Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
Ecotoxicol Environ Saf ; 244: 114068, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36108435

ABSTRACT

In this study, we exposed adult male crayfish (Procambarus clarkii) to different concentrations of diclofenac (DCF) for 96 h. In the meantime, we investigated the alternations of hepatopancreatic pathology, molecular regulation and intestinal microbiota of P. clarkii exposed to DCF. The results demonstrated DCF led to histological changes including epithelium vacuolization and tubule lumen dilatation in the hepatopancreas. Transcriptome sequencing analysis showed that 642 and 586 genes were differentially expressed in the hepatopancreas of P. clarkii exposed to 1 and 10 mg/L DCF, respectively. DCF could affect the functions of antioxidation, immunity and metabolism of hepatopancreas by inducing the abnormal expressions of immune- and redox-related genes. GO enrichment results demonstrated that 10 mg/L DCF exposure could modulate the processes of molting, amino sugar metabolism, protein hydrolysis and intracellular protein translocation of P. clarkii. Additionally, the abundances of bacterial families including Shewanellaceae, Bacteroidaceae, Vibrionaceae, Erysipelotrichaceae, Aeromonadaceae, Moraxellaceae, etc. in the intestine were significantly changed after DCF exposure, and the disruption of intestinal flora might further cause abnormal intestinal metabolism in P. clarkii. This study provides novel mechanistic insights into the toxic effects of anti-inflammatory drugs on aquatic crustaceans.


Subject(s)
Astacoidea , Gastrointestinal Microbiome , Amino Sugars/metabolism , Amino Sugars/pharmacology , Animals , Diclofenac/metabolism , Diclofenac/toxicity , Fresh Water , Hepatopancreas/metabolism , Humans , Male , Pathology, Molecular
2.
Cancer Chemother Pharmacol ; 90(3): 267-278, 2022 09.
Article in English | MEDLINE | ID: mdl-35962138

ABSTRACT

INTRODUCTION: Gastrointestinal mucositis (GIM) is a side effect of high-dose irinotecan (CPT-11), causing debilitating symptoms that are often poorly managed. The role of TLR4 in the development of GIM has been clearly demonstrated. We, therefore, aimed to investigate the potential of the TLR4 antagonist, IAXO-102, to attenuate gastrointestinal inflammation as well as supress tumour activity in a colorectal-tumour-bearing mouse model of GIM induced by CPT-11. METHODS: 24 C57BL/6 mice received a vehicle, daily i.p. IAXO-102 (3 mg/kg), i.p. CPT-11 (270 mg/kg) or a combination of CPT-11 and IAXO-102. GIM was assessed using validated toxicity markers. At 72 h, colon and tumour tissue were collected and examined for histopathological changes and RT-PCR for genes of interest; TLR4, MD-2, CD-14, MyD88, IL-6, IL-6R, CXCL2, CXCR1, and CXCR2. RESULTS: IAXO-102 prevented diarrhoea in mice treated with CPT-11. Tumour volume in IAXO-102-treated mice was lower compared to vehicle at 48 h (P < 0.05). There were no differences observed in colon and tumour weights between the treatment groups. Mice who received the combination treatment had improved tissue injury score (P < 0.05) in the colon but did not show any improvements in cell proliferation or apoptotic rate. Expression of all genes was similar across all treatment groups in the tumour (P > 0.05). In the colon, there was a difference in transcript expression in vehicle vs. IAXO-102 (P < 0.05) and CPT-11 vs. combination (P < 0.01) in MD-2 and IL-6R, respectively. CONCLUSION: IAXO-102 was able to attenuate symptomatic parameters of GIM induced by CPT-11 as well as reduce tissue injury in the colon. However, there was no effect on cell proliferation and apoptosis. As such, TLR4 activation plays a partial role in GIM development but further research is required to understand the specific inflammatory signals underpinning tissue-level changes.


Subject(s)
Antineoplastic Agents , Mucositis , Toll-Like Receptor 4 , Amino Sugars/pharmacology , Animals , Antineoplastic Agents/toxicity , Disease Models, Animal , Glycolipids/pharmacology , Irinotecan/adverse effects , Mice , Mice, Inbred C57BL , Mucositis/chemically induced , Toll-Like Receptor 4/antagonists & inhibitors
3.
Molecules ; 26(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205768

ABSTRACT

Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Coronavirus 3C Proteases/chemistry , Porifera/chemistry , Porifera/metabolism , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/drug effects , Amino Sugars/chemistry , Amino Sugars/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Biological Products/isolation & purification , Biological Products/pharmacokinetics , Computational Biology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
4.
Front Immunol ; 12: 668217, 2021.
Article in English | MEDLINE | ID: mdl-34093565

ABSTRACT

Obesity is the largest risk factor for the development of chronic diseases in industrialized countries. Excessive fat accumulation triggers a state of chronic low-grade inflammation to the detriment of numerous organs. To address this problem, our lab has been examining the anti-inflammatory mechanisms of two human milk oligosaccharides (HMOs), lacto-N-fucopentaose III (LNFPIII) and lacto-N-neotetraose (LNnT). LNFPIII and LNnT are HMOs that differ in structure via presence/absence of an α1,3-linked fucose. We utilize LNFPIII and LNnT in conjugate form, where 10-12 molecules of LNFPIII or LNnT are conjugated to a 40 kDa dextran carrier (P3DEX/NTDEX). Previous studies from our lab have shown that LNFPIII conjugates are anti-inflammatory, act on multiple cell types, and are therapeutic in a wide range of murine inflammatory disease models. The α1,3-linked fucose residue on LNFPIII makes it difficult and more expensive to synthesize. Therefore, we asked if LNnT conjugates induced similar therapeutic effects to LNFPIII. Herein, we compare the therapeutic effects of P3DEX and NTDEX in a model of diet-induced obesity (DIO). Male C57BL/6 mice were placed on a high-fat diet for six weeks and then injected twice per week for eight weeks with 25µg of 40 kDa dextran (DEX; vehicle control), P3DEX, or NTDEX. We found that treatment with P3DEX, but not NTDEX, led to reductions in body weight, adipose tissue (AT) weights, and fasting blood glucose levels. Mice treated with P3DEX also demonstrated improvements in glucose homeostasis and insulin tolerance. Treatment with P3DEX or NTDEX also induced different profiles of serum chemokines, cytokines, adipokines, and incretin hormones, with P3DEX notably reducing circulating levels of leptin and resistin. P3DEX also reduced WAT inflammation and hepatic lipid accumulation, whereas NTDEX seemed to worsen these parameters. These results suggest that the small structural difference between P3DEX and NTDEX has significant effects on the conjugates' therapeutic abilities. Future work will focus on identifying the receptors for these conjugates and delineating the mechanisms by which P3DEX and NTDEX exert their effects.


Subject(s)
Amino Sugars/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Obesity Agents/pharmacology , Diet, High-Fat , Milk, Human , Obesity/prevention & control , Oligosaccharides/pharmacology , Polysaccharides/pharmacology , Adipokines/blood , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/physiopathology , Adiposity/drug effects , Amino Sugars/chemical synthesis , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Obesity Agents/chemical synthesis , Blood Glucose/drug effects , Blood Glucose/metabolism , Cytokines/blood , Disease Models, Animal , Inflammation Mediators/blood , Insulin Resistance , Male , Mice, Inbred C57BL , Milk, Human/chemistry , Molecular Structure , Obesity/blood , Obesity/etiology , Obesity/physiopathology , Oligosaccharides/chemical synthesis , Polysaccharides/chemical synthesis , Structure-Activity Relationship , Weight Gain/drug effects
5.
Bioorg Med Chem Lett ; 47: 128227, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34174398

ABSTRACT

Eighteen amino sugar analogues were screened against Trypanosoma cruzi glucokinase (TcGlcK), a potential drug-target of the protozoan parasite in order to assess for viable enzyme inhibition. The analogues were divided into three amino sugar scaffolds that included d-glucosamine (d-GlcN), d-mannosamine (d-ManN), and d-galactosamine (d-GalN); moreover, all but one of these compounds were novel. TcGlcK is an important metabolic enzyme that has a role in producing G6P for glycolysis and the pentose phosphate pathway (PPP). The inhibition of these pathways via glucose kinases (i.e., glucokinase and hexokinase) appears to be a strategic approach for drug discovery. Glucose kinases phosphorylate d-glucose with co-substrate ATP to yield G6P and the formed G6P enters both pathways for catabolism. The compound screen revealed five on-target confirmed inhibitors that were all from the d-GlcN series, such as compounds 1, 2, 4, 5, and 6. Four of these compounds were strong TcGlcK inhibitors (1, 2, 4, and 6) since they were found to have micromolar inhibitory constant (Ki) values around 20 µM. Three of the on-target confirmed inhibitors (1, 5, and 6) revealed notable in vitro anti-T. cruzi activity with IC50 values being less than 50 µM. Compound 1 was benzoyl glucosamine (BENZ-GlcN), a known TcGlcK inhibitor that was the starting point for the design of the compounds in this study; in addition, TcGlcK - compound 1 inhibition properties were previously determined [D'Antonio, E. L. et al. (2015) Mol. Biochem. Parasitol. 204, 64-76]. As such, compounds 5 and 6 were further evaluated biochemically, where formal Ki values were determined as well as their mode of TcGlcK inhibition. The Ki values determined for compounds 5 and 6 were 107 ± 4 µM and 15.2 ± 3.3 µM, respectively, and both of these compounds exhibited the competitive inhibition mode.


Subject(s)
Amino Sugars/pharmacology , Enzyme Inhibitors/pharmacology , Glucokinase/antagonists & inhibitors , Trypanosoma cruzi/enzymology , Amino Sugars/chemical synthesis , Amino Sugars/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glucokinase/metabolism , Molecular Structure , Structure-Activity Relationship
6.
Life Sci ; 279: 119707, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34102195

ABSTRACT

AIMS: The present study investigated if treatment with the immunotherapeutic, lacto-N-fucopentaose-III (LNFPIII), resulted in amelioration of acute and persisting deficits in synaptic plasticity and transmission as well as trophic factor expression along the hippocampal dorsoventral axis in a mouse model of Gulf War Illness (GWI). MAIN METHODS: Mice received either coadministered or delayed LNFPIII treatment throughout or following, respectively, exposure to a 15-day GWI induction paradigm. Subsets of animals were subsequently sacrificed 48 h, seven months, or 11 months post GWI-related (GWIR) exposure for hippocampal qPCR or in vitro electrophysiology experiments. KEY FINDINGS: Progressively worsened impairments in hippocampal synaptic plasticity, as well as a biphasic effect on hippocampal synaptic transmission, were detected in GWIR-exposed animals. Dorsoventral-specific impairments in hippocampal synaptic responses became more pronounced over time, particularly in the dorsal hippocampus. Notably, delayed LNFPIII treatment ameliorated GWI-related aberrations in hippocampal synaptic plasticity and transmission seven and 11 months post-exposure, an effect that was consistent with enhanced hippocampal trophic factor expression and absence of increased interleukin 6 (IL-6) in animals treated with LNFPIII. SIGNIFICANCE: Approximately a third of Gulf War Veterans have GWI; however, GWI therapeutics are presently limited to targeted and symptomatic treatments. As increasing evidence underscores the substantial role of persisting neuroimmune dysfunction in GWI, efficacious neuroactive immunotherapeutics hold substantial promise in yielding GWI remission. The findings in the present report indicate that LNFPIII may be an efficacious candidate for ameliorating persisting neurological abnormalities presented in GWI.


Subject(s)
Amino Sugars/pharmacology , Disease Models, Animal , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Persian Gulf Syndrome/prevention & control , Polysaccharides/pharmacology , Synaptic Transmission/drug effects , Animals , Male , Mice , Mice, Inbred C57BL , Persian Gulf Syndrome/etiology , Persian Gulf Syndrome/pathology
7.
Brain Res ; 1766: 147513, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33961896

ABSTRACT

Approximately one-third of Persian Gulf War veterans are afflicted by Gulf War Illness (GWI), a chronic multisymptom condition that fundamentally presents with cognitive deficits (i.e., learning and memory impairments) and neuroimmune dysfunction (i.e., inflammation). Factors associated with GWI include overexposures to neurotoxic pesticides and nerve agent prophylactics such as permethrin (PM) and pyridostigmine bromide (PB), respectively. GWI-related neurological impairments associated with PB-PM overexposures have been recapitulated in animal models; however, there is a paucity of studies assessing PB-PM-related aberrations in hippocampal synaptic plasticity and transmission that may underlie behavioral impairments. Importantly, FDA-approved neuroactive treatments are currently unavailable for GWI. In the present study, we assessed the efficacy of an immunomodulatory therapeutic, lacto-N-fucopentaose-III (LNFPIII), on ameliorating acute effects of in vivo PB-PM exposure on synaptic plasticity and transmission as well as trophic factor/cytokine expression along the hippocampal dorsoventral axis. PB-PM exposure resulted in hippocampal synaptic transmission deficits 48 h post-exposure, a response that was ameliorated by LNFPIII coadministration, particularly in the dorsal hippocampus (dH). LNFPIII coadministration also enhanced synaptic transmission in the dH and the ventral hippocampus (vH). Notably, LNFPIII coadministration elevated long-term potentiation in the dH. Further, PB-PM exposure and LNFPIII coadministration uniquely altered key inflammatory cytokine and trophic factor production in the dH and the vH. Collectively, these findings demonstrate that PB-PM exposure impaired hippocampal synaptic responses 48 h post-exposure, impairments that differentially manifested along the dorsoventral axis. Importantly, LNFPIII ameliorated GWI-related electrophysiological deficits, a beneficial effect indicating the potential efficacy of LNFPIII for treating GWI.


Subject(s)
Amino Sugars/therapeutic use , Disease Models, Animal , Hippocampus/physiopathology , Persian Gulf Syndrome/drug therapy , Persian Gulf Syndrome/physiopathology , Polysaccharides/therapeutic use , Synaptic Transmission/physiology , Amino Sugars/pharmacology , Animals , Dimethyl Sulfoxide/toxicity , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Organ Culture Techniques , Particulate Matter/toxicity , Persian Gulf Syndrome/chemically induced , Polysaccharides/pharmacology , Synaptic Transmission/drug effects
8.
Angew Chem Int Ed Engl ; 60(10): 5193-5198, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33252821

ABSTRACT

All-nitrogenated sugars (ANSs), in which all hydroxy groups in a carbohydrate are replaced with amino groups, are anticipated to be privileged structures with useful biological activities. However, ANS synthesis has been challenging due to the difficulty in the installation of multi-amino groups. We report herein the development of a concise synthetic route to peracetylated ANSs in seven steps from commercially available monosaccharides. The key to success is the use of the sequential Overman rearrangement, which enables formal simultaneous substitution of four or five hydroxy groups in monosaccharides with amino groups. A variety of ANSs are available through the same reaction sequence starting from different initial monosaccharides by chirality transfer of secondary alcohols. Transformations of the resulting peracetylated ANSs such as glycosylation and deacetylation are also demonstrated. Biological studies reveal that ANS-modified cholesterol show cytotoxicity against human cancer cell lines, whereas each ANS and cholesterol have no cytotoxicity.


Subject(s)
Amino Sugars/chemical synthesis , Amino Sugars/pharmacology , Amino Sugars/toxicity , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Cholesterol/analogs & derivatives , Cholesterol/pharmacology , Cholesterol/toxicity , Glycosylation , Humans
9.
Am J Physiol Heart Circ Physiol ; 320(1): H364-H380, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33275526

ABSTRACT

Pathological cardiac remodeling is a leading cause of mortality in patients with diabetes. Given the glucose and lipid metabolism disorders (GLDs) in patients with diabetes, it is urgent to conduct a comprehensive study of the myocardial damage under GLDs and find key mechanisms. Apolipoprotein E knockout (ApoE-/-) mice, low-density lipoprotein receptor heterozygote (Ldlr+/-) Syrian golden hamsters, or H9C2 cells were used to construct GLDs models. GLDs significantly promoted cardiomyocyte fibrosis, apoptosis, and hypertrophy in vivo and in vitro, but inhibition of galectin-3 (Gal-3) could significantly reverse this process. Then, the signal transmission pathways were determined. It was found that GLDs considerably inhibited the phosphorylation of Akt at Thr308/Ser473, whereas the silencing of Gal-3 could reverse the inhibition of Akt activity through phosphoinositide 3-kinase-AktThr308 (PI3K-AktThr308) and AMP-activated protein kinase-mammalian target of rapamycin complex 2-AktSer473 (AMPK-mTOR2-AktSer473) pathways. Finally, the PI3K, mTOR, AMPK inhibitor, and Akt activator were used to investigate the role of pathways in regulating cardiac remodeling. Phospho-AktThr308 could mediate myocardial fibrosis, whereas myocardial apoptosis and hypertrophy were regulated by both phospho-AktThr308 and phospho-AktSer473. In conclusion, Gal-3 was an important regulatory factor in GLDs-induced cardiac remodeling, and Gal-3 could suppress the phosphorylation of Akt at different sites in mediating cardiomyocyte fibrosis, apoptosis, and hypertrophy.NEW & NOTEWORTHY Studies on the pathogenesis of diabetic cardiac remodeling are highly desired. Glucose and lipid metabolism are both disordered in diabetes. Glucose and lipid metabolism disturbances promote myocardial fibrosis, apoptosis, and hypertrophy through galectin-3. Galectin-3 promotes cardiac remodeling by inhibiting phosphorylation of AktThr308 or AktSer473. The present study finds that glucose and lipid metabolism disorders are important causes for myocardial damage and provides novel ideas for the prevention and treatment of diabetic cardiac remodeling.


Subject(s)
Cardiomegaly/enzymology , Galectin 3/metabolism , Glucose/metabolism , Lipid Metabolism , Myocytes, Cardiac/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Ventricular Remodeling , Amino Sugars/pharmacology , Animals , Apoptosis , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cardiomegaly/prevention & control , Cell Line , Disease Models, Animal , Enzyme Activation , Fibrosis , Galectin 3/antagonists & inhibitors , Galectin 3/genetics , Lipid Metabolism/drug effects , Mesocricetus/genetics , Mice, Inbred C57BL , Mice, Knockout, ApoE , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Phosphorylation , Rats , Receptors, LDL/genetics , Receptors, LDL/metabolism , Signal Transduction , Ventricular Remodeling/drug effects
10.
ChemMedChem ; 15(16): 1529-1551, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32462819

ABSTRACT

Desosamines of azithromycin (AZM) and clarithromycin (CLA) were modified by N-alkylation or nucleophilic substitution at the carbonyl/CuAAC sequence. Biological studies revealed a higher antibacterial potency of quaternary N-alkylammonium bromides of CLA as compared to AZM. SAR studies of CLA salts, including biological, conformation and molecular-docking analysis, enriched by physicochemical parameters, showed the importance of less bulky and unsaturated substituent for an efficient docking mode at the ribosomal tunnel and good antibacterial potency against clinical and standard Streptococcus pneumoniae and Streptococcus pyogenes strains (MICs 0.25 or 0.5 µg/mL). These CLA salts also have an at least threefold lower cytotoxicity than reference antibiotics at comparable antibacterial activity against the S. pneumoniae clinical strain. Differences in antibacterial effects noted for AZM and CLA salts bearing less bulky N-substituents can be better understood when their binding modes in the ribosomal tunnel are considered rather than their common low lipophilicity and excellent water solubility.


Subject(s)
Amino Sugars/pharmacology , Anti-Bacterial Agents/pharmacology , Carbonates/pharmacology , Macrolides/pharmacology , Quaternary Ammonium Compounds/pharmacology , Triazoles/pharmacology , Amino Sugars/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Carbonates/chemical synthesis , Carbonates/chemistry , Dose-Response Relationship, Drug , Macrolides/chemistry , Microbial Sensitivity Tests , Molecular Structure , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Streptococcus pneumoniae/drug effects , Streptococcus pyogenes/drug effects , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
11.
Vet Res ; 50(1): 95, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730501

ABSTRACT

Sheep brucellosis is a worldwide extended disease caused by B. melitensis and B. ovis, two species respectively carrying smooth or rough lipopolysaccharide. Vaccine B. melitensis Rev1 is used against B. melitensis and B. ovis but induces an anti-smooth-lipopolysaccharide response interfering with B. melitensis serodiagnosis, which precludes its use against B. ovis where B. melitensis is absent. In mice, Rev1 deleted in wbkC (Brucella lipopolysaccharide formyl-transferase) and carrying wbdR (E. coli acetyl-transferase) triggered antibodies that could be differentiated from those evoked by wild-type strains, was comparatively attenuated and protected against B. ovis, suggesting its potential as a B. ovis vaccine.


Subject(s)
Amino Sugars/pharmacology , Brucella Vaccine/pharmacology , Brucella ovis/immunology , Brucellosis/veterinary , Polysaccharides/pharmacology , Vaccines, Attenuated/pharmacology , Animals , Brucellosis/prevention & control , Female , Mice , Mice, Inbred BALB C
12.
Eur J Med Chem ; 180: 627-636, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31351394

ABSTRACT

Sialosides containing (oligo-)N-acetyllactosamine (LacNAc, Galß(1,4)GlcNAc) as core structure are known to serve as ligands for Siglecs. However, the role of tandem inner epitope for Siglec interaction has never been reported. Herein, we report the effect of internal glycan (by length and type) on the binding affinity and describe a simple and efficient chemo-enzymatic sugar nucleotide regeneration protocol for the preparative-scale synthesis of oligo-LacNAcs by the sequential use of ß1,4-galactosyltransferase (ß4GalT) and ß1,3-N-acetylglucosyl transferase (ß3GlcNAcT). Further modification of these oligo-LacNAcs was performed in one-pot enzymatic synthesis to yield sialylated and/or fucosylated analogs. A glycan library of 23 different sialosides containing various LacNAc lengths or Lac core with natural/unnatural sialylation and/or fucosylation was synthesized. These glycans were used to fabricate a glycan microarray that was utilized to screen glycan binding preferences against five different Siglecs (2, 7, 9, 14 and 15).


Subject(s)
Amino Sugars/pharmacology , N-Acetylneuraminic Acid/pharmacology , Polysaccharides/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/antagonists & inhibitors , Amino Sugars/biosynthesis , Amino Sugars/chemistry , Binding Sites/drug effects , Dose-Response Relationship, Drug , Galactosyltransferases/metabolism , Humans , Ligands , Molecular Structure , N-Acetylneuraminic Acid/biosynthesis , N-Acetylneuraminic Acid/chemistry , Polysaccharides/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Structure-Activity Relationship
13.
Article in English | MEDLINE | ID: mdl-30936109

ABSTRACT

Although macrolides are known as excellent antibacterials, their medical use has been significantly limited due to the spread of bacterial drug resistance. Therefore, it is necessary to develop new potent macrolides to combat the emergence of drug-resistant pathogens. One of the key steps in rational drug design is the identification of chemical groups that mediate binding of the drug to its target and their subsequent derivatization to strengthen drug-target interactions. In the case of macrolides, a few groups are known to be important for drug binding to the ribosome, such as desosamine. Search for new chemical moieties that improve the interactions of a macrolide with the 70S ribosome might be of crucial importance for the invention of new macrolides. For this purpose, here we studied a classic macrolide, dirithromycin, which has an extended (2-methoxyethoxy)-methyl side chain attached to the C-9/C-11 atoms of the macrolactone ring that can account for strong binding of dirithromycin to the 70S ribosome. By solving the crystal structure of the 70S ribosome in complex with dirithromycin, we found that its side chain interacts with the wall of the nascent peptide exit tunnel in an idiosyncratic fashion: its side chain forms a lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4. To our knowledge, the ability of this side chain to form a contact in the macrolide binding pocket has not been reported previously and potentially can open new avenues for further exploration by medicinal chemists developing next-generation macrolide antibiotics active against resistant pathogens.


Subject(s)
Erythromycin/analogs & derivatives , Macrolides/pharmacology , Ribosomes/metabolism , Amino Sugars/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Erythromycin/pharmacology , Peptides/pharmacology , Protein Structure, Secondary , Protein Synthesis Inhibitors/pharmacology , Ribosomal Proteins/metabolism
14.
Mol Neurobiol ; 56(2): 976-985, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29855971

ABSTRACT

There are no direct evidences showing the linkage between Toll-like receptor 4 (TLR4) and blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH). The purpose of this study was to examine if selective blockage of TLR4 prevents BBB disruption after SAH in mice and if the TLR4 signaling involves mitogen-activated protein kinases (MAPKs). One hundred and fifty-one C57BL/6 male mice underwent sham or endovascular perforation SAH operation, randomly followed by an intracerebroventricular infusion of vehicle or two dosages (117 or 585 ng) of a selective TLR4 antagonist IAXO-102 at 30 min post-operation. The effects were evaluated by survival rates, neurological scores, and brain water content at 24-72 h and immunoglobulin G immunostaining and Western blotting at 24 h post-SAH. IAXO-102 significantly prevented post-SAH neurological impairments, brain edema, and BBB disruption, resulting in improved survival rates. IAXO-102 also significantly suppressed post-SAH activation of a major isoform of MAPK p46 c-Jun N-terminal kinase (JNK) and matrix metalloproteinase-9 as well as periostin induction and preserved tight junction protein zona occludens-1. Another selective TLR4 antagonist TAK-242, which has a different binding site from IAXO-102, also showed similar effects to IAXO-102. This study first provided the evidence that TLR4 signaling is involved in post-SAH acute BBB disruption and that the signaling is mediated at least partly by JNK activation. TLR4-targeted therapy may be promising to reduce post-SAH morbidities and mortalities.


Subject(s)
Amino Sugars/pharmacology , Blood-Brain Barrier/drug effects , Glycolipids/pharmacology , Subarachnoid Hemorrhage/drug therapy , Toll-Like Receptor 4/antagonists & inhibitors , Amino Sugars/administration & dosage , Animals , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Glycolipids/administration & dosage , Male , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Subarachnoid Hemorrhage/metabolism , Tight Junctions/drug effects , Tight Junctions/metabolism , Toll-Like Receptor 4/metabolism
15.
Bioorg Med Chem ; 26(22): 5792-5803, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30420327

ABSTRACT

Synthetic assembly of sugar moieties and amino acids in order to create "sugar-amino acid hybrid polymers" was accomplished by means of simple radical polymerization of carbohydrate monomers having an amino acid-modified polymerizable aglycon. Amines derived from globotriaoside and lactoside as glycoepitopes were condensed with known carbobenzyloxy derivatives, including Z-Gly, Z-l-Ala and Z-ß-Ala, which had appropriate spacer ability and a chiral center to afford fully protected sugar-amino acid hybrid compounds in good yields. After deprotection followed by acryloylation, the water-soluble glycomonomers were polymerized with or without acrylamide in the presence of a radical initiator in water to give corresponding copolymers and homopolymers, which were shown by SEC analysis to have high molecular weights. Evaluation of the biological activities of the glycopolymers against Shiga toxins (Stxs) was carried out, and the results suggested that glycopolymers having highly clustered globotriaosyl residues had high affinity against Stx2 (KD = 2.7∼4.0 µM) even though other glycopolymers did not show any affinity or showed very weak binding affinity. When Stx1 was used for the same assay, all of the glycopolymers having globotriaosyl residues showed high affinity (KD = 0.30∼1.74 µM). Interestingly, couple of glycopolymers having lactosyl moieties had weaker binding affinity against Stx1. In addition, when cytotoxicity assays were carried out for both Stxs, glycopolymers having highly clustered globotriaosyl residues showed higher affinity than that of the copolymers, and only highly clustered-type glycopolymers displayed neutralization potency against Stx2.


Subject(s)
Escherichia coli O157/metabolism , Polymers/pharmacology , Shiga Toxins/antagonists & inhibitors , Amino Acids/chemistry , Amino Acids/pharmacology , Amino Sugars/chemistry , Amino Sugars/pharmacology , Dose-Response Relationship, Drug , Escherichia coli O157/chemistry , Lactose/chemistry , Lactose/pharmacology , Molecular Structure , Polymers/chemical synthesis , Polymers/chemistry , Shiga Toxins/biosynthesis , Structure-Activity Relationship , Trisaccharides/chemistry , Trisaccharides/pharmacology
16.
Eur J Med Chem ; 156: 1-12, 2018 Aug 05.
Article in English | MEDLINE | ID: mdl-30006155

ABSTRACT

Antibiotic resistance has emerged as a serious global public health problem and lately very few antibiotics have been discovered and introduced into clinical practice. Therefore, there is an urgent need for the development of antibacterial compounds with new mechanism of action, especially those capable of evading known resistance mechanisms. In this work two series of glycoconjugate and non-glycoconjugate amino compounds derived from of isoquinoline-5,8-dione and 1,4-naphthoquinone and their halogenated derivatives were synthesized and evaluated for antimicrobial activity against Gram-positive (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. epidermidis ATCC 12228, S. simulans ATCC 27851) and Gram-negative bacteria (E. coli ATCC 25922, Proteus mirabilis ATCC 15290, K. pneumoniae ATCC 4352 and P. aeruginosa ATCC 27853) strains of clinical importance. This study revealed that glycoconjugate compounds derived from halogeno-substituted naphthoquinones were more active against Gram-negative strains, which cause infections whose treatment is even more difficult, according to the literature. These molecules were also more active than isoquinoline-5,8-dione analogues with minimum inhibitory concentration (MIC = 4-32 µg/mL) within Clinical and Laboratory Standard Institute MIC values (CLSI 0.08-256 µg/mL). Interestingly the minimal bactericidal concentration (MBC) values of the most active compounds were equal to MIC classifying them as bactericidal agents against Gram-negative bacteria. Sixteen compounds among eighteen carbohydrate-based naphthoquinones tested showed no hemolytic effects on health human erythrocytes whereas more susceptibility to hemolytic cleavage was observed when using non-glycoconjugate amino compounds. In silico Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) evaluation also pointed out that these compounds are potential for oral administration with low side effects. In general, this study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials more effective against Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Isoquinolines/chemistry , Isoquinolines/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Amino Sugars/chemical synthesis , Amino Sugars/chemistry , Amino Sugars/pharmacology , Amino Sugars/toxicity , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/toxicity , Bacterial Infections/drug therapy , Halogenation , Hemolysis/drug effects , Humans , Isoquinolines/chemical synthesis , Isoquinolines/toxicity , Naphthoquinones/chemical synthesis , Naphthoquinones/toxicity
17.
Am J Physiol Heart Circ Physiol ; 314(6): H1169-H1178, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29424570

ABSTRACT

Preclinical studies have demonstrated that anti-galectin-3 (Gal-3) interventions are effective in attenuating cardiac remodeling, fibrosis, and dysfunction. We determined, in a transgenic (TG) mouse model of fibrotic cardiomyopathy, whether Gal-3 expression was elevated and whether Gal-3 played a critical role in disease development. We studied mice with fibrotic cardiomyopathy attributable to cardiac overexpression of human ß2-adrenoceptors (ß2-TG). Cardiac expression levels of Gal-3 and fibrotic or inflammatory genes were determined. The effect of Gal-3 inhibition in ß2-TG mice was studied by treatment with Gal-3 inhibitors ( N-acetyllactosamine and modified citrus pectin) or by deletion of Gal-3 through crossing ß2-TG and Gal-3 knockout mice. Changes in cardiomyopathy phenotypes were assessed by echocardiography and biochemical assays. In ß2-TG mice at 3, 6, and 9 mo of age, upregulation of Gal-3 expression was observed at mRNA (~6- to 15-fold) and protein (~4- to 8-fold) levels. Treatment of ß2-TG mice with N-acetyllactosamine (3 wk) or modified citrus pectin (3 mo) did not reverse cardiac fibrosis, inflammation, and cardiomyopathy. Similarly, Gal-3 gene deletion in ß2-TG mice aged 3 and 9 mo did not rescue the cardiomyopathy phenotype. In conclusion, the ß2-TG model of cardiomyopathy showed a robust upregulation of Gal-3 that correlated with disease severity, but Gal-3 inhibitors or Gal-3 gene deletion had no effect in halting myocardial fibrosis, remodeling, and dysfunction. Gal-3 may not be critical for cardiac fibrogenesis and remodeling in this cardiomyopathy model. NEW & NOTEWORTHY We showed a robust upregulation of cardiac galectin-3 (Gal-3) expression in a mouse model of cardiomyopathy attributable to cardiomyocyte-restricted transgenic activation of ß2-adrenoceptors. However, pharmacological and genetic inhibition of Gal-3 did not confer benefit in this model, implying that Gal-3 may not be a critical disease mediator of cardiac remodeling in this model.


Subject(s)
Cardiomyopathies/metabolism , Galectin 3/metabolism , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta-2/metabolism , Ventricular Remodeling , Amino Sugars/pharmacology , Animals , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Disease Models, Animal , Fibrosis , Galectin 3/antagonists & inhibitors , Galectin 3/deficiency , Galectin 3/genetics , Genetic Predisposition to Disease , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Pectins/pharmacology , Phenotype , Receptors, Adrenergic, beta-2/genetics , Severity of Illness Index , Up-Regulation , Ventricular Remodeling/drug effects
18.
J Antimicrob Chemother ; 72(11): 3035-3042, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28961916

ABSTRACT

BACKGROUND: Colistin resistance in Klebsiella pneumoniae typically involves inactivation or mutations of chromosomal genes mgrB, pmrAB or phoPQ, but data regarding consequent modifications of LPS are limited. OBJECTIVES: To examine the sequences of chromosomal loci implicated in colistin resistance and the respective LPS-derived lipid A profiles using 11 pairs of colistin-susceptible and -resistant KPC-producing K. pneumoniae clinical strains. METHODS: The strains were subjected to high-throughput sequencing with Illumina HiSeq. The mgrB gene was amplified by PCR and sequenced. Lipid profiles were determined using MALDI-TOF MS. RESULTS: All patients were treated with colistimethate prior to the isolation of colistin-resistant strains (MIC >2 mg/L). Seven of 11 colistin-resistant strains had deletion or insertional inactivation of mgrB. Three strains, including one with an mgrB deletion, had non-synonymous pmrB mutations associated with colistin resistance. When analysed by MALDI-TOF MS, all colistin-resistant strains generated mass spectra containing ions at m/z 1955 and 1971, consistent with addition of 4-amino-4-deoxy-l-arabinose (Ara4N) to lipid A, whereas only one of the susceptible strains displayed this lipid A phenotype. CONCLUSIONS: The pathway to colistin resistance in K. pneumoniae primarily involves lipid A modification with Ara4N in clinical settings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Klebsiella pneumoniae/chemistry , Lipid A/chemistry , Lipopolysaccharides/chemistry , Adult , Aged , Amino Sugars/pharmacology , Bacterial Proteins/genetics , Chromosomes, Bacterial , Drug Resistance, Bacterial/genetics , Female , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Lipid A/metabolism , Male , Membrane Proteins/genetics , Microbial Sensitivity Tests , Middle Aged , Mutagenesis, Insertional , beta-Lactamases/biosynthesis
19.
J Am Soc Hypertens ; 11(10): 673-683.e3, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28826890

ABSTRACT

Pulmonary vascular adventitia serves as a key regulator of pulmonary vascular remodeling in the pathogenesis of pulmonary arterial hypertension (PAH). Excessive proliferation and differentiation of pulmonary adventitial fibroblasts (PAFs) are proven to be crucial in the pathogenesis of PAH. Galectin-3 (Gal-3) is known as a key fibroblasts activating factor which is involved in the fibrogenesis of several diseases, such as pulmonary fibrosis, vascular fibrosis, and heart failure. Therefore, we seek to investigate the potential role of Gal-3 in regulating PAF cells in the pathogenesis of PAH. Gal-3 plasma concentration was significantly higher in PAH patients. Gal-3 was upregulated in pulmonary artery adventitia of hypoxia-induced PAH rats. Inhibition of Gal-3 with N-Acetyl-D-lactosamine (N-Lac) ameliorated PAH and pulmonary vascular remodeling. Gal-3 can stimulate the proliferation, differentiation, and collagen synthesis of PAFs, which was reversed by N-Lac. Transforming growth factor ß1 increased Gal-3 expression in PAFs, whereas N-Lac significantly suppressed transforming growth factor ß1-induced proliferation, differentiation, and collagen synthesis of PAFs. Gal-3 serves as a critical regulator in the pathogenesis of PAH by regulating the proliferation, differentiation, and extracellular matrix deposition synthesis of PAFs. Inhibition of Gal-3 may represent a novel therapeutic target for PAH treatment.


Subject(s)
Fibroblasts/pathology , Galectin 3/metabolism , Hypertension, Pulmonary/pathology , Pulmonary Artery/pathology , Vascular Remodeling , Adult , Adventitia/cytology , Adventitia/pathology , Amino Sugars/pharmacology , Animals , Blood Proteins , Cell Differentiation/drug effects , Cell Hypoxia , Cell Proliferation/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Fibroblasts/metabolism , Galectin 3/blood , Galectins , Humans , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/etiology , Lung/blood supply , Lung/cytology , Lung/pathology , Male , Middle Aged , Pulmonary Artery/cytology , Rats , Transforming Growth Factor beta1/metabolism , Up-Regulation , Young Adult
20.
J Med Microbiol ; 66(6): 833-841, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28621641

ABSTRACT

PURPOSE: It is known that the arnB (or pmrH) gene encoding uridine 5'-(beta-1-threo-pentapyranosyl-4-ulose diphosphate) aminotransferase plays a critical role in colistin resistance in Pseudomonas aeruginosa through the addition of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to lipid A. In this study, we attempted to obtain a colistin-resistant mutant from an arnB-deleted mutant through exposure to colistin. METHODOLOGY: We constructed an arnB deletion mutant (P5ΔarnB :: nptIII) from a colistin-susceptible strain (P5) by allelic replacement mutagenesis, and colistin-resistant mutants were selected in vitro using P5 and P5ΔarnB :: nptIII. The growth rate, lipid A structure, biofilm-forming activity and cell viability in diverse stressful conditions (osmotic, oxidative, acidic and heat stress) were investigated. Expression of phoP, pmrA, parR, and cprR was evaluated by qRT-PCR. RESULTS: An arnB deletion mutant was shown to develop colistin resistance through the addition of l-Ara4N to lipid A, despite a low survival rate (over 1000-fold lower than that of the wild-type strain) in the media with colistin. Two colistin-resistant mutants showed higher survival rates than colistin-susceptible strains against 5 % NaCl. In the presence of acidic and heat stress, P5ΔarnB :: nptIII-CstR exhibited higher survival rates during conditions of 1 % HCl and 42 °C than the other strains. Both phoP and pmrA genes were overexpressed significantly in both colistin-resistant mutants, but parR and cprR genes were not. CONCLUSION: We revealed that colistin resistance could be developed despite arnB deletion in P. aeruginosa through the addition of l-Ara4N to lipid A, which was accompanied by diverse physiological changes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Colistin/pharmacology , Drug Resistance, Bacterial , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Amino Sugars/pharmacology , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Lipid A/metabolism , Microbial Sensitivity Tests , Microbial Viability/drug effects , Mutation , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...