Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.182
Filter
1.
Redox Rep ; 29(1): 2345455, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38723197

ABSTRACT

OBJECTIVES: Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress. METHODS: ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo. RESULTS: We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models. DISCUSSION: our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.


Subject(s)
Methylenetetrahydrofolate Dehydrogenase (NADP) , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Animals , Mice , Reactive Oxygen Species/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Cell Line, Tumor , Homeostasis , Aminohydrolases/metabolism , Aminohydrolases/genetics , Disease Progression , Xenograft Model Antitumor Assays
2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674043

ABSTRACT

Molecular studies about cyanide biodegradation have been mainly focused on the hydrolytic pathways catalyzed by the cyanide dihydratase CynD or the nitrilase NitC. In some Pseudomonas strains, the assimilation of cyanide has been linked to NitC, such as the cyanotrophic model strain Pseudomonas pseudoalcaligenes CECT 5344, which has been recently reclassified as Pseudomonas oleovorans CECT 5344. In this work, a phylogenomic approach established a more precise taxonomic position of the strain CECT 5344 within the species P. oleovorans. Furthermore, a pan-genomic analysis of P. oleovorans and other species with cyanotrophic strains, such as P. fluorescens and P. monteilii, allowed for the comparison and identification of the cioAB and mqoAB genes involved in cyanide resistance, and the nitC and cynS genes required for the assimilation of cyanide or cyanate, respectively. While cyanide resistance genes presented a high frequency among the analyzed genomes, genes responsible for cyanide or cyanate assimilation were identified in a considerably lower proportion. According to the results obtained in this work, an in silico approach based on a comparative genomic approach can be considered as an agile strategy for the bioprospection of putative cyanotrophic bacteria and for the identification of new genes putatively involved in cyanide biodegradation.


Subject(s)
Biodegradation, Environmental , Cyanides , Genome, Bacterial , Phylogeny , Pseudomonas , Cyanides/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Genomics/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Aminohydrolases/genetics , Aminohydrolases/metabolism , Pseudomonas pseudoalcaligenes/metabolism , Pseudomonas pseudoalcaligenes/genetics
3.
J Bioenerg Biomembr ; 56(3): 333-345, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488992

ABSTRACT

Ovarian cancer (OC) is a deadliest gynecological cancer with the highest mortality rate. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a crucial tumor-promoting factor, is over-expressed in several malignancies including OC. The present study aimed to explore the role and mechanisms of MTHFD2 in OC malignant progression. Thus, cell proliferation, cycling, apoptosis, migration, and invasion were evaluated by CCK-8 assay, EdU assay, flow cytometry, wound healing, transwell assay and western blotting. Additionally, glycolysis was assessed by measuring the level of glucose and lactate production, as well as the expressions of GLUT1, HK2 and PKM2. Then the expression of ferroptosis-related proteins and ERK signaling was detected using western blotting. Ferroptosis was detected through the measurement of iron level, GSH, MDA and ROS activities. The results revealed that MTHFD2 was highly expressed in OC cells. Besides, interference with MTHFD2 induced ferroptosis, promoted ROS accumulation, destroyed mitochondrial function, reduced ATP content and inhibited glycolysis in OC cells. Subsequently, we further found that interference with MTHFD2 affected mitochondrial function and glycolysis in OC cells through ERK signaling. Moreover, interference with MTHFD2 affected ferroptosis to inhibit the malignant progression of OC cells. Collectively, our present study disclosed that interference with MTHFD2 induced ferroptosis in OC to inhibit tumor malignant progression through regulating ERK signaling.


Subject(s)
Ferroptosis , MAP Kinase Signaling System , Methylenetetrahydrofolate Dehydrogenase (NADP) , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Ferroptosis/physiology , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Multifunctional Enzymes/metabolism , Cell Line, Tumor , Aminohydrolases/metabolism , Aminohydrolases/genetics , Disease Progression , Mice
4.
Bioorg Chem ; 143: 107055, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185008

ABSTRACT

Hydration, a secondary activity mediated by nitrilase, is a promising new pathway for amide production. However, low hydration activity of nitrilase or trade-off between hydration and catalytic activity hinders its application in the production of amides. Here, natural C-terminal-truncated wild-type nitrilase, mined from a public database, obtained a high-hydration activity nitrilase as a novel evolutionary starting point for further protein engineering. The nitrilase Nit-74 from Spirosoma linguale DSM 74 was successfully obtained and exhibited the highest hydration activity level, performing 50.7 % nicotinamide formation and 87.6 % conversion to 2 mM substrate 3-cyanopyridine. Steric hindrance of the catalytic activity center and the N-terminus of the catalytic cysteine residue helped us identify three key residues: I166, W168, and T191. Saturation mutations resulted in three single mutants that further improved the hydration activity of N-heterocyclic nitriles. Among them, the mutant T191S performed 72.7 % nicotinamide formation, which was much higher than the previously reported highest level of 18.7 %. Additionally, mutants I166N and W168Y exhibited a 97.5 % 2-picolinamide ratio and 97.7 % isonicotinamide ratio without any loss of catalytic activity, which did not indicate a trade-off effect. Our results expand the screening and evolution library of promiscuous nitrilases with high hydration activity for amide formation.


Subject(s)
Aminohydrolases , Cytophagaceae , Nitriles , Pyrimidines , Triazoles , Nitriles/chemistry , Aminohydrolases/genetics , Aminohydrolases/chemistry , Aminohydrolases/metabolism , Amides , Niacinamide , Substrate Specificity
5.
Biotechnol Appl Biochem ; 70(6): 2150-2162, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37766485

ABSTRACT

Pterin deaminase stands as a metalloenzyme and exhibits both antitumor and anticancer activities. Therefore, this study aimed to explore the molecular function of zinc finger protein-160 (zfp160) from Aspergillus terreus with its enzyme mechanism in detail. Subsequently, preliminary molecular docking studies on zfp160 from A. terreus were done. Next, the cloning and expression of zfp160 protein were carried out. Following, protein expression was induced and purified through nickel NTA column with imidazole gradient elution. Through the Mascot search engine tool, the expressed protein of MALDI-TOF was confirmed by 32 kDa bands of SDS-PAGE. Furthermore, its enzymatic characterization and biochemical categorization were also explored. The optimum conditions for enzyme were determined to be pH 8, temperature 35°C, km 50 µm with folic acid as substrate, and Vmax of 24.16 (IU/mL). Further, in silico analysis tried to explore the interactions and binding affinity of various substrates to the modeled pterin deaminase from A. terreus. Our results revealed the binding mode of different substrate molecules with pterin deaminase using the approximate scoring functions that possibly correlate with actual experimental binding affinities. Following this, molecular dynamic simulations provided the in-depth knowledge on deciphering functional mechanisms of pterin deaminase over other drugs.


Subject(s)
Aminohydrolases , Aspergillus , Molecular Docking Simulation , Aminohydrolases/chemistry , Aminohydrolases/metabolism , Hydrogen-Ion Concentration , Temperature
6.
Phytomedicine ; 117: 154908, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37321077

ABSTRACT

BACKGROUND: Abnormal endocrine metabolism caused by polycystic ovary syndrome combined with insulin resistance (PCOS-IR) poses a serious risk to reproductive health in females. Quercitrin is a flavonoid that can efficiently improve both endocrine and metabolic abnormalities. However, it remains unclear if this agent can exert therapeutic effect on PCOS-IR. METHODS: The present study used a combination of metabolomic and bioinformatic methods to screen key molecules and pathways involved in PCOS-IR. A rat model of PCOS-IR and an adipocyte IR model were generated to investigate the role of quercitrin in regulating reproductive endocrine and lipid metabolism processes in PCOS-IR. RESULTS: Peptidase M20 domain containing 1 (PM20D1) was screened using bioinformatics to evaluate its participation in PCOS-IR. PCOS-IR regulation via the PI3K/Akt signaling pathway was also investigated. Experimental analysis showed that PM20D1 levels were reduced in insulin-resistant 3T3-L1 cells and a letrozole PCOS-IR rat model. Reproductive function was inhibited, and endocrine metabolism was abnormal. The loss of adipocyte PM20D1 aggravated IR. In addition, PM20D1 and PI3K interacted with each other in the PCOS-IR model. Furthermore, the PI3K/Akt signaling pathway was shown to participate in lipid metabolism disorders and PCOS-IR regulation. Quercitrin reversed these reproductive and metabolic disorders. CONCLUSION: PM20D1 and PI3K/Akt were required for lipolysis and endocrine regulation in PCOS-IR to restore ovarian function and maintain normal endocrine metabolism. By upregulating the expression of PM20D1, quercitrin activated the PI3K/Akt signaling pathway, improved adipocyte catabolism, corrected reproductive and metabolic abnormalities, and had a therapeutic effect on PCOS-IR.


Subject(s)
Lipid Metabolism Disorders , Polycystic Ovary Syndrome , Female , Animals , Rats , Rats, Sprague-Dawley , Lipid Metabolism Disorders/drug therapy , Lipid Metabolism Disorders/metabolism , Insulin Resistance , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Mice , Cell Line , Aminohydrolases/metabolism
7.
Appl Environ Microbiol ; 89(6): e0022023, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37191513

ABSTRACT

Nitrilase can catalyze nitrile compounds to generate corresponding carboxylic acids. Nitrilases as promiscuous enzymes can catalyze a variety of nitrile substrates, such as aliphatic nitriles, aromatic nitriles, etc. However, researchers tend to prefer enzymes with high substrate specificity and high catalytic efficiency. In this study, we developed an active pocket remodeling (ALF-scanning) based on modulating the geometry of the nitrilase active pocket to alter substrate preference and improve catalytic efficiency. Using this strategy, combined with site-directed saturation mutagenesis, we successfully obtained 4 mutants with strong aromatic nitrile preference and high catalytic activity, W170G, V198L, M197F, and F202M, respectively. To explore the synergistic relationship of these 4 mutations, we constructed 6 double-combination mutants and 4 triple-combination mutants. By combining mutations, we obtained the synergistically enhanced mutant V198L/W170G, which has a significant preference for aromatic nitrile substrates. Compared with the wild type, its specific activities for 4 aromatic nitrile substrates are increased to 11.10-, 12.10-, 26.25-, and 2.55-fold, respectively. By mechanistic dissection, we found that V198L/W170G introduced a stronger substrate-residue π-alkyl interaction in the active pocket and obtained a larger substrate cavity (225.66 Å3 to 307.58 Å3), making aromatic nitrile substrates more accessible to be catalyzed by the active center. Finally, we conducted experiments to rationally design the substrate preference of 3 other nitrilases based on the substrate preference mechanism and also obtained the corresponding aromatic nitrile substrate preference mutants of these three nitrilases and these mutants with greatly improved catalytic efficiency. Notably, the substrate range of SmNit is widened. IMPORTANCE In this study, the active pocket was largely remodeled based on the ALF-scanning strategy we developed. It is believed that ALF-scanning not only could be employed for substrate preference modification but might also play a role in protein engineering of other enzymatic properties, such as substrate region selectivity and substrate spectrum. In addition, the mechanism of aromatic nitrile substrate adaptation we found is widely applicable to other nitrilases in nature. To a large extent, it could provide a theoretical basis for the rational design of other industrial enzymes.


Subject(s)
Aminohydrolases , Nitriles , Aminohydrolases/genetics , Aminohydrolases/metabolism , Catalysis , Protein Engineering , Substrate Specificity
8.
Nat Biotechnol ; 41(5): 663-672, 2023 05.
Article in English | MEDLINE | ID: mdl-36357717

ABSTRACT

Cytosine base editors (CBEs) efficiently generate precise C·G-to-T·A base conversions, but the activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family deaminase component induces considerable off-target effects and indels. To explore unnatural cytosine deaminases, we repurpose the adenine deaminase TadA-8e for cytosine conversion. The introduction of an N46L variant in TadA-8e eliminates its adenine deaminase activity and results in a TadA-8e-derived C-to-G base editor (Td-CGBE) capable of highly efficient and precise C·G-to-G·C editing. Through fusion with uracil glycosylase inhibitors and further introduction of additional variants, a series of Td-CBEs was obtained either with a high activity similar to that of BE4max or with higher precision compared to other reported accurate CBEs. Td-CGBE/Td-CBEs show very low indel effects and a background level of Cas9-dependent or Cas9-independent DNA/RNA off-target editing. Moreover, Td-CGBE/Td-CBEs are more efficient in generating accurate edits in homopolymeric cytosine sites in cells or mouse embryos, suggesting their accuracy and safety for gene therapy and other applications.


Subject(s)
Cytosine , Gene Editing , Mice , Animals , Gene Editing/methods , Cytosine/metabolism , Aminohydrolases/metabolism , RNA , CRISPR-Cas Systems/genetics , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism
9.
Biotechnol Appl Biochem ; 70(1): 193-200, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35352406

ABSTRACT

Microbes make a remarkable contribution to the health and well-being of living beings all over the world. Interestingly, pterin deaminase is an amidohydrolase enzyme that exhibits antitumor, anticancer activities and antioxidant properties. With the existing evidence of the presence of pterin deaminase from microbial sources, an attempt was made to reveal the existence of this enzyme in the unexplored bacterium Agrobacterium tumefaciens LBA4404. After, the cells were harvested and characterized as intracellular enzymes and then partially purified through acetone precipitation. Subsequently, further purification step was carried out with an ion-exchange chromatogram (HiTrap Q FF) using the Fast-Protein Liquid Chromatography technique (FPLC). Henceforward, the approximate molecular weight of the purified pterin deaminase was determined through SDS-PAGE. Furthermore, the purified protein was identified accurately by MALDI-TOF, and the sequence was explored through a Mascot search engine. Additionally, the three-dimensional structure was predicted and then validated, as well as ligand-binding sites, and the stability of this enzyme was confirmed for the first time. Thus, the present study revealed the selected parameters showing a considerable impact on the identification and purification of pterin deaminase from A. tumefaciens LBA4404 for the first time. The enzyme specificity makes it a favorable choice as a potent anticancer agent.


Subject(s)
Agrobacterium tumefaciens , Amidohydrolases , Aminohydrolases/chemistry , Aminohydrolases/metabolism
10.
Crit Rev Biotechnol ; 43(8): 1226-1235, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36154348

ABSTRACT

(R)-(-)-mandelic acid is an important carboxylic acid known for its numerous potential applications in the pharmaceutical industry as it is an ideal starting material for the synthesis of antibiotics, antiobesity drugs and antitumor agents. In past few decades, the synthesis of (R)-(-)-mandelic acid has been undertaken mainly through the chemical route. However, chemical synthesis of optically pure (R)-(-)-mandelic acid is difficult to achieve at an industrial scale. Therefore, its microbe mediated production has gained considerable attention as it exhibits many merits over the chemical approaches. The present review focuses on various biotechnological strategies for the production of (R)-(-)-mandelic acid through microbial biotransformation and enzymatic catalysis; in particular, an analysis and comparison of the synthetic methods and different enzymes. The wild type as well as recombinant microbial strains for the production of (R)-(-)-mandelic acid have been elucidated. In addition, different microbial strategies used for maximum bioconversion of mandelonitrile into (R)-(-)-mandelic acid are discussed in detail with regard to higher substrate tolerance and maximum bioconversion.HighlightsMandelonitrile, mandelamide and o-chloromandelonitrile can be used as substrates to produce (R)-(-)-mandelic acid by enzymes.Three enzymes (nitrilase, nitrile hydratase and amidase) are systematically introduced for production of (R)-(-)-mandelic acid.Microbial transformation is able to produce optically pure (R)-(-)-mandelic acid with 100% productive yield.


Subject(s)
Biotechnology , Mandelic Acids , Mandelic Acids/metabolism , Biotransformation , Aminohydrolases/metabolism
11.
Biotechnol Lett ; 44(10): 1163-1173, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36050605

ABSTRACT

PURPOSE: We screened nitrilases with significant nitrile hydratase activity to exploit their potential in benzylic amide biosynthesis. We also investigated the factors affecting their hydration activity to support further research on benzylic amide production by nitrilase. METHODS: A sequence-based screening method using previously reported crucial positions identified to be essential for amide-forming capacity of nitrilase (referred to as "amide-formation hotspots") as molecular probes to identify putative amide-forming nitrilases. RESULTS: Based on the previously reported "amide-formation hotspots," we identified a nitrilase NitPG from Paraburkholderia graminis DSM 17151 that could produce a significant amount of mandelamide toward mandelonitrile and exhibited general hydration activity toward various benzylic nitriles. The time-course experiment with NitPG demonstrated that amide was also a true reaction product of nitrilase, suggesting that the nitrile catalysis by amide-forming nitrilase could be a post-transition state bifurcation-mediated enzymatic reaction. Further research demonstrated that low temperature, metal ion addition, and specific substrate structure could profoundly improve the amide formation capability of nitrilase. CONCLUSIONS: NitPG with broad hydration activity is a potential candidate for the enzymatic synthesis of benzylic amides for biotechnological applications. Studying the effect of nitrilase hydration activity could promote our understanding of the factors that influence amide and acid distribution.


Subject(s)
Aminohydrolases , Nitriles , Amides , Aminohydrolases/metabolism , Hydro-Lyases , Molecular Probes , Substrate Specificity
12.
Nat Metab ; 4(9): 1119-1137, 2022 09.
Article in English | MEDLINE | ID: mdl-36131208

ABSTRACT

Recurrent loss-of-function deletions cause frequent inactivation of tumour suppressor genes but often also involve the collateral deletion of essential genes in chromosomal proximity, engendering dependence on paralogues that maintain similar function. Although these paralogues are attractive anticancer targets, no methodology exists to uncover such collateral lethal genes. Here we report a framework for collateral lethal gene identification via metabolic fluxes, CLIM, and use it to reveal MTHFD2 as a collateral lethal gene in UQCR11-deleted ovarian tumours. We show that MTHFD2 has a non-canonical oxidative function to provide mitochondrial NAD+, and demonstrate the regulation of systemic metabolic activity by the paralogue metabolic pathway maintaining metabolic flux compensation. This UQCR11-MTHFD2 collateral lethality is confirmed in vivo, with MTHFD2 inhibition leading to complete remission of UQCR11-deleted ovarian tumours. Using CLIM's machine learning and genome-scale metabolic flux analysis, we elucidate the broad efficacy of targeting MTHFD2 despite distinct cancer genetic profiles co-occurring with UQCR11 deletion and irrespective of stromal compositions of tumours.


Subject(s)
Aminohydrolases , Methylenetetrahydrofolate Dehydrogenase (NADP) , Multifunctional Enzymes , Ovarian Neoplasms , Aminohydrolases/genetics , Aminohydrolases/metabolism , Female , Humans , Hydrolases , Metabolic Networks and Pathways , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Mitochondria/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , NAD/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism
13.
Biotechnol Bioeng ; 119(12): 3421-3431, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36042572

ABSTRACT

Nitrilases are promising biocatalysts to produce high-value-added carboxylic acids through hydrolysis of nitriles. However, since the enzymes always show low activity and sometimes with poor reaction specificity toward 2-chloronicotinonitrile (2-CN), very few robust nitrilases have been reported for efficient production of 2-chloronicotinic acid (2-CA) from 2-CN. Herein, a nitrilase from Paraburkholderia graminis (PgNIT) was engineered to improve its catalytic properties. We identified the beneficial residues via computational analysis and constructed the mutant library. The positive mutants were obtained and the activity of the "best" mutant F164G/I130L/N167Y/A55S/Q260C/T133I/R199Q toward 2-CN was increased from 0.14 × 10-3  to 4.22 U/mg. Its reaction specificity was improved with elimination of hydration activity. Molecular docking and molecular dynamics simulation revealed that the conformational flexibility, the nucleophilic attack distance, as well as the interaction forces between the enzyme and substrate were the main reason alternating the catalytic properties of PgNIT. With the best mutant as biocatalyst, 150 g/L 2-CN was completely converted, resulting in 2-CA accumulated to 169.7 g/L. When the substrate concentration was increased to 200 g/L, 203.1 g/L 2-CA was obtained with yield of 85.7%. The results laid the foundation for industrial production of 2-CA with the nitrilase-catalyzed route.


Subject(s)
Aminohydrolases , Burkholderiaceae , Nicotinic Acids , Aminohydrolases/chemistry , Aminohydrolases/genetics , Aminohydrolases/metabolism , Burkholderiaceae/genetics , Burkholderiaceae/metabolism , Molecular Docking Simulation , Substrate Specificity , Nicotinic Acids/biosynthesis , Nicotinic Acids/metabolism , Catalysis
14.
Biotechnol Bioeng ; 119(9): 2399-2412, 2022 09.
Article in English | MEDLINE | ID: mdl-35750945

ABSTRACT

Simultaneous evolution of multiple enzyme properties remains challenging in protein engineering. A chimeric nitrilase (BaNITM0 ) with high activity towards isobutylsuccinonitrile (IBSN) was previously constructed for biosynthesis of pregabalin precursor (S)-3-cyano-5-methylhexanoic acid ((S)-CMHA). However, BaNITM0 also catalyzed the hydration of IBSN to produce by-product (S)-3-cyano-5-methylhexanoic amide. To obtain industrial nitrilase with vintage performance, we carried out engineering of BaNITM0 for simultaneous evolution of reaction specificity, enantioselectivity, and catalytic activity. The best variant V82L/M127I/C237S (BaNITM2 ) displayed higher enantioselectivity (E = 515), increased enzyme activity (5.4-fold) and reduced amide formation (from 15.8% to 1.9%) compared with BaNITM0 . Structure analysis and molecular dynamics simulations indicated that mutation M127I and C237S restricted the movement of E66 in the catalytic triad, resulting in decreased amide formation. Mutation V82L was incorporated to induce the reconstruction of the substrate binding region in the enzyme catalytic pocket, engendering the improvement of stereoselectivity. Enantio- and regio-selective hydrolysis of 150 g/L IBSN using 1.5 g/L Escherichia coli cells harboring BaNITM2 as biocatalyst afforded (S)-CMHA with >99.0% ee and 45.9% conversion, which highlighted the robustness of BaNITM2 for efficient manufacturing of pregabalin.


Subject(s)
Aminohydrolases , Escherichia coli , Amides , Aminohydrolases/genetics , Aminohydrolases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Pregabalin/chemistry , Substrate Specificity
15.
PLoS Comput Biol ; 18(5): e1010140, 2022 05.
Article in English | MEDLINE | ID: mdl-35613161

ABSTRACT

Methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) is a new drug target that is expressed in cancer cells but not in normal adult cells, which provides an Achilles heel to selectively kill cancer cells. Despite the availability of crystal structures of MTHFD2 in the inhibitor- and cofactor-bound forms, key information is missing due to technical limitations, including (a) the location of absolutely required Mg2+ ion, and (b) the substrate-bound form of MTHFD2. Using computational modeling and simulations, we propose that two magnesium ions are present at the active site whereby (i) Arg233, Asp225, and two water molecules coordinate [Formula: see text], while [Formula: see text] together with Arg233 stabilize the inorganic phosphate (Pi); (ii) Asp168 and three water molecules coordinate [Formula: see text], and [Formula: see text] further stabilizes Pi by forming a hydrogen bond with two oxygens of Pi; (iii) Arg201 directly coordinates the Pi; and (iv) through three water-mediated interactions, Asp168 contributes to the positioning and stabilization of [Formula: see text], [Formula: see text] and Pi. Our computational study at the empirical valence bond level allowed us also to elucidate the detailed reaction mechanisms. We found that the dehydrogenase activity features a proton-coupled electron transfer with charge redistribution connected to the reorganization of the surrounding water molecules which further facilitates the subsequent cyclohydrolase activity. The cyclohydrolase activity then drives the hydration of the imidazoline ring and the ring opening in a concerted way. Furthermore, we have uncovered that two key residues, Ser197/Arg233, are important factors in determining the cofactor (NADP+/NAD+) preference of the dehydrogenase activity. Our work sheds new light on the structural and kinetic framework of MTHFD2, which will be helpful to design small molecule inhibitors that can be used for cancer treatment.


Subject(s)
Aminohydrolases , Methylenetetrahydrofolate Dehydrogenase (NADP) , Aminohydrolases/chemistry , Aminohydrolases/metabolism , Kinetics , Magnesium , Methylenetetrahydrofolate Dehydrogenase (NADP)/chemistry , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Mitochondria/metabolism , Water
16.
Biochem Biophys Res Commun ; 616: 70-75, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35640488

ABSTRACT

The Reactive intermediate deiminase (Rid) protein family is a group of enzymes widely distributed in all Kingdoms of Life. RidA is one of the eight known Rid subfamilies, and its members act by preventing the accumulation of 2-aminoacrylate, a highly reactive enamine generated during the metabolism of some amino acids, by hydrolyzing the 2-iminopyruvate tautomer to pyruvate and ammonia. RidA members are homotrimers exhibiting a remarkable thermal stability. Recently, a novel subclass of RidA was identified in teleosts, which differs for stability and substrate specificity from the canonical RidA. In this study we structurally and functionally characterized RidA from Apis mellifera (AmRidA) as the first example of an invertebrate RidA to assess its belonging to the canonical RidA group, and to further correlate structural and functional features of this novel enzyme class. Circular dichroism revealed a spectrum typical of the RidA proteins and the high thermal stability. AmRidA exhibits the 2-imino acid hydrolase activity typical of RidA family members with a substrate specificity similar to that of the canonical RidA. The crystal structure confirmed the homotrimeric assembly and the presence of the typical structural features of RidA proteins, such as the proposed substrate recognition loop, and the ß-sheets ß1-ß9 and ß1-ß2. In conclusion, our data define AmRidA as a canonical member of the well-conserved RidA family and further clarify the diagnostic structural features of this class of enzymes.


Subject(s)
Imines , Scrapie , Amino Acids , Aminohydrolases/metabolism , Animals , Bacterial Proteins/metabolism , Bees , Sheep
17.
J Appl Microbiol ; 133(2): 311-322, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35365856

ABSTRACT

AIMS: To characterize the functions of nitrilases of Variovorax boronicumulans CGMCC 4969 and evaluate flonicamid (FLO) degradation and ß-cyano-L-alanine (Ala(CN)) detoxification by this bacterium. METHODS AND RESULTS: Variovorax boronicumulans CGMCC 4969 nitrilases (NitA and NitB) were purified, and substrate specificity assay indicated that both of them degraded insecticide FLO to N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM) and 4-(trifluoromethyl)nicotinol glycine (TFNG). Ala(CN), a plant detoxification intermediate, was hydrolysed by NitB. Escherichia coli overexpressing NitA and NitB degraded 41.2 and 93.8% of FLO (0.87 mmol·L-1 ) within 1 h, with half-lives of 1.30 and 0.25 h, respectively. NitB exhibited the highest nitrilase activity towards FLO. FLO was used as a substrate to compare their enzymatic properties. NitB was more tolerant to acidic conditions and organic solvents than NitA. Conversely, NitA was more tolerant to metal ions than NitB. CGMCC 4969 facilitated FLO degradation in soil and surface water and utilized Ala(CN) as a sole nitrogen source for growth. CONCLUSIONS: CGMCC 4969 efficiently degraded FLO mediated by NitA and NitB; NitB was involved in Ala(CN) detoxification. SIGNIFICANCE AND IMPACT OF THE STUDY: This study promotes our understanding of versatile functions of nitrilases from CGMCC 4969 that is promising for environmental remediation.


Subject(s)
Insecticides , Alanine/analogs & derivatives , Aminohydrolases/genetics , Aminohydrolases/metabolism , Comamonadaceae , Escherichia coli/genetics , Escherichia coli/metabolism , Insecticides/metabolism , Niacinamide/analogs & derivatives
18.
J Am Chem Soc ; 144(16): 7146-7159, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35412310

ABSTRACT

Deciphering the molecular mechanisms of enzymatic allosteric regulation requires the structural characterization of functional states and also their time evolution toward the formation of the allosterically activated ternary complex. The transient nature and usually slow millisecond time scale interconversion between these functional states hamper their experimental and computational characterization. Here, we combine extensive molecular dynamics simulations, enhanced sampling techniques, and dynamical networks to describe the allosteric activation of imidazole glycerol phosphate synthase (IGPS) from the substrate-free form to the active ternary complex. IGPS is a heterodimeric bienzyme complex whose HisH subunit is responsible for hydrolyzing glutamine and delivering ammonia for the cyclase activity in HisF. Despite significant advances in understanding the underlying allosteric mechanism, essential molecular details of the long-range millisecond allosteric activation of IGPS remain hidden. Without using a priori information of the active state, our simulations uncover how IGPS, with the allosteric effector bound in HisF, spontaneously captures glutamine in a catalytically inactive HisH conformation, subsequently attains a closed HisF:HisH interface, and finally forms the oxyanion hole in HisH for efficient glutamine hydrolysis. We show that the combined effector and substrate binding dramatically decreases the conformational barrier associated with oxyanion hole formation, in line with the experimentally observed 4500-fold activity increase in glutamine hydrolysis. The allosteric activation is controlled by correlated time-evolving dynamic networks connecting the effector and substrate binding sites. This computational strategy tailored to describe millisecond events can be used to rationalize the effect of mutations on the allosteric regulation and guide IGPS engineering efforts.


Subject(s)
Aminohydrolases , Glutamine , Allosteric Regulation , Aminohydrolases/chemistry , Aminohydrolases/genetics , Aminohydrolases/metabolism , Binding Sites , Glutamine/metabolism
19.
J Mol Cell Biol ; 14(4)2022 07 29.
Article in English | MEDLINE | ID: mdl-35349697

ABSTRACT

Folate metabolism plays an essential role in tumor development. Various cancers display therapeutic response to reagents targeting key enzymes of the folate cycle, but obtain chemoresistance later. Therefore, novel targets in folate metabolism are highly demanded. Methylenetetrahydrofolate dehydrogenase/methylenetetrahydrofolate cyclohydrolase 2 (MTHFD2) is one of the key enzymes in folate metabolism and its expression is highly increased in multiple human cancers. However, the underlying mechanism that regulates MTHFD2 expression remains unknown. Here, we elucidate that SIRT4 deacetylates the conserved lysine 50 (K50) residue in MTHFD2. K50 deacetylation destabilizes MTHFD2 by elevating cullin 3 E3 ligase-mediated proteasomal degradation in response to stressful stimuli of folate deprivation, leading to suppression of nicotinamide adenine dinucleotide phosphate production in tumor cells and accumulation of intracellular reactive oxygen species, which in turn inhibits the growth of breast cancer cells. Collectively, our study reveals that SIRT4 senses folate availability to control MTHFD2 K50 acetylation and its protein stability, bridging nutrient/folate stress and cellular redox to act on cancer cell growth.


Subject(s)
Neoplasms , Sirtuins , Aminohydrolases/metabolism , Cell Transformation, Neoplastic , Folic Acid/metabolism , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Mitochondrial Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...