Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.472
Filter
1.
Sci Total Environ ; 947: 174439, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38971260

ABSTRACT

Ion-adsorption rare earth ore contains significant levels of leaching agents and heavy metals, leading to substantial co-contamination. This presents significant challenges for ecological rehabilitation, yet there is limited understanding of the toxicity thresholds associated with the co-contamination of ammonium sulfate (AS) and lead (Pb) on pioneer plants. Here, we investigated the toxicity thresholds of various aspects of alfalfa, including growth, ultrastructural changes, metabolism, antioxidant system response, and Pb accumulation. The results indicated that the co-contamination of AS-Pb decreased the dry weight of shoot and root by 26 %-77 % and 18 %-92 %, respectively, leading to irregular root cell morphology and nucleus disintegration. The high concentration and combined exposures to AS and Pb induced oxidative stress on alfalfa, which stimulated the defense of the antioxidative system and resulted in an increase in proline levels and a decrease in soluble sugars. Structural equation modeling analysis and integrated biomarker response elucidated that the soluble sugars, proline, and POD were the key physiological indicators of alfalfa under stresses and indicated that co-exposure induced more severe oxidative stress in alfalfa. The toxicity thresholds under single exposure were 496 (EC5), 566 (EC10), 719 (EC25), 940 (EC50) mg kg-1 for AS and 505 (EC5), 539 (EC10), 605 (EC25), 678 (EC50) mg kg-1 for Pb. This study showed that AS-Pb pollution notably influenced plant growth performance and had negative impacts on the growth processes, metabolite levels, and the antioxidant system in plants. Our findings contribute to a theoretical foundation and research necessity for evaluating ecological risks in mining areas and assessing the suitability of ecological restoration strategies.


Subject(s)
Ammonium Sulfate , Lead , Medicago sativa , Soil Pollutants , Medicago sativa/drug effects , Lead/toxicity , Soil Pollutants/toxicity , Ammonium Sulfate/toxicity , Oxidative Stress/drug effects , Metals, Rare Earth/toxicity
2.
J Chromatogr A ; 1730: 465133, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38996515

ABSTRACT

The use of a ternary mobile-phase system comprising ammonium sulphate, sodium chloride, and phosphate buffer was explored to tune retention and enhance selectivity in hydrophobic interaction chromatography. The accuracy of the linear solvent-strength model to predict protein retention with the ternary mobile-phase system based on isocratic scouting runs is limited, as the extrapolated retention factor at aqueous buffer conditions (k0) cannot be reliably established. The Jandera retention model utilizing a salt concentration averaged retention factor (k¯0) in aqueous buffer for ternary systems overcomes this bottleneck. Gradient retention factors were derived based on isocratic scouting runs after numerical integration of the isocratic Jandera model, leading to retention-time prediction errors below 11 % for linear gradients. Furthermore, an analytical expression was formulated to predict HIC retention for both linear and segmented linear gradients, considering the linear solvent-strength (LSS) model within ternary salt systems, relying on a fixed k0. The approach involved conducting two gradient scouting runs for each of the two binary salt systems to determine model parameters. Retention-time prediction errors for linear gradients were below 12 % for lysozyme and 3 % for trypsinogen and α-chymotrypsinogen A. Finally, the analytical expression for a ternary mobile-phase system was used in combination with a genetic algorithm to tune the HIC selectivity. With an optimized segmented ternary gradient, a critical-pair separation for a mixture of 7 proteins was achieved within 15 min with retention-time prediction errors ranging between 0.7 and 15.7 %.


Subject(s)
Ammonium Sulfate , Hydrophobic and Hydrophilic Interactions , Muramidase , Muramidase/chemistry , Muramidase/analysis , Ammonium Sulfate/chemistry , Sodium Chloride/chemistry , Chromatography, Liquid/methods , Algorithms , Buffers , Phosphates/chemistry , Phosphates/analysis , Chymotrypsinogen/chemistry , Models, Chemical
3.
Article in English | MEDLINE | ID: mdl-38878711

ABSTRACT

OBJECTIVE: Optimize the extraction process of earthworm fibrinolytic enzyme. METHODS: Chinese common earthworms underwent a series of purification processes, including grinding, salting out, hydrophobic medium chromatography, ammonium sulfate precipitation, and ion exchange chromatography, to obtain purified earthworm fibrinolytic enzyme. RESULTS: Utilizing Pheretima aspergillum as the starting material, we discovered that the specific activity of lumbrokinase extracted via ammonium sulfate precipitation was 58 U/mg, noticeably surpassing that achieved through heat precipitation and ethanol precipitation methods. After undergoing two rounds of chromatographic separations employing hydrophobic affinity chromatography and anion exchange chromatography, the specific activity of the lumbrokinase protein soared to 9267 U/mg, significantly exceeding the 3,178 U/mg specific activity attained through industrial extraction methods. DISCUSSION: The development of a novel crude extraction method for lumbrokinase protein can significantly boost its activity and purity. The discovery of a high-efficiency purification method and the identification of protein components within highly active lumbrokinase pave the way for further investigations into these proteins.


Subject(s)
Oligochaeta , Oligochaeta/chemistry , Oligochaeta/enzymology , Animals , Chromatography, Ion Exchange/methods , Ammonium Sulfate/chemistry , Chromatography, Affinity/methods , Chemical Precipitation , Hydrophobic and Hydrophilic Interactions , Chemical Fractionation/methods , Endopeptidases
4.
Molecules ; 29(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38893489

ABSTRACT

Recovering valuable active substances from the by-products of agricultural processing is a crucial concern for scientific researchers. This paper focuses on the enrichment of soybean trypsin inhibitor (STI) from soybean whey wastewater using either ammonium sulfate salting or ethanol precipitation, and discusses their physicochemical properties. The results show that at a 60% ethanol content, the yield of STI was 3.983 mg/mL, whereas the yield was 3.833 mg/mL at 60% ammonium sulfate saturation. The inhibitory activity of STI obtained by ammonium sulfate salting out (A-STI) was higher than that obtained by ethanol precipitation (E-STI). A-STI exhibited better solubility than E-STI at specific temperatures and pH levels, as confirmed by turbidity and surface hydrophobicity measurements. Thermal characterization revealed that both A-STI and E-STI showed thermal transition temperatures above 90 °C. Scanning electron microscopy demonstrated that A-STI had a smooth surface with fewer pores, while E-STI had a rough surface with more pores. In conclusion, there was no significant difference in the yield of A-STI and E-STI (p < 0.05); however, the physicochemical properties of A-STI were superior to those of E-STI, making it more suitable for further processing and utilization. This study provides a theoretical reference for the enrichment of STI from soybean whey wastewater.


Subject(s)
Glycine max , Trypsin Inhibitors , Wastewater , Whey , Glycine max/chemistry , Wastewater/chemistry , Whey/chemistry , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification , Ammonium Sulfate/chemistry , Chemical Precipitation , Hydrogen-Ion Concentration , Solubility , Hydrophobic and Hydrophilic Interactions , Temperature
5.
Int J Biol Macromol ; 273(Pt 1): 133034, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862052

ABSTRACT

Exploring new biomass sources for nanocellulose (NC) extraction is crucial in elevating the economic value of readily available renewable resources. This study compares NC extracted from acai (Euterpe oleracea) bagasse using different methods: mixed acid hydrolysis, 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) mediation, and ammonium persulfate (APS) oxidations. A comprehensive analysis investigates the impact of each treatment on the physical-chemical properties of the nanoparticles, including chemical structure, crystallinity, morphology, and thermal and suspension stability. NCs obtained through mixed acid hydrolysis exhibit the highest crystallinity (62 %) and low sulfate groups on their surfaces. Consequently, they demonstrate excellent thermal stability but poor colloidal stability in water. Oxidized NCs undergo chemical modification, converting alcoholic groups into carboxyl, resulting in NCs with zeta potentials ranging between -25.30 ± 0.81 and - 27.49 ± 1.07 mV. APS oxidation produces nanoparticles with superior thermal stability compared to TEMPO oxidation. Atomic Force Microscopy (AFM) images reveal that all nanocelluloses share characteristics of nanofibers (CNFs). This comprehensive characterization highlights the potential of acai bagasse for yielding high-added-value bioproducts suitable for versatile applications.


Subject(s)
Cellulose , Oxidation-Reduction , Cellulose/chemistry , Hydrolysis , Cyclic N-Oxides/chemistry , Nanoparticles/chemistry , Ammonium Sulfate/chemistry , Microscopy, Atomic Force
7.
Food Res Int ; 190: 114595, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945610

ABSTRACT

R-phycoerythrin (R-PE) is the most abundant, naturally occurring phycobiliproteins found in red algae. The spectroscopic and structural properties of phycobiliproteins exhibit unique absorption characteristics with two significant absorption maxima at 498 and 565 nm, indicating two different chromophores of R-PE, phycourobilin and phycoerythrobilin respectively. This study aimed to clarify how the stability of R-PE purified from F. lumbricalis was affected by different purification strategies. Crude extracts were compared to R-PE purified by i) microfiltration, ii) ultrafiltration, and iii) multi-step ammonium sulphate precipitation followed by dialysis. The stability of the different R-PE preparations was evaluated with respect to pH (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 40, 60, 80 and 100 °C). The absorbance spectra indicated higher stability of phycourobilin as compared to phycoerythrobilin for heat and pH stability in the samples. All preparations of R-PE showed heat stability till 40 °C from the findings of color, concentration of R-PE and fluorescence emission. The crude extract showed stability from pH 6 to 8, whereas R-PE purified by ultrafiltration and multi-step ammonium sulphate precipitation were both stable from pH 4 to 8 and R-PE purified by microfiltration exhibited stability from pH 4 to 10 from the results of color, SDS-PAGE, and concentration of R-PE. At pH 2, the color changed to violet whereas a yellow color was observed at pH 12 in the samples along with the precipitation of the protein.


Subject(s)
Phycoerythrin , Rhodophyta , Phycoerythrin/chemistry , Phycoerythrin/isolation & purification , Hydrogen-Ion Concentration , Rhodophyta/chemistry , Ultrafiltration/methods , Protein Stability , Chemical Precipitation , Ammonium Sulfate/chemistry , Hot Temperature , Temperature
8.
Methods ; 229: 63-70, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917960

ABSTRACT

Studying the molecular and immunological basis of allergic diseases often requires purified native allergens. The methodologies for protein purification are usually difficult and may not be completely successful. The objective of this work was to describe a methodology to purify allergens from their natural source, while maintaining their native form. The purification strategy consists of a three-step protocol and was used for purifying five specific allergens, Ole e 1, Amb a 1, Alt a 1, Bet v 1 and Cup a 1. Total proteins were extracted in PBS (pH 7.2). Then, the target allergens were pre-purified and enriched by salting-out using increasing concentrations of ammonium sulfate. The allergens were further purified by anion exchange chromatography. Purification of Amb a 1 required an extra step of cation exchange chromatography. The detection of the allergens in the fractions obtained were screened by SDS-PAGE, and Western blot when needed. Further characterization of purified Amb a 1 was performed by mass spectrometry. Ole e 1, Alt a 1, Bet v 1 and Cup a 1 were obtained at > 90 % purity. Amb a 1 was obtained at > 85 % purity. Overall, we propose an easy-to-perform purification approach that allows obtaining highly pure allergens. Since it does not involve neither chaotropic nor organic reagents, we anticipate that the structural and biological functions of the purified molecule remain intact. This method provides a basis for native allergen purification that can be tailored according to specific needs.


Subject(s)
Allergens , Allergens/chemistry , Allergens/isolation & purification , Allergens/immunology , Chromatography, Ion Exchange/methods , Electrophoresis, Polyacrylamide Gel/methods , Humans , Ammonium Sulfate/chemistry
9.
Huan Jing Ke Xue ; 45(6): 3584-3594, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897778

ABSTRACT

In order to investigate the effects of ammonium sulfate, an industrial by-product, on soil nutrients and microbial community when applied in different proportions instead of using urea as nitrogen fertilizer, a pot corn experiment was conducted. A completely randomized block experimental design was used, with a total of five treatments:CK (no fertilization), U10S0 (100 % urea), U8S2 (80 % urea + 20 % ammonium sulfate), U6S4(60 % urea + 40 % ammonium sulfate), and U0S10 (100 % ammonium sulfate). The basic physical and chemical properties of soil and the dry weight of maize plants were determined by conventional methods, and microbial sequencing was performed using the Illumina NovaSeq platform. The experiment results showed that:① In each growth stage of maize, the pH of soil treated with fertilization (7.85-8.15) was decreased compared with that of CK (8.1-8.21), and the pH showed a decreasing trend with the increase in ammonium sulfate content. ② The soil available nitrogen content increased gradually with the increase in the ammonium sulfate ratio at each growth stage of maize. Compared with that in the CK and U10S0 treatments, the ratio in the U0S10 treatment increased 30.56 % to 63.68 % and 13.22 % to 38.43 %, respectively. The variation trend of organic carbon content was opposite to that of available nitrogen (U8S2 > U6S4 > U0S10), and the addition of ammonium sulfate was still higher than that of U10S0 at other growth stages except for the seedling stage. ③ The protease activity of all fertilization treatments was higher than that of the control, and the protease activity was gradually enhanced with the continuous growth of corn and the increase in the ammonium sulfate ratio. The protease activity of the U0S10 treatment was higher than that of the U10S0 treatment at each growth stage of corn, which increased by 10.54 %-100 %. Soil sucrase activity ranged from 0.04 to 0.24 mg·(g·24 h)-1, and those in the U0S10 treatments were significantly higher than those in the U10S0 and CK treatments at all growth stages, increasing by 20.32 % to 99.16 % and 24.31 % to 79.33 %, respectively. ④ The species abundance of bacteria and fungi in maize rhizosphere under all fertilization treatments were lower than those under the CK treatment, followed by those under the U10S0 treatment. The species diversity trend of the bacterial community in the three treatments with ammonium sulfate replacing urea were U8S2 > U0S10 > U6S4, and that of fungi were U6S4 > U8S2 > U0S10. ⑤ The maize dry weight of the U10S0 treatment and U0S10 treatment was the highest, which was 39.47 % and 36.16 % higher than that of the CK treatment, respectively, but the difference was not significant. The Pearson model showed that the species abundance and diversity of soil rhizosphere fungi and bacteria were affected by relevant environmental variables, among which pH value and soil available nitrogen content were the most important factors affecting microbial diversity. In conclusion, when corn planting in calcareous brown soil, replacing urea with a certain proportion of ammonium sulfate can improve soil nutrients more than urea alone, which affects the growth and rhizosphere microbial community of corn to a certain extent and has a greater yield.


Subject(s)
Ammonium Sulfate , Fertilizers , Nitrogen , Rhizosphere , Soil Microbiology , Soil , Urea , Zea mays , Zea mays/growth & development , Soil/chemistry , Urea/metabolism , Microbiota/drug effects
10.
Int J Food Microbiol ; 419: 110749, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38788343

ABSTRACT

This study investigated the synergistic effects of ammonium persulfate (PS) and ultrasound (US) on the inactivation of Escherichia coli O157:H7 in buffered peptone water (BPW) and orange juice products. A comprehensive assessment of PS concentrations ranging from 1 to 300 mM, considering not only the statistical significance but also the reliability and stability of the experimental outcomes, showed that 150 mM was the optimal PS concentration for the inactivation of E. coli O157:H7. Additionally, US output intensities varying from 30 % to 60 % of the maximum US intensity were evaluated, and 50 % US amplitude was found to be the optimal US condition. A 50 % amplitude setting on the sonicator corresponds to half of its maximum displacement, approximately 60 µm, based on a maximum amplitude of 120 µm. The inactivation level of E. coli O157:H7 was significantly enhanced by the combined treatment of PS and US, compared to each treatment of PS and US alone. In the BPW, a 10-min treatment with the combination of PS and US resulted in a significant synergistic inactivation, achieving up to a log reduction of 3.86 log CFU/mL. Similarly, in orange juice products, a 5-min treatment with the combination of PS and US yielded a significant synergistic inactivation, with a reduction reaching 5.90 log CFU/mL. Although the treatment caused a significant color change in the sample, the visual differences between the treated and non-treated groups were not pronounced. Furthermore, the combined treatment in orange juice demonstrated significantly enhanced antimicrobial efficacy relative to BPW. Despite identical 5-min treatment periods, the application in orange juice resulted in a substantially higher log reduction of E. coli O157:H7, achieving 7.16 log CFU/mL at a reduced PS concentration of 30 mM, whereas the same treatment in BPW yielded only a 2.89 log CFU/mL reduction at a PS concentration of 150 mM, thereby highlighting its significantly superior antimicrobial performance in orange juice. The mechanism underlying microbial inactivation, induced by the combined treatment of PS and US, was identified as significant cell membrane damage. This damage is mediated by sulfate radicals, generated through the sono-activation of persulfate. In addition, the low pH of orange juice, measured at 3.7, is likely to have further deteriorated the E. coli O157:H7 cells compared to BPW (pH 7.2), by disrupting their cell membranes, proton gradients, and energy metabolism. These findings underscore the effectiveness of PS and US integration as a promising approach for non-thermal pasteurization in the food industry. Further research is needed to optimize treatment parameters and fully explore the practical application of this technique in large-scale food processing operations. Sensory evaluation and nutritional assessment are also necessary to address the limitations of PS.


Subject(s)
Ammonium Sulfate , Citrus sinensis , Colony Count, Microbial , Escherichia coli O157 , Fruit and Vegetable Juices , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Fruit and Vegetable Juices/microbiology , Citrus sinensis/chemistry , Ammonium Sulfate/pharmacology , Ammonium Sulfate/chemistry , Peptones/pharmacology , Peptones/chemistry , Food Microbiology , Microbial Viability/drug effects , Water/chemistry , Water/pharmacology
11.
Biomed Res Int ; 2024: 4119960, 2024.
Article in English | MEDLINE | ID: mdl-38559901

ABSTRACT

Background: Lactobacillus acidophilus is lactic acid bacteria that produce bacteriocins. Bacteriocins are antimicrobial peptides or proteins that exhibit activity against closely related bacteria. The aim of this study was to determine the effect of L. acidophilus ATCC 4356 bacteriocin against Staphylococcus aureus. Material and Methods. We used four different phenotypic methods for antimicrobial activities against two standard strains: methicillin-resistant S. aureus (MRSA) ATCC 33591 and methicillin-susceptible S. aureus (MSSA) ATCC 25923. The methods were (1) agar well diffusion, (2) overlay soft agar, (3) paper disk, and (4) modification of punch hole. The ammonium sulfate method was used to concentrate crude bacteriocin, and ultrafiltration and dialysis tubes were used to remove ammonium sulfate from the bacteriocins. Each method was repeated in triplicate. Result: L. acidophilus ATCC 4356 showed antimicrobial activity against both MRSA and MSSA standard strains only by the overlay soft agar method and not by the agar well diffusion, punch hole modification, and paper disk methods. No antimicrobial effects were observed in crude bacteriocins concentrated. Conclusion: The growth inhibition of S. aureus in overlay soft agar method may be due to the production of bacteriocin-like substances. The overlay soft agar method is a qualitative test, so there is a need for further study to optimize the conditions for the production of bacteriocin-like substances in the culture supernatant and precise comparison between the inhibitory activity and pheromone secretion of different strains.


Subject(s)
Anti-Infective Agents , Bacteriocins , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Bacteriocins/metabolism , Lactobacillus acidophilus , Agar/metabolism , Ammonium Sulfate/metabolism , Ammonium Sulfate/pharmacology , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
12.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564658

ABSTRACT

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Subject(s)
Cross-Linking Reagents , Gene Expression , Globulins , Hypocreales , Monophenol Monooxygenase , Recombinant Proteins , Soybean Proteins , Monophenol Monooxygenase/biosynthesis , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/isolation & purification , Monophenol Monooxygenase/metabolism , Cross-Linking Reagents/isolation & purification , Cross-Linking Reagents/metabolism , Hypocreales/classification , Hypocreales/genetics , Hypocreales/growth & development , Hypocreales/metabolism , Globulins/chemistry , Globulins/metabolism , Soybean Proteins/chemistry , Soybean Proteins/metabolism , Electroporation , Cellulose , Ammonium Sulfate , Chromatography, Gel , Fractional Precipitation , Emulsions/chemistry , Emulsions/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Protein Stability , Endoplasmic Reticulum/metabolism , Protein Sorting Signals , Oils/chemistry , Water/chemistry
13.
Molecules ; 29(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611831

ABSTRACT

In addition to traditional use in fermented dairy products, S. thermophilus also exhibits anti-inflammatory properties both in live and heat-inactivated form. Recent studies have highlighted that some hydrolysates from surface proteins of S. thermophilus could be responsible partially for overall anti-inflammatory activity of this bacterium. It was hypothesized that anti-inflammatory activity could also be attributed to peptides resulting from the digestion of intracellular proteins of S. thermophilus. Therefore, total intracellular proteins (TIP) from two phenotypically different strains, LMD-9 and CNRZ-21N, were recovered by sonication followed by ammonium sulphate precipitation. The molecular masses of the TIP of both strains were very close to each other as observed by SDS-PAGE. The TIP were fractionated by size exclusion fast protein liquid chromatography to obtain a 3-10 kDa intracellular protein (IP) fraction, which was then hydrolysed with pancreatic enzyme preparation, Corolase PP. The hydrolysed IP fraction from each strain exhibited anti-inflammatory activity by modulating pro-inflammatory mediators, particularly IL-1ß in LPS-stimulated THP-1 macrophages. However, a decrease in IL-8 secretion was only observed with hydrolysed IP fraction from CNRZ-21N, indicating that strain could be an important parameter in obtaining active hydrolysates. Results showed that peptides from the 3-10 kDa IP fraction of S. thermophilus could therefore be considered as postbiotics with potential beneficial effects on human health. Thus, it can be used as a promising bioactive ingredient for the development of functional foods to prevent low-grade inflammation.


Subject(s)
Membrane Proteins , Streptococcus thermophilus , Humans , Ammonium Sulfate , Interleukin-1beta , Macrophages
14.
Microb Cell Fact ; 23(1): 120, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664812

ABSTRACT

BACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.


Subject(s)
Esterases , Methionine , Esterases/metabolism , Esterases/genetics , Methionine/metabolism , Xylans/metabolism , Ammonium Sulfate/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Hypocreales/metabolism , Hypocreales/enzymology , Hypocreales/genetics , Lignin/metabolism , Acetylation
15.
Article in English | MEDLINE | ID: mdl-38632039

ABSTRACT

The mutant strain Halomonas bluephagenesis (TDH4A1B5P) was found to produce PHA under low-salt, non-sterile conditions, but the yield was low. To improve the yield, different nitrogen sources were tested. It was discovered that urea was the most effective nitrogen source for promoting growth during the stable stage, while ammonium sulfate was used during the logarithmic stage. The growth time of H. bluephagenesis (TDH4A1B5P) and its PHA content were significantly prolonged by the presence of sulfate ions. After 64 hr in a 5-L bioreactor supplemented with sulfate ions, the dry cell weight (DCW) of H. bluephagenesis weighed 132 g/L and had a PHA content of 82%. To promote the growth and PHA accumulation of H. bluephagenesis (TDH4A1B5P), a feeding regimen supplemented with nitrogen sources and sulfate ions with ammonium sodium sulfate was established in this study. The DCW was 124 g/L, and the PHA content accounted for 82.3% (w/w) of the DCW, resulting in a PHA yield of 101 g/L in a 30-L bioreactor using the optimized culture strategy. In conclusion, stimulating H. bluephagenesis (TDH4A1B5P) to produce PHA is a feasible and suitable strategy for all H. bluephagenesis.


Subject(s)
Bioreactors , Culture Media , Halomonas , Nitrogen , Polyhydroxyalkanoates , Sulfates , Halomonas/metabolism , Halomonas/growth & development , Halomonas/genetics , Sulfates/metabolism , Polyhydroxyalkanoates/metabolism , Culture Media/chemistry , Nitrogen/metabolism , Ammonium Sulfate/metabolism , Urea/metabolism , Fermentation
16.
Pestic Biochem Physiol ; 199: 105804, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458671

ABSTRACT

Chemical fertilizer and pesticide are necessary in agriculture, which have been frequently used, sometimes even at the same time or in combination. To understand the interactions of them could be of significance for better use of these agrochemicals. In this study, the influence of chemical fertilizers (urea, potassium sulfate, ammonium sulfate and superphosphate) on the control efficacy and environmental behavior of abamectin was investigated, which could be applied in soil for controlling nematodes. In laboratory assays, ammonium sulfate at 1 and 2 g/L decreased the LC50 values of abamectin to Meloidogyne incognita from 0.17 mg/L to 0.081 and 0.043 mg/L, indicating it could increase the contact toxicity. In greenhouse trial, ammonium sulfate at 1000 mg/kg increased the control efficacy of abamectin by 1.37 times. Meanwhile, the combination of abamectin with ammonium sulfate could also promote the tomato seedling growth as well as the defense-related enzyme activity under M. incognita stress. The persistence and mobility of abamectin in soil were significantly elevated by ammonium sulfate, which could prolong and promote the control efficacy against nematodes. These results could provide reference for reasonable use of abamectin and fertilizers so as to increase the control efficacy and minimize the environmental risks.


Subject(s)
Fertilizers , Ivermectin/analogs & derivatives , Tylenchoidea , Animals , Soil , Ammonium Sulfate
17.
Chemosphere ; 352: 141317, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286306

ABSTRACT

The efficacy of using plants to phytoremediate heavy metal (HM) contaminated soils can be improved using soil amendments. These amendments may both increase plant biomasses and HMs uptake. We aimed to determine the composite effect of ammonium sulfate ((NH4)2SO4) combined with the application of an aqueous stem-extracted bio-chelator (Bidens tripartita L) on the plant biomasses and cadmium (Cd) phytoextraction by Solanum nigrum L. The constant (NH4)2SO4 application mode plus bio-chelator additives collectively enhanced the shoot Cd extraction ability owing to the increased plant biomass and shoot Cd concentration by S. nigrum. The shoot Cd extraction and the soil Cd decreased concentration confirmed the optimal Cd phytoextraction pattern in K8 and K9 treatments (co-application of (NH4)2SO4 and twofold/threefold bio-chelators). Accordingly, Cd contamination risk in the soil (2 mg kg-1) could be completely eradicated (<0.2 mg kg-1) after three rounds of phytoremediation by S.nigrum based on K8 and K9 treatments through calculating soil Cd depletion. The microorganism counts and enzyme activities in rhizosphere soils at treatments with the combined soil additives apparently advanced. In general, co-application mode of (NH4)2SO4 and aqueous bio-chelator was likely to be a perfect substitute for conventional scavenger agents on account of its environmental friendliness and cost saving for field Cd contamination phytoremediation by S. nigrum.


Subject(s)
Soil Pollutants , Solanum nigrum , Cadmium/analysis , Chelating Agents , Ammonium Sulfate/pharmacology , Soil Pollutants/analysis , Biodegradation, Environmental , Soil , Plant Roots/chemistry
18.
Environ Res ; 247: 118194, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38224934

ABSTRACT

To attenuate the risk of Cadmium(Cd) contamination and the deterioration of soil quality caused by excessive nitrogen fertilizer application in greenhouse, a composite organic amendment (spend mushroom substrate and its biochar) was prepared to remedy Cd(II) ions contaminated soil (0.6 mg/kg) under different N fertilizer levels. The results showed that in the absence of a composite organic amendment, the soil pH decreased by 0.15 when the N level increased from 0.1 to 0.8 g N⋅kg-1. However, the pH increased by 0.86-0.91, the exchangeable Cd(II) ions content decreased by 26.0%-26.7%, the microbial biomass increased by 34.34%-164.46%, and the number of copies of the AOB gene increased by 13-20 times with the application of composite organic amendment and the increase of N level. Both Pearson correlation analysis and Mantel test demonstrated the reduction in Cd(II) ions availability, the restoration of soil properties and the increase in microbial biomass all contributed to the composite organic amendment, which is of importance for soil remediation under excessive N fertilizer.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Ammonium Sulfate/analysis , Sulfates , Fertilizers/analysis , Soil Pollutants/analysis , Soil/chemistry
19.
J Appl Lab Med ; 9(2): 350-356, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38180079

ABSTRACT

BACKGROUND: Examination of urine by immunofixation electrophoresis (UIFE) is one of the tests recommended for screening and monitoring of monoclonal gammopathies, especially multiple myeloma. Unlike the serum free light chain measurement, a positive result on urine immunofixation is diagnostic for monoclonal immunoglobulin light chains. Urine is usually concentrated, generally by membrane filtration, prior to electrophoresis. METHODS: Alternative methods to membrane filtration for urine concentration were examined. Residual urine specimens submitted for urine protein electrophoresis were concentrated by precipitation of the proteins by ammonium sulfate salt precipitation, precipitation with ethanol and acetonitrile, and by desiccation. The concentrated specimens were subjected to immunofixation electrophoresis using antisera to free light chains (FLC). The results were compared with those from conventional immunofixation electrophoresis using specimens concentrated by membrane filtration. RESULTS: Ammonium sulfate, ethanol, and acetonitrile precipitation results were less than satisfactory. Concentration by desiccation provided results comparable, if not better than, those by membrane filtration and conventional UIFE. The cost of desiccation is minimal compared to more than $5.00/specimen cost of concentration by membrane filtration. The differences in the results with conventional UIFE and the method described here are likely due to (a) variability in the reactivity of different antisera to free monoclonal light chains, and (b) obscuration of monoclonal free light chains by co-migration with intact immunoglobulin monoclonal proteins. CONCLUSIONS: Concentrating urine by desiccation for immunofixation electrophoresis is technically simple, inexpensive, and provides results comparable to concentrating by membrane filtration. Using FLC provides a more sensitive assay than using conventional antisera.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Humans , Ammonium Sulfate , Immunoglobulin Light Chains , Acetonitriles , Ethanol , Immune Sera
20.
Environ Technol ; 45(11): 2196-2204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36606665

ABSTRACT

This study aims to explore the influence mechanism of ammonium nitrate produced by ozone denitrification on the crystallisation of ammonium sulfate, a by-product of ammonia desulfurisation. The laser method was used to study the influence of ammonium nitrate on the solubility and metastable zone width of ammonium sulfate. An experiment on the influence of ammonium nitrate on the particle size of ammonium sulfate was designed, and the influence mechanism was explored through scanning electron microscopy and X-ray diffraction. The findings showed that the addition of ammonium nitrate increased the size and aspect ratio of ammonium sulfate crystals. The addition of ammonium nitrate inhibited the dissolution of ammonium sulfate and widened its metastable zone. The addition of ammonium nitrate covered the active sites of crystal nucleus growth, which inhibited the formation of crystal nuclei to a certain extent, and crystal growth dominated the crystallisation process. Moreover, the addition of ammonium nitrate induced the preferred orientation of the specific crystal plane of ammonium sulfate, and the addition of a small concentration of ammonium nitrate decreased the crystallinity of ammonium sulfate. The research results can provide a reference for crystallisation optimisation and quality improvement of ammonium sulfate in the ammonia desulfurisation process.


Subject(s)
Ammonia , Ammonium Compounds , Ammonium Sulfate , Crystallization , Nitrates/chemistry , Ammonium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL