Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5714, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977701

ABSTRACT

Genetic code expansion has emerged as a powerful tool for precisely introducing unnatural chemical structures into proteins to improve their catalytic functions. Given the high catalytic propensity of histidine in the enzyme pocket, increasing the chemical diversity of catalytic histidine could result in new characteristics of biocatalysts. Herein, we report the genetically encoded Nδ-Vinyl Histidine (δVin-H) and achieve the wild-type-like incorporation efficiency by the evolution of pyrrolysyl tRNA synthetase. As histidine usually acts as the nucleophile or the metal ligand in the catalytic center, we replace these two types of catalytic histidine to δVin-H to improve the performance of the histidine-involved catalytic center. Additionally, we further demonstrate the improvements of the hydrolysis activity of a previously reported organocatalytic esterase (the OE1.3 variant) in the acidic condition and myoglobin (Mb) catalyzed carbene transfer reactions under the aerobic condition. As histidine is one of the most frequently used residues in the enzyme catalytic center, the derivatization of the catalytic histidine by δVin-H holds a great potential to promote the performance of biocatalysts.


Subject(s)
Catalytic Domain , Histidine , Histidine/metabolism , Histidine/chemistry , Histidine/genetics , Myoglobin/genetics , Myoglobin/chemistry , Myoglobin/metabolism , Biocatalysis , Catalysis , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Esterases/genetics , Esterases/metabolism , Esterases/chemistry , Hydrolysis , Escherichia coli/genetics , Escherichia coli/metabolism
2.
Nucleic Acids Res ; 52(12): 7096-7111, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38783009

ABSTRACT

Aminoacyl-tRNA synthetases (AARS) and tRNAs translate the genetic code in all living cells. Little is known about how their molecular ancestors began to enforce the coding rules for the expression of their own genes. Schimmel et al. proposed in 1993 that AARS catalytic domains began by reading an 'operational' code in the acceptor stems of tRNA minihelices. We show here that the enzymology of an AARS urzyme•TΨC-minihelix cognate pair is a rich in vitro realization of that idea. The TΨC-minihelixLeu is a very poor substrate for full-length Leucyl-tRNA synthetase. It is a superior RNA substrate for the corresponding urzyme, LeuAC. LeuAC active-site mutations shift the choice of both amino acid and RNA substrates. AARS urzyme•minihelix cognate pairs are thus small, pliant models for the ancestral decoding hardware. They are thus an ideal platform for detailed experimental study of the operational RNA code.


Subject(s)
Amino Acyl-tRNA Synthetases , Nucleic Acid Conformation , RNA, Transfer , RNA, Transfer/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Catalytic Domain , Genetic Code , RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , Substrate Specificity , Leucine-tRNA Ligase/metabolism , Leucine-tRNA Ligase/chemistry , Leucine-tRNA Ligase/genetics
3.
Protein Sci ; 33(6): e5028, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757396

ABSTRACT

Prolyl-tRNA synthetase (ProRS), belonging to the family of aminoacyl-tRNA synthetases responsible for pairing specific amino acids with their respective tRNAs, is categorized into two distinct types: the eukaryote/archaeon-like type (E-type) and the prokaryote-like type (P-type). Notably, these types are specific to their corresponding cognate tRNAs. In an intriguing paradox, Thermus thermophilus ProRS (TtProRS) aligns with the E-type ProRS but selectively charges the P-type tRNAPro, featuring the bacterium-specific acceptor-stem elements G72 and A73. This investigation reveals TtProRS's notable resilience to the inhibitor halofuginone, a synthetic derivative of febrifugine emulating Pro-A76, resembling the characteristics of the P-type ProRS. Furthermore, akin to the P-type ProRS, TtProRS identifies its cognate tRNA through recognition of the acceptor-stem elements G72/A73, along with the anticodon elements G35/G36. However, in contrast to the P-type ProRS, which relies on a strictly conserved R residue within the bacterium-like motif 2 loop for recognizing G72/A73, TtProRS achieves this through a non-conserved sequence, RTR, within the otherwise non-interacting eukaryote-like motif 2 loop. This investigation sheds light on the adaptive capacity of a typically conserved housekeeping enzyme to accommodate a novel substrate.


Subject(s)
Amino Acyl-tRNA Synthetases , RNA, Transfer, Pro , Thermus thermophilus , Thermus thermophilus/chemistry , Thermus thermophilus/enzymology , Thermus thermophilus/genetics , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , RNA, Transfer, Pro/chemistry , RNA, Transfer, Pro/genetics , RNA, Transfer, Pro/metabolism , Amino Acid Motifs , Amino Acid Sequence , Inverted Repeat Sequences , Evolution, Molecular , Yeasts/enzymology , Protein Synthesis Inhibitors/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Piperidines/pharmacology , Quinazolinones/pharmacology
4.
Biochemistry ; 63(13): 1621-1635, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38607680

ABSTRACT

Polyethylene glycol (PEG) is a flexible, nontoxic polymer commonly used in biological and medical research, and it is generally regarded as biologically inert. PEG molecules of variable sizes are also used as crowding agents to mimic intracellular environments. A recent study with PEG crowders revealed decreased catalytic activity of Escherichia coli prolyl-tRNA synthetase (Ec ProRS), where the smaller molecular weight PEGs had the maximum impact. The molecular mechanism of the crowding effects of PEGs is not clearly understood. PEG may impact protein conformation and dynamics, thus its function. In the present study, the effects of PEG molecules of various molecular weights and concentrations on the conformation and dynamics of Ec ProRS were investigated using a combined experimental and computational approach including intrinsic tryptophan fluorescence spectroscopy, atomic force microscopy, and atomistic molecular dynamic simulations. Results of the present study suggest that lower molecular weight PEGs in the dilute regime have modest effects on the conformational dynamics of Ec ProRS but impact the catalytic function primarily via the excluded volume effect; they form large clusters blocking the active site pocket. In contrast, the larger molecular weight PEGs in dilute to semidilute regimes have a significant impact on the protein's conformational dynamics; they wrap on the protein surface through noncovalent interactions. Thus, lower-molecular-weight PEG molecules impact protein dynamics and function via crowding effects, whereas larger PEGs induce confinement effects. These results have implications for the development of inhibitors for protein targets in a crowded cellular environment.


Subject(s)
Amino Acyl-tRNA Synthetases , Escherichia coli , Molecular Dynamics Simulation , Polyethylene Glycols , Protein Conformation , Polyethylene Glycols/chemistry , Escherichia coli/enzymology , Escherichia coli/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Microscopy, Atomic Force , Catalytic Domain , Molecular Weight
5.
Chimia (Aarau) ; 78(1-2): 22-31, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38430060

ABSTRACT

Genetic code expansion (GCE) can enable the site-selective incorporation of non-canonical amino acids (ncAAs) into proteins. GCE has advanced tremendously in the last decade and can be used to create biorthogonal handles, monitor and control proteins inside cells, study post-translational modifications, and engineer new protein functions. Since establishing our laboratory, our research has focused on applications of GCE in protein and enzyme engineering using aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. This topic has been reviewed extensively, leaving little doubt that GCE is a powerful tool for engineering proteins and enzymes. Therefore, for this young faculty issue, we wanted to provide a more technical look into the methods we use and the challenges we think about in our laboratory. Since starting the laboratory, we have successfully engineered over a dozen novel aaRS/tRNA pairs tailored for various GCE applications. However, we acknowledge that the field can pose challenges even for experts. Thus, herein, we provide a review of methodologies in ncAA incorporation with some practical commentary and a focus on challenges, emerging solutions, and exciting developments.


Subject(s)
Amino Acyl-tRNA Synthetases , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Genetic Code , Protein Engineering/methods , Amino Acids/genetics , Amino Acids/chemistry , RNA, Transfer/genetics
6.
Nature ; 625(7995): 603-610, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200312

ABSTRACT

The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several ß-amino acids, α,α-disubstituted-amino acids and ß-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of ß-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.


Subject(s)
Amino Acids , Amino Acyl-tRNA Synthetases , Escherichia coli , Genetic Code , RNA, Transfer , Acylation , Amino Acids/chemistry , Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Genetic Code/genetics , Hydroxy Acids/chemistry , Hydroxy Acids/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Substrate Specificity , Ribosomes/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL