photoinhibition of Mn-depleted PS II (apo-WOC-PS II) preparations. The degree of photoinhibition of apo-WOC-PS II preparations was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to restore the amplitude of light-induced changes of chlorophyll fluorescence yield (∆F). It was found that Ect-OH (i) stimulates the oxygen-evolving activity of PS II, (ii) accelerates the electron transfer from exogenous electron donors (K4[Fe(CN)6], DPC, TMPD, Fe2+, and Mn2+) to the reaction center of apo-WOC-PS II, (iii) enhances the protective effect of exogenous electron donors against donor-side photoinhibition of apo-WOC-PS II preparations. It is assumed that Ect-OH can serve as an artificial electron donor for apo-WOC-PS II, which does not directly interact with either the donor or acceptor side of the reaction center. We suggest that the protein conformation in the presence of Ect-OH, which affects the extent of hydration, becomes favorable for accepting electrons from exogenous donors. To our knowledge, this is the first study dealing with redox activity of Ect-OH towards photosynthetic pigment-protein complexes.


Subject(s)
Amino Acids, Diamino/pharmacology , Electron Transport/drug effects , Manganese/metabolism , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Spinacia oleracea/physiology , Electrons , Oxidation-Reduction/drug effects , Plant Leaves/physiology , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...