Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 318
Filter
1.
Fish Shellfish Immunol ; 138: 108849, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37268155

ABSTRACT

Pexidartinib, a macrophage colony-stimulating factor receptor (CSF-1R) inhibitor, is indicated for the treatment of tendon sheath giant cell tumor (TGCT). However, few studies on the toxicity mechanisms of pexidartinib for embryonic development. In this study, the effects of pexidartinib on embryonic development and immunotoxicity in zebrafish were investigated. Zebrafish embryos at 6 h post fertilization (6 hpf) were exposed to 0, 0.5, 1.0, and 1.5 µM concentrations of pexidartinib, respectively. The results showed that different concentrations of pexidartinib induced the shorter body, decreased heart rate, reduced number of immune cells and increase of apoptotic cells. In addition, we also detected the expression of Wnt signaling pathway and inflammation-related genes, and found that these genes expression were significantly upregulated after pexidartinib treatment. To test the effects of embryonic development and immunotoxicity due to hyperactivation of Wnt signaling after pexidartinib treatment, we used IWR-1, Wnt inhibitor, for rescue. Results show that IWR-1 could not only rescue developmental defects and immune cell number, but also downregulate the high expression of Wnt signaling pathway and inflammation-related caused by pexidartinib. Collectively, our results suggest that pexidartinib induces the developmental toxicity and immunotoxicity in zebrafish embryos through hyperactivation of Wnt signaling, providing a certain reference for the new mechanisms of pexidartinib function.


Subject(s)
Wnt Signaling Pathway , Zebrafish , Animals , Zebrafish/genetics , Aminopyridines/metabolism , Aminopyridines/pharmacology , Inflammation/metabolism , Embryo, Nonmammalian
2.
Cell Chem Biol ; 30(6): 632-642.e5, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37253358

ABSTRACT

Cystic fibrosis (CF) is caused by mutations that compromise the expression and/or function of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Most people with CF harbor a common misfolded variant (ΔF508) that can be partially rescued by therapeutic "correctors" that restore its expression. Nevertheless, many other CF variants are insensitive to correctors. Using deep mutational scanning, we quantitatively compare the effects of two correctors on the plasma membrane expression of 129 CF variants. Though structural calculations suggest corrector binding provides similar stabilization to most variants, it's those with intermediate expression and mutations near corrector binding pockets that exhibit the greatest response. Deviations in sensitivity appear to depend on the degree of variant destabilization and the timing of misassembly. Combining correctors appears to rescue more variants by doubling the binding energy and stabilizing distinct cotranslational folding transitions. These results provide an overview of rare CF variant expression and establish new tools for precision pharmacology.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Mutation , Cell Membrane/metabolism , Aminopyridines/pharmacology , Aminopyridines/metabolism , Aminopyridines/therapeutic use
3.
Cancer Immunol Immunother ; 72(7): 2331-2346, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36932256

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) treatment remains challenging. CD70 was reported as a promising AML-specific antigen. Preclinically, CAR T-cell with single-chain-variable fragment (scFv) or truncated CD27 targeting CD70 has been reported to treat AML. However, various disadvantages including spontaneous exhaustion, proteinase-mediated loss of functional receptors, and high immunogenicity, limited its further application to clinical settings. Alternatively, the single-variable domain on heavy chain (VHH), also known as nanobodies, with comparable binding ability and specificity, provides an optional solution. METHOD: We generated CD70 knocked-out novel nanobody-based anti-CD70-CAR T-cells (nb70CAR-T) with two different VHHs for antigen detection. Next, we detected the CD70 expression on primary AML blasts by flow cytometry and associated the efficacy of nb70CAR-T with the target antigen density. Finally, epigenetic modulators were investigated to regulate the CD70 expression on AML cells to promote the functionality of nb70CAR-T. RESULTS: Our nb70CAR-T exhibited expected tumoricidal functionality against CD70-expressed cell lines and primary AML blasts. However, CD70 expression in primary AML blasts was not consistently high and nb70CAR-T potently respond to an estimated 40.4% of AML patients when the CD70 expression level was over a threshold of 1.6 (MFI ratio). Epigenetic modulators, Decitabine and Chidamide can up-regulate CD70 expression on AML cells, enhancing the treatment efficacy of nb70CAR-T. CONCLUSION: CD70 expression in AML blasts was not fully supportive of its role in AML targeted therapy as reported. The combinational use of Chidamide and Decitabine with nb70CAR-T could provide a new potential for the treatment of AML.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Decitabine/pharmacology , Aminopyridines/metabolism , Immunotherapy, Adoptive , T-Lymphocytes
4.
Nat Commun ; 13(1): 3586, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739107

ABSTRACT

Impaired activity of the chloride channel CFTR is the cause of cystic fibrosis. 14-3-3 proteins have been shown to stabilize CFTR and increase its biogenesis and activity. Here, we report the identification and mechanism of action of a macrocycle stabilizing the 14-3-3/CFTR complex. This molecule rescues plasma membrane localization and chloride transport of F508del-CFTR and works additively with the CFTR pharmacological chaperone corrector lumacaftor (VX-809) and the triple combination Trikafta®. This macrocycle is a useful tool to study the CFTR/14-3-3 interaction and the potential of molecular glues in cystic fibrosis therapeutics.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Aminophenols/metabolism , Aminopyridines/metabolism , Aminopyridines/pharmacology , Cell Membrane/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mutation
5.
Proc Natl Acad Sci U S A ; 119(11): e2118220119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35254915

ABSTRACT

SignificanceChemical genetics, which investigates biological processes using small molecules, is gaining interest in plant research. However, a major challenge is to uncover the mode of action of the small molecules. Here, we applied the cellular thermal shift assay coupled with mass spectrometry (CETSA MS) to intact Arabidopsis cells and showed that bikinin, the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, changed the thermal stability of some of its direct targets and putative GSK3-interacting proteins. In combination with phosphoproteomics, we also revealed that GSK3s phosphorylated the auxin carrier PIN-FORMED1 and regulated its polarity that is required for the vascular patterning in the leaf.


Subject(s)
Brassinosteroids/metabolism , Indoleacetic Acids/metabolism , Proteome , Signal Transduction , Aminopyridines/metabolism , Arabidopsis , Arabidopsis Proteins/metabolism , Phosphoproteins/metabolism , Protein Binding , Protein Stability , Proteomics/methods , Succinates/metabolism
6.
Sci Rep ; 12(1): 1100, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058524

ABSTRACT

Immune checkpoint inhibitors (ICIs) have shown clinical benefit in solid tumors, with modest rates of clinical response. Hence, improved therapeutic approaches need to be investigated. Herein, we assessed a combination of chidamide plus celecoxib (called CC-01) combined with programmed cell death protein 1 (PD-1) blockade in a CT26 model as potent tumor microenvironment (TME) regulator. The antitumor activity was assessed by measuring tumor size, overall response rate, and survival rate. Immune profiling of tumor-infiltrating lymphocytes was performed by flow cytometry. Tumor tissues were assessed by chip assay to predict the possible pathway. Tumor size was significantly reduced in mice treated with CC-01 combined with or without anti-PD-1 antibody, however the triple combination therapy consistently demonstrated that it significantly increased both the ORR and survival rate in term of clinical applications. In the combination group, immune landscape profiling revealed decreased populations of immunosuppressive regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Analysis of the mouse tumor chip data using Gene Ontology enrichment analysis of biological processes revealed that the triple combination upregulated genes associated with responses to interferon-gamma. Our results demonstrated that CC-01 possessed potent TME regulatory properties, augmenting the antitumor effect when combined with ICIs. This antitumor effect was achieved by altering the immune landscape in TILs (tumor-infiltrating lymphocytes) and was associated with immune cell activation in the TME. Furthermore, CC-01 demonstrated potent anticancer immune response activity, mainly reducing the number and function of several immunosuppressive cells. The combination of CC-01 with an ICI will further enhance the anticancer effect and boost the immune response rate. Collectively, our results support the clinical evaluation of CC-01 in combination with ICIs in several advanced cancers.


Subject(s)
Adenocarcinoma/drug therapy , Aminopyridines/pharmacology , Benzamides/pharmacology , Celecoxib/pharmacology , Tumor Microenvironment/immunology , Adenocarcinoma/metabolism , Aminopyridines/metabolism , Animals , Antibodies, Monoclonal/immunology , Benzamides/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Drug Therapy, Combination/methods , Immune Checkpoint Inhibitors/pharmacology , Interferon-gamma/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred BALB C , Mice, Nude , Myeloid-Derived Suppressor Cells/immunology , Neoplasm Invasiveness , Neoplastic Processes , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
7.
Cell ; 185(1): 158-168.e11, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995514

ABSTRACT

Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.


Subject(s)
Aminopyridines/metabolism , Benzodioxoles/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Indoles/metabolism , Protein Folding , Aminopyridines/chemistry , Aminopyridines/therapeutic use , Animals , Benzodioxoles/chemistry , Benzodioxoles/therapeutic use , Binding Sites , CHO Cells , Cell Membrane/chemistry , Cell Membrane/metabolism , Cricetulus , Cryoelectron Microscopy , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Indoles/therapeutic use , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/therapeutic use , Mutation , Protein Domains/genetics , Sf9 Cells , Transfection
8.
Pharmacol Res ; 178: 105954, 2022 04.
Article in English | MEDLINE | ID: mdl-34700018

ABSTRACT

Abemaciclib is the third cyclin-dependent kinase (CDK) 4/6 inhibitor approved for the treatment of breast cancer and currently under investigation for other malignancies, including brain cancer. Primarily CYP3A4 metabolizes abemaciclib, forming three active metabolites (M2, M20 and M18) that are likely relevant for abemaciclib efficacy and toxicity. We investigated the impact of ABCB1 (P-gp), ABCG2 (BCRP) and CYP3A on the pharmacokinetics and tissue distribution of abemaciclib and its metabolites using genetically modified mice. In vitro, abemaciclib was efficiently transported by hABCB1 and mAbcg2, and slightly by hABCG2, but the active metabolites were transported even better. Upon oral administration of 10 mg/kg abemaciclib, absence of Abcg2 and especially Abcb1a/1b significantly increased the plasma AUC0-24 h and Cmax of M2 and M18. Furthermore, the relative brain penetration of abemaciclib, M2 and M20 was dramatically increased by 25-, 4- and 60-fold, respectively, in Abcb1a/1b;Abcg2-/- mice, and to a lesser extent in single Abcb1a/1b- or Abcg2-deficient mice. The recovery of all active compounds in the small intestine content was profoundly reduced in Abcb1a/1b;Abcg2-/- mice, with smaller effects in single Abcb1a/1b-/- and Abcg2-/- mice. Our results indicate that Abcb1a/1b and Abcg2 cooperatively and profoundly limit the brain penetration of abemaciclib and its active metabolites, and likely also participate in their hepatobiliary or direct intestinal elimination. Moreover, transgenic human CYP3A4 drastically reduced the abemaciclib plasma AUC0-24 h and Cmax by 7.5- and 5.6-fold, respectively, relative to Cyp3a-/- mice. These insights may help to optimize the clinical development of abemaciclib, especially for the treatment of brain malignancies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Aminopyridines , Benzimidazoles , Cytochrome P-450 CYP3A , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Aminopyridines/metabolism , Aminopyridines/pharmacology , Animals , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Brain/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Dogs , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Pharmaceutical Preparations/metabolism
9.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681730

ABSTRACT

Co-treatment with actinomycin D and nutlin-3a (A + N) strongly activates p53. Previously we reported that CHIR-98014 (GSK-3 kinase inhibitor), acting in cells exposed to A + N, prevents activation of TREM2-an innate immunity and p53-regulated gene associated with Alzheimer's disease. In order to find novel candidate p53-target genes and genes regulated by CHIR-98014, we performed RNA-Seq of control A549 cells and the cells exposed to A + N, A + N with CHIR-98014 or to CHIR-98014. We validated the data for selected genes using RT-PCR and/or Western blotting. Using CRISPR/Cas9 technology we generated p53-deficient cells. These tools enabled us to identify dozens of candidate p53-regulated genes. We confirmed that p53 participates in upregulation of BLNK, APOE and IRF1. BLNK assists in activation of immune cells, APOE codes for apolipoprotein associated with Alzheimer's disease and IRF1 is activated by interferon gamma and regulates expression of antiviral genes. CHIR-98014 prevented or inhibited the upregulation of a fraction of genes stimulated by A + N. Downregulation of GSK-3 did not mimic the activity of CHIR-98014. Our data generate the hypothesis, that an unidentified kinase inhibited by CHIR-98014, participates in modification of p53 and enables it to activate a subset of its target genes, e.g., the ones associated with innate immunity.


Subject(s)
Aminopyridines/chemistry , Dactinomycin/pharmacology , Gene Expression Regulation/drug effects , Imidazoles/pharmacology , Piperazines/pharmacology , Pyrimidines/chemistry , Tumor Suppressor Protein p53/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aminopyridines/metabolism , Aminopyridines/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Humans , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Mutagenesis, Site-Directed , Promoter Regions, Genetic , Pyrimidines/metabolism , Pyrimidines/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics
10.
Sci Rep ; 11(1): 20637, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667217

ABSTRACT

Treatment failure or relapse due to tumor escape caused by reduction in target antigen expression has become a challenge in the field of CART therapy. Target antigen density is closely related to the effectiveness of CART therapy, and reduced or lost target antigen expression limits the efficacy of CART therapy and hinders the durability of CAR T cells. Epigenetic drugs can regulate histones for molecular modifications to regulate the transcriptional, translational and post-translational modification processes of target agents, and we demonstrated for the first time the role in regulating CD22 expression and its effect on the efficacy of CD22 CART. In this paper, we found that Chidamide promoted the expression of CD22 on the surface of B-cell tumor cells in vitro and in vivo, and enhanced the function of CD22 CART. As for mechanisms, we demonstrated that Chidamide did not affect CD22 mRNA transcription, but significantly increased the expression of total CD22 protein, indicating that Chidamide may upregulate cell surface CD22 expression by affecting the distribution of CD22 protein. In summary, our results suggest that Chidamide may enhance the efficacy of CD22 CART by inhibiting histone deacetylases to regulate post-transcriptional modifications that affect protein distribution to increase the expression of CD22 on the cell surface.


Subject(s)
Aminopyridines/pharmacokinetics , Benzamides/pharmacokinetics , Immunotherapy, Adoptive/methods , Sialic Acid Binding Ig-like Lectin 2/metabolism , Aminopyridines/metabolism , B-Lymphocytes/immunology , Benzamides/metabolism , Cell Line, Tumor , Gene Expression/drug effects , Gene Expression/genetics , Histone Deacetylase Inhibitors/pharmacology , Histones , Humans , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Primary Cell Culture , Receptors, Chimeric Antigen/immunology , Sialic Acid Binding Ig-like Lectin 2/drug effects , T-Lymphocytes/immunology , Up-Regulation/drug effects
11.
Molecules ; 26(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34299435

ABSTRACT

KRIBB11, an HSF1 inhibitor, was shown to sensitize various types of cancer cells to treatment with several anticancer drugs. However, the exclusive effects of KRIBB11 in preventing the growth of glioblastoma cells and the related mechanisms have not been elucidated yet. Herein, we aimed to examine the potential of KRIBB11 as an anticancer agent for glioblastoma. Using MTT and colony formation assays and Western blotting for c-PARP, we demonstrated that KRIBB11 substantially inhibits the growth of A172 glioma cells by inducing apoptosis. At the molecular level, KRIBB11 decreased anti-apoptotic protein MCL-1 levels, which was attributable to the increase in MULE ubiquitin ligase levels. However, the constitutive activity of HSF1 in A172 cells was not influenced by the exclusive treatment with KRIBB11. Additionally, based on cycloheximide chase assay, we found that KRIBB11 markedly retarded the degradation of MULE. In conclusion, stabilization of MULE upon KRIBB11 treatment is apparently an essential step for degradation of MCL-1 and the subsequent induction of apoptosis in A172 cells. Our results have expanded the knowledge on molecular pathways controlled by KRIBB11 and could be potentially effective for developing an inhibitory therapeutic strategy for glioblastoma.


Subject(s)
Aminopyridines/pharmacology , Glioblastoma/drug therapy , Indazoles/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Aminopyridines/metabolism , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Glioblastoma/metabolism , Glioma/drug therapy , Glioma/metabolism , Humans , Indazoles/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Proteins/drug effects , Tumor Suppressor Proteins/metabolism , Ubiquitin , Ubiquitin-Protein Ligases/drug effects , Ubiquitin-Protein Ligases/metabolism
12.
Biochemistry ; 60(24): 1919-1925, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34097400

ABSTRACT

Pseudoisocytosine (J), a neutral analogue of protonated cytosine, is currently the gold standard modified nucleobase in peptide nucleic acids (PNAs) for the formation of J·G-C triplets that are stable at physiological pH. This study shows that triple-helical recognition of RNA and DNA is significantly improved by using 2-aminopyridine (M) instead of J. The positively charged M forms 3-fold stronger M+·G-C triplets than J with uncompromised sequence selectivity. Replacement of six Js with Ms in a PNA 9-mer increased its binding affinity by ∼2 orders of magnitude. M-modified PNAs prefer binding double-stranded RNA over DNA and disfavor off-target binding to single-stranded nucleic acids. Taken together, the results show that M is a promising modified nucleobase that significantly improves triplex-forming PNAs and may provide breakthrough developments for therapeutic and biotechnology applications.


Subject(s)
Aminopyridines/chemistry , Nucleic Acid Conformation/drug effects , Peptide Nucleic Acids/metabolism , Aminopyridines/metabolism , Cytosine/analogs & derivatives , Cytosine/chemistry , DNA/chemistry , DNA/metabolism , RNA, Double-Stranded
13.
J Med Chem ; 64(11): 7241-7260, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34028270

ABSTRACT

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel are established as the primary causative factor in the devastating lung disease cystic fibrosis (CF). More recently, cigarette smoke exposure has been shown to be associated with dysfunctional airway epithelial ion transport, suggesting a role for CFTR in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, the identification and characterization of a high throughput screening hit 6 as a potentiator of mutant human F508del and wild-type CFTR channels is reported. The design, synthesis, and biological evaluation of compounds 7-33 to establish structure-activity relationships of the scaffold are described, leading to the identification of clinical development compound icenticaftor (QBW251) 33, which has subsequently progressed to deliver two positive clinical proofs of concept in patients with CF and COPD and is now being further developed as a novel therapeutic approach for COPD patients.


Subject(s)
Aminopyridines/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Administration, Oral , Aminopyridines/metabolism , Aminopyridines/therapeutic use , Animals , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Deletion , Half-Life , Humans , Protein Binding , Pulmonary Disease, Chronic Obstructive/drug therapy , Rats , Rats, Sprague-Dawley , Solubility , Structure-Activity Relationship
14.
Bioanalysis ; 13(9): 711-724, 2021 May.
Article in English | MEDLINE | ID: mdl-33870730

ABSTRACT

Aim: Bioanalytical methods undergo many revisions and modifications throughout drug development to meet the objectives of the study and development program. Results: Validated LC-MS/MS methodology used to quantify abemaciclib and four metabolites in human plasma is described. The method, initially validated to support the first-in-human study, was successfully modified to include additional metabolites as in vitro and in vivo information about the activity and abundance of human metabolites became available. Consistent performance of the method over time was demonstrated by an incurred sample reanalysis passing rate exceeding 95%, across clinical studies. An overview of the numerous methods involved during the development of abemaciclib, including the quantification of drugs evaluated as combination regimens and used as substrates during drug-drug interaction studies, is presented. Conclusion: Robust bioanalytical methods need to be designed with the flexibility required to support the evolving study objectives associated with registration and post-registration trials.


Subject(s)
Aminopyridines/analysis , Antineoplastic Agents/analysis , Benzimidazoles/analysis , Aminopyridines/metabolism , Antineoplastic Agents/metabolism , Benzimidazoles/metabolism , Chromatography, High Pressure Liquid , Humans , Molecular Structure
15.
J Med Chem ; 64(7): 3827-3842, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33764785

ABSTRACT

In this study, we determined the crystal structure of an engineered human adenosine A2A receptor bound to a partial agonist and compared it to structures cocrystallized with either a full agonist or an antagonist/inverse agonist. The interaction between the partial agonist, belonging to a class of dicyanopyridines, and amino acids in the ligand binding pocket inspired us to develop a small library of derivatives and assess their affinity in radioligand binding studies and potency and intrinsic activity in a functional, label-free, intact cell assay. It appeared that some of the derivatives retained the partial agonist profile, whereas other ligands turned into inverse agonists. We rationalized this remarkable behavior with additional computational docking studies.


Subject(s)
Adenosine A2 Receptor Agonists/metabolism , Aminopyridines/metabolism , Pyrimidines/metabolism , Receptor, Adenosine A2A/metabolism , Aminopyridines/chemical synthesis , Animals , Binding Sites , CHO Cells , Cricetulus , Crystallography, X-Ray , Drug Inverse Agonism , Drug Partial Agonism , HEK293 Cells , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Pyrimidines/chemical synthesis , Small Molecule Libraries/metabolism
16.
Nat Commun ; 12(1): 815, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547286

ABSTRACT

Narcolepsy type 1 (NT1) is a chronic neurological disorder that impairs the brain's ability to control sleep-wake cycles. Current therapies are limited to the management of symptoms with modest effectiveness and substantial adverse effects. Agonists of the orexin receptor 2 (OX2R) have shown promise as novel therapeutics that directly target the pathophysiology of the disease. However, identification of drug-like OX2R agonists has proven difficult. Here we report cryo-electron microscopy structures of active-state OX2R bound to an endogenous peptide agonist and a small-molecule agonist. The extended carboxy-terminal segment of the peptide reaches into the core of OX2R to stabilize an active conformation, while the small-molecule agonist binds deep inside the orthosteric pocket, making similar key interactions. Comparison with antagonist-bound OX2R suggests a molecular mechanism that rationalizes both receptor activation and inhibition. Our results enable structure-based discovery of therapeutic orexin agonists for the treatment of NT1 and other hypersomnia disorders.


Subject(s)
Aminopyridines/chemistry , Azepines/chemistry , Orexin Receptor Antagonists/chemistry , Orexin Receptors/chemistry , Peptides/chemistry , Sleep Aids, Pharmaceutical/chemistry , Sulfonamides/chemistry , Triazoles/chemistry , Aminopyridines/metabolism , Azepines/metabolism , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Molecular Dynamics Simulation , Orexin Receptor Antagonists/metabolism , Orexin Receptors/agonists , Orexin Receptors/metabolism , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sleep Aids, Pharmaceutical/metabolism , Sulfonamides/metabolism , Triazoles/metabolism
17.
Z Med Phys ; 31(1): 37-47, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33454153

ABSTRACT

PURPOSE: Quantification of tau load using 11C-PBB3-PET has the potential to improve diagnosis of neurodegenerative diseases. Although MRI-based pre-processing is used as a reference method, not all patients have MRI. The feasibility of a PET-based pre-processing for the quantification of 11C-PBB3 tracer was evaluated and compared with the MRI-based method. MATERIALS AND METHODS: Fourteen patients with decreased recent memory were examined with 11C-PBB3-PET and MRI. The PET scans were visually assessed and rated as either PBB3(+) or PBB3(-). The image processing based on the PET-based method was validated against the MRI-based approach. The regional uptakes were quantified using the Mesial-temporal/Temporoparietal/Rest of neocortex (MeTeR) regions. SUVR values were calculated by normalizing to the cerebellar reference region to compare both methods within the patient groups. RESULTS: Significant correlations were observed between the SUVRs of the MRI-based and the PET-based methods in the MeTeR regions (rMe=0.91; rTe=0.98; rR=0.96; p<0.0001). However, the Bland-Altman plot showed a significant bias between both methods in the subcortical Me region (bias: -0.041; 95% CI: -0.061 to -0.024; p=0.003). As in the MRI-based method, the 11C-PBB3 uptake obtained with the PET-based method was higher for the PBB3(+) group in each of the cortical regions and for the whole brain than for the PBB3(-) group (PET-basedGlobal: 1.11 vs. 0.96; Cliff's Delta (d)=0.68; p=0.04; MRI-basedGlobal: 1.11 vs. 0.97; d=0.70; p=0.03). To differentiate between positive and negative scans, Youden's index estimated the best cut-off of 0.99 from the ROC curve with good accuracy (AUC: 0.88±0.10; 95% CI: 0.67-1.00) and the same sensitivity (83%) and specificity (88%) for both methods. CONCLUSION: The PET-based pre-processing method developed to quantify the tau burden with 11C-PBB3 provided comparable SUVR values and effect sizes as the MRI-based reference method. Furthermore, both methods have a comparable discrimination accuracy between PBB3(+) and PBB3(-) groups as assessed by visual rating. Therefore, the presented PET-based method can be used for clinical diagnosis if no MRI image is available.


Subject(s)
Aminopyridines/metabolism , Benzothiazoles/metabolism , Brain/diagnostic imaging , Brain/metabolism , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Positron-Emission Tomography , Biological Transport , Feasibility Studies , Humans
18.
Clin Nucl Med ; 46(1): e31-e33, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32657879

ABSTRACT

Three patients with neurological disorders (cerebral infarction, progressive multifocal leukoencephalopathy, and multiple sclerosis) underwent F-THK5351 and C-L-deprenyl PET on the same day to visualize lesions undergoing astrogliosis by measuring MAO-B activity. BPND map and SUV image with F-THK5351 as well as Ki map, Ki/K1 map and SUV image with C-L-deprenyl were created. F-THK5351 BPND maps and SUV images clearly identified the lesions undergoing astrogliosis. C-L-deprenyl Ki/K1 maps were close to F-THK5351 images, but very noisy. Ki maps and SUV images were likely affected by the effect of blood flow. Hence, F-THK5351 is superior to C-L-deprenyl for visualizing lesions undergoing astrogliosis.


Subject(s)
Aminopyridines/metabolism , Carbon Radioisotopes , Gliosis/diagnostic imaging , Monoamine Oxidase/metabolism , Nervous System Diseases/complications , Positron-Emission Tomography , Quinolines/metabolism , Selegiline/metabolism , Female , Gliosis/complications , Gliosis/metabolism , Humans , Ligands , Male
19.
ACS Chem Biol ; 15(10): 2649-2654, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32902255

ABSTRACT

Interleukin-4 (IL-4) is a multifunctional cytokine and an important regulator of inflammation. When deregulated, IL-4 activity is associated with asthma, allergic inflammation, and multiple types of cancer. While antibody-based inhibitors targeting the soluble cytokine have been evaluated clinically, they failed to achieve their end points in trials. Small-molecule inhibitors are an attractive alternative, but identifying effective chemotypes that inhibit the protein-protein interactions between cytokines and their receptors remains an active area of research. As a result, no small-molecule inhibitors to the soluble IL-4 cytokine have yet been reported. Here, we describe the first IL-4 small-molecule inhibitor identified and characterized through a combination of binding-based approaches and cell-based activity assays. The compound features a nicotinonitrile scaffold with micromolar affinity and potency for the cytokine and disrupts type II IL-4 signaling in cells. Small-molecule inhibitors of these important cell-signaling proteins have implications for numerous immune-related disorders and inform future drug discovery and design efforts for these challenging protein targets.


Subject(s)
Aminopyridines/pharmacology , Interleukin-4/antagonists & inhibitors , Aminopyridines/metabolism , Humans , Interleukin-4/metabolism , Ligands , Phosphorylation/drug effects , Protein Binding , STAT6 Transcription Factor/chemistry , STAT6 Transcription Factor/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , THP-1 Cells
20.
Eur J Med Chem ; 208: 112833, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32971410

ABSTRACT

Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. It is caused by different mutations in the cystic fibrosis transmembrane regulator protein (CFTR) gene, with F508del being the most common. During the last years, small-molecule therapy chosen to contrast CF relied on compounds that correct CFTR misfolding and ER retention (correctors such as VX-809), or defective channel gating (potentiators such as VX-770). Combination therapy with the two series of drugs has been applied, leading to the approval of several multi-drugs such as Orkambi. Despite this, this treatment proved to be only partially effective making the search for novel modulators an urgent need to contrast CF. Recently, we reported compound 2a as reference compound of a series of aminoarylthiazole-VX-809 hybrid derivatives exhibiting promising F508del-CFTR corrector ability. Herein, we report exploring the docking mode of the prototype VX-809 and of 2a in order to derive useful guidelines for the rational design of novel optimized analogues. To demonstrate experimentally their effective F508del-CFTR-binding and rescuing potential, the most promising derivatives had been synthesized and evaluated in biological assays including YFP functional assay on F508del-CFTR CFBE41o-cells, trans epithelial electrical resistance (TEER) and surface plasmon resonance (SPR). This multidisciplinary strategy led to the discovery of a second series of hybrids including 7j and 7m endowed with higher potency than the prototype.


Subject(s)
Aminopyridines/metabolism , Aminopyridines/pharmacology , Benzodioxoles/metabolism , Benzodioxoles/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Aminopyridines/chemical synthesis , Benzodioxoles/chemical synthesis , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Design , Humans , Molecular Docking Simulation , Mutation , Protein Binding , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...