Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.352
Filter
1.
PLoS One ; 19(6): e0298585, 2024.
Article in English | MEDLINE | ID: mdl-38900782

ABSTRACT

Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was noted; AQ from 2.996 ng/ml [IQR = 2.604-4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134-3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88-80.89, n = 51] in 2008 to 18.10 ng/ml [IQR = 11.81-26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml [IQR = 16.99-71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976-9.875, n = 37] (P<0.001) in 2019, and ART from 2.680 ng/ml [IQR = 1.608-4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266-3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the drugs over time. However, no significant variations were observed in LU (P = 0.2692) and MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was no statistical significance between the mutation at 876 and parasite sensitivity to selected antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations. These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART, LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.


Subject(s)
Antimalarials , Artemether, Lumefantrine Drug Combination , Malaria, Falciparum , Plasmodium falciparum , Polymorphism, Single Nucleotide , Antimalarials/pharmacology , Antimalarials/therapeutic use , Humans , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Multidrug Resistance-Associated Proteins/genetics , Kenya , Mefloquine/pharmacology , Mefloquine/therapeutic use , Amodiaquine/pharmacology , Amodiaquine/therapeutic use , Drug Resistance/genetics , Artemisinins/pharmacology , Artemisinins/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Quinine/pharmacology , Quinine/therapeutic use , Male , Female
2.
Malar J ; 23(1): 101, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594679

ABSTRACT

BACKGROUND: Artemisinin-based combination therapy (ACT) has been a major contributor to the substantial reductions in global malaria morbidity and mortality over the last decade. In Tanzania, artemether-lumefantrine (AL) was introduced as the first-line treatment for uncomplicated Plasmodium falciparum malaria in 2006. The World Health Organization (WHO) recommends regular assessment and monitoring of the efficacy of the first-line treatment, specifically considering that artemisinin resistance has been confirmed in the Greater Mekong sub-region. This study's main aim was to assess the efficacy and safety of AL for treating uncomplicated P. falciparum malaria in Tanzania. METHODS: This was a single-arm prospective antimalarial drug efficacy trial conducted in four of the eight National Malaria Control Programme (NMCP) sentinel sites in 2019. The trial was carried out in outpatient health facilities in Karume-Mwanza region, Ipinda-Mbeya region, Simbo-Tabora region, and Nagaga-Mtwara region. Children aged six months to 10 years with microscopy confirmed uncomplicated P. falciparum malaria who met the inclusion criteria were recruited based on the WHO protocol. The children received AL (a 6-dose regimen of AL twice daily for three days). Clinical and parasitological parameters were monitored during follow-up over 28 days to evaluate drug efficacy. RESULTS: A total of 628 children were screened for uncomplicated malaria, and 349 (55.6%) were enrolled between May and September 2019. Of the enrolled children, 343 (98.3%) completed the 28-day follow-up or attained the treatment outcomes. There were no early treatment failures; recurrent infections during follow-up were common at two sites (Karume 29.5%; Simbo 18.2%). PCR-corrected adequate clinical and parasitological response (ACPR) by survival analysis to AL on day 28 of follow-up varied from 97.7% at Karume to 100% at Ipinda and Nagaga sites. The commonly reported adverse events were cough, skin pallor, and abdominal pain. The drug was well tolerated, and no serious adverse event was reported. CONCLUSION: This study showed that AL had adequate efficacy and safety for the treatment of uncomplicated falciparum malaria in Tanzania in 2019. The high recurrent infections were mainly due to new infections, highlighting the potential role of introducing alternative artemisinin-based combinations that offer improved post-treatment prophylaxis, such as artesunate-amodiaquine (ASAQ).


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Child , Humans , Infant , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination/adverse effects , Tanzania , Reinfection/chemically induced , Reinfection/drug therapy , Prospective Studies , Drug Combinations , Artemether/therapeutic use , Malaria, Falciparum/drug therapy , Artemisinins/adverse effects , Amodiaquine/therapeutic use , Malaria/drug therapy , Treatment Outcome , Plasmodium falciparum
3.
Eur J Med Chem ; 271: 116429, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38663284

ABSTRACT

Amodiaquine (AQ) is a potent antimalarial drug used in combination with artesunate as part of artemisinin-based combination therapies (ACTs) for malarial treatment. Due to the rising emergence of resistant malaria parasites, some of which have been reported for ACT, the usefulness of AQ as an efficacious therapeutic drug is threatened. Employing the organometallic hybridisation approach, which has been shown to restore the antimalarial activity of chloroquine in the form of an organometallic hybrid clinical candidate ferroquine (FQ), the present study utilises this strategy to modulate the biological performance of AQ by incorporating ferrocene. Presently, we have conceptualised ferrocenyl AQ derivatives and have developed facile, practical routes for their synthesis. A tailored library of AQ derivatives was assembled and their antimalarial activity evaluated against chemosensitive (NF54) and multidrug-resistant (K1) strains of the malaria parasite, Plasmodium falciparum. The compounds generally showed enhanced or comparable activities to those of the reference clinical drugs chloroquine and AQ, against both strains, with higher selectivity for the sensitive phenotype, mostly in the double-digit nanomolar IC50 range. Moreover, representative compounds from this series show the potential to block malaria transmission by inhibiting the growth of stage II/III and V gametocytes in vitro. Preliminary mechanistic insights also revealed hemozoin inhibition as a potential mode of action.


Subject(s)
Amodiaquine , Antimalarials , Ferrous Compounds , Metallocenes , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Plasmodium falciparum/drug effects , Metallocenes/chemistry , Metallocenes/pharmacology , Amodiaquine/pharmacology , Amodiaquine/chemistry , Structure-Activity Relationship , Molecular Structure , Humans , Parasitic Sensitivity Tests , Dose-Response Relationship, Drug
4.
Malar J ; 23(1): 95, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582830

ABSTRACT

BACKGROUND: The use of artemisinin-based combination therapy (ACT) is recommended by the World Health Organization for the treatment of uncomplicated falciparum malaria. Artemether-lumefantrine (AL) is the most widely adopted first-line ACT for uncomplicated malaria in sub-Saharan Africa (SSA), including mainland Tanzania, where it was introduced in December 2006. The WHO recommends regular assessment to monitor the efficacy of the first-line treatment specifically considering that artemisinin partial resistance was reported in Greater Mekong sub-region and has been confirmed in East Africa (Rwanda and Uganda). The main aim of this study was to assess the efficacy and safety of AL for the treatment of uncomplicated falciparum malaria in mainland Tanzania. METHODS: A single-arm prospective anti-malarial drug efficacy trial was conducted in Kibaha, Mlimba, Mkuzi, and Ujiji (in Pwani, Morogoro, Tanga, and Kigoma regions, respectively) in 2018. The sample size of 88 patients per site was determined based on WHO 2009 standard protocol. Participants were febrile patients (documented axillary temperature ≥ 37.5 °C and/or history of fever during the past 24 h) aged 6 months to 10 years. Patients received a 6-dose AL regimen by weight twice a day for 3 days. Clinical and parasitological parameters were monitored during 28 days of follow-up to evaluate the drug efficacy and safety. RESULTS: A total of 653 children were screened for uncomplicated malaria and 349 (53.7%) were enrolled between April and August 2018. Of the enrolled children, 345 (98.9%) completed the 28 days of follow-up or attained the treatment outcomes. There were no early treatment failures, but recurrent infections were higher in Mkuzi (35.2%) and Ujiji (23%). By Kaplan-Meier analysis of polymerase chain reaction (PCR) uncorrected adequate clinical and parasitological response (ACPR) ranged from 63.4% in Mkuzi to 85.9% in Mlimba, while PCR-corrected ACPR on day 28 varied from 97.6% in Ujiji to 100% in Mlimba. The drug was well tolerated; the commonly reported adverse events were cough, runny nose, and abdominal pain. No serious adverse event was reported. CONCLUSION: This study showed that AL had adequate efficacy and safety for the treatment of uncomplicated falciparum malaria. The high number of recurrent infections were mainly due to new infections, indicating the necessity of utilizing alternative artemisinin-based combinations, such as artesunate amodiaquine, which provide a significantly longer post-treatment prophylactic effect.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Child , Humans , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination/adverse effects , Tanzania , Reinfection/chemically induced , Reinfection/drug therapy , Artemisinins/adverse effects , Artemether/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Amodiaquine/therapeutic use , Malaria/drug therapy , Fever/drug therapy , Drug Combinations , Ethanolamines/adverse effects , Plasmodium falciparum
5.
Malar J ; 23(1): 90, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553737

ABSTRACT

BACKGROUND: Diversification of artemisinin-based combination therapy (ACT) is suggested as one of the strategies that can be used to contain artemisinin resistance. Artesunate-amodiaquine (ASAQ) is one of the artemisinin-based combinations that can be used in the diversification strategy as an alternative first-line treatment for uncomplicated malaria in mainland Tanzania. There is however limited data on the efficacy of ASAQ in mainland Tanzania. This study assessed the efficacy of ASAQ for treatment of uncomplicated Plasmodium falciparum malaria in selected sentinel sites for therapeutic efficacy studies in mainland Tanzania. METHODS: Between December 2018 and March 2020, children aged between 6 months and 10 years, attending at Nagaga, Mkuzi, and Mlimba primary health facilities, and with suspected uncomplicated malaria infection were screened for eligibility to participate in the study. Malaria infection was screened using microscopy. Children with uncomplicated P. falciparum monoinfection and who fulfilled all other inclusion criteria, and had none of the exclusion criteria, according to the World Health Organization (WHO) guidelines, were treated with ASAQ. Follow-up visits were scheduled on days 0, 1, 2, 3, 7, 14, 21, and 28 or on any day of recurrent infection for clinical and laboratory assessment. Polymerase chain reaction (PCR)-corrected cure rate on day 28 was the primary outcome. RESULTS: A total of 264 children, 88 in each of the three study sites (Mlimba, Mkuzi and Nagaga health facilities) were enrolled and treated with ASAQ. The ASAQ PCR-corrected cure rate was 100% at all the three study sites. None of the participants had early treatment failure or late clinical failure. Furthermore, none of the participants had a serious adverse event. CONCLUSION: ASAQ was highly efficacious for the treatment of uncomplicated P. falciparum malaria in mainland Tanzania, therefore, it can be deployed as an alternative first-line treatment for uncomplicated malaria as part of diversification strategy to contain the spread of partial artemisinin resistance in the country.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Child , Humans , Infant , Amodiaquine , Artesunate/therapeutic use , Tanzania , Plasmodium falciparum , Drug Combinations , Malaria, Falciparum/drug therapy , Malaria/drug therapy
6.
Antimicrob Agents Chemother ; 68(4): e0152523, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38421163

ABSTRACT

Monitoring antimalarial efficacy is important to detect the emergence of parasite drug resistance. Angola conducts in vivo therapeutic efficacy studies (TESs) every 2 years in its fixed sentinel sites in Benguela, Lunda Sul, and Zaire provinces. Children with uncomplicated Plasmodium falciparum malaria were treated with artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ), dihydroartemisinin-piperaquine (DP), or artesunate-pyronaridine (ASPY) and followed for 28 (AL and ASAQ) or 42 days (DP and ASPY) to assess clinical and parasitological response to treatment. Two drugs were sequentially assessed in each site in February-July 2021. The primary indicator was the Kaplan-Meier estimate of the PCR-corrected efficacy at the end of the follow-up period. A total of 622 patients were enrolled in the study and 590 (95%) participants reached a study endpoint. By day 3, ≥98% of participants were slide-negative in all study sites and arms. After PCR correction, day 28 AL efficacy was 88.0% (95% CI: 82%-95%) in Zaire and 94.7% (95% CI: 90%-99%) in Lunda Sul. For ASAQ, day 28 efficacy was 92.0% (95% CI: 87%-98%) in Zaire and 100% in Lunda Sul. Corrected day 42 efficacy was 99.6% (95% CI: 99%-100%) for ASPY and 98.3% (95% CI: 96%-100%) for DP in Benguela. High day 3 clearance rates suggest no clinical evidence of artemisinin resistance. This was the fourth of five rounds of TES in Angola showing a corrected AL efficacy <90% in a site. For Zaire, AL has had an efficacy <90% in 2013, 2015, and 2021. ASAQ, DP, and ASPY are appropriate choices as artemisinin-based combination therapies in Angola.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Child , Humans , Antimalarials/therapeutic use , Artesunate/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Angola , Artemether/therapeutic use , Artemisinins/therapeutic use , Amodiaquine/therapeutic use , Malaria, Falciparum/drug therapy , Drug Combinations , Plasmodium falciparum
7.
Sante Publique ; 35(5): 121-132, 2024 01 03.
Article in French | MEDLINE | ID: mdl-38172043

ABSTRACT

Introduction: Seasonal malaria chemoprevention (SMC) by mass administration of sulfadoxine pyrimethamine + amodiaquine (SPAQ) reduces the burden of malaria in children aged 3­59 months. The occurrence of adverse drug reaction (ADR) may affect the success of this intervention. There are few studies of SMC adverse event surveillance in sub-Saharan Africa, particularly in Burkina Faso, a highly endemic country. Our main objective was to characterize the ADRs reported during SMC campaigns in Burkina Faso. Secondly, we evaluated the performance of the pharmacovigilance integrated into the SMC program in order to support safe administration of SMC. Method: This was a retrospective descriptive study of SMC individual case safety reports recorded in VigiBase® in Burkina Faso from 2014 to 2021. We used the P-method for the analysis of preventable serious adverse drug reactions and WHO criteria for assessing the performance of pharmacovigilance integrated into the SMC program. Results: A total of 1,105 SMC individual case safety reports were registered in VigiBase® for 23,311,453 doses of SPAQ given between 2014 and 2021. No pharmacovigilance signal was detected. The number of serious cases was 101, of which 23 (22.8%) were preventable. In 38.1% of children, the occurrence of ADRs led to discontinuation of SMC treatment. Vomiting was the most frequently reported adverse drug reaction (48.0%). The proportion of children whose treatment was discontinued due to vomiting was 42.7%, while the proportion of treatment discontinuation for other ADRs was 32.8% (p = 0.01). The SMC program contributed at 46.2% to the national pharmacovigilance database. The reporting rate was 0.03 per 1,000 exposed children in 2021. The median completeness score of the ICSRs was 0.7 (IQR: 0.5­0.7), and the median time to register the ICSRs in VigiBase® was 204 (IQR: 143­333) days. Conclusions: Post-drug administration vomiting may interfere with the purpose of SMC. Measures to manage this adverse drug reaction should be taken to improve the success of the SMC program. Based on the information on reporting time and reporting rate, spontaneous reporting should be supported by active surveillance, including cohort event monitoring, in Burkina Faso.


Introduction: La chimioprévention du paludisme saisonnier (CPS) par l'administration en masse de la sulfadoxine-pyriméthamine + amodiaquine (SPAQ) permet de réduire le fardeau du paludisme chez les enfants de 3-59 mois. La survenue d'effets indésirables (EI) pourrait nuire au succès de cette intervention. Il existe peu d'études sur la surveillance des EI de la CPS en Afrique subsaharienne et plus particulièrement au Burkina Faso, pays de forte endémicité palustre. Notre objectif principal était de caractériser les effets indésirables notifiés au cours des campagnes CPS au Burkina Faso. Secondairement, nous avons évalué la performance de la pharmacovigilance intégrée au programme de CPS dans le but de soutenir la sécurité d'administration de la CPS. Méthodes: Nous avons réalisé une analyse rétrospective à visée descriptive des rapports d'effets indésirables de la CPS enregistrés dans VigiBase® entre le 1er janvier 2014 et le 31 décembre 2021. Nous avons utilisé la P-method pour l'analyse de l'évitabilité des effets indésirables graves et les critères de l'OMS pour évaluer la performance de la pharmacovigilance intégrée au programme de CPS. Résultats: Au total, 1 105 cas individuels de rapports de sécurité de la CPS ont été analysés dans VigiBase® pour 23 311 453 doses administrées. Aucun signal de pharmacovigilance n'a été détecté. Le nombre des cas graves était de 101, dont 23 (22,8 %) évitables. Chez 38,1 % des enfants, la survenue des EI a occasionné l'arrêt de l'administration du traitement de la CPS. Le vomissement était l'effet indésirable le plus fréquemment rapporté (48,0 %). La proportion d'enfants dont le traitement a été arrêté pour motif de vomissement était de 42,7 %, tandis que la proportion d'arrêts de traitement pour les autres EI était de 32,8 % (p=0,01). La pharmacovigilance de la CPS a contribué à 46,2 % à l'alimentation de la base de données nationale de pharmacovigilance. Le taux de notification était de 0,03 pour 1 000 enfants exposés en 2021. Le score d'exhaustivité médian des rapports était de 0,7 (P25-P75 : 0,5-0,7) et le délai médian d'enregistrement des rapports dans VigiBase® était de 204 (P25-P75 : 143-333) jours. Conclusions: Les vomissements peuvent nuire à l'objectif de la CPS. Des mesures de gestion de cet effet indésirable doivent être prises pour améliorer le succès de la CPS. Au regard des informations sur le délai de notification et le taux de notification, la notification spontanée devrait être soutenue par une surveillance active, notamment une « cohort event monitoring ¼ au Burkina Faso.


Subject(s)
Antimalarials , Drug-Related Side Effects and Adverse Reactions , Malaria , Child , Humans , Infant , Antimalarials/adverse effects , Burkina Faso/epidemiology , Retrospective Studies , Seasons , Malaria/prevention & control , Malaria/epidemiology , Amodiaquine/adverse effects , Chemoprevention/methods , Drug-Related Side Effects and Adverse Reactions/epidemiology , Vomiting/drug therapy
8.
J Infect Dis ; 229(1): 189-197, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37682871

ABSTRACT

BACKGROUND: Owing to the increased cases of malaria in older children, the World Health Organization has recently recommended extending seasonal malaria chemoprevention (SMC) to children >5 years of age and using other effective drugs for malaria. In this study, we report the safety and efficacy of dihydroartemisinin-piperaquine (DHA-PQ) for SMC in school-aged children in Mali. METHOD: This randomized, controlled trial included 345 participants aged 6-15 years randomized to receive DHA-PQ, sulfadoxine-pyrimethamine plus amodiaquine (SP-AQ), or no chemoprevention (albendazole) at a 1:1:1 ratio. Four rounds of SMC were conducted from September to December 2021. The participants were assessed 7 days after each round for safety and efficacy of the interventions. RESULTS: Abdominal pain (11.8% vs 29.2%), headache (11.2% vs 19.2%), and vomiting (5.7% vs 15.2%) were frequently reported in the DHA-PQ and SP-AQ arms. On Day 120 of follow up, the incidence of clinical malaria was 0.01 episodes/person-month in the DHA-PQ and SP-AQ arms and 0.17 episodes/person-month in the control arm (P < .0001). Gametocytes were detected in 37 participants in all arms. CONCLUSIONS: Children in DHA-PQ arm reported less adverse events compared to the SP-AQ arm. Both drugs were effective against clinical malaria and infection.


Subject(s)
Antimalarials , Artemisinins , Malaria , Piperazines , Quinolines , Child , Humans , Infant , Child, Preschool , Antimalarials/adverse effects , Mali/epidemiology , Seasons , Malaria/epidemiology , Sulfadoxine/adverse effects , Amodiaquine/adverse effects , Drug Combinations , Chemoprevention/adverse effects
9.
Am J Trop Med Hyg ; 110(1): 20-31, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38081050

ABSTRACT

Seasonal malaria chemoprevention (SMC) for children under 5 years of age for up to four monthly cycles during malaria transmission season was recommended by the WHO in 2012 and has been implemented in 13 countries in the Sahel, reaching more than 30 million children annually. Malaria control programs implementing SMC have asked the WHO to consider expanding the age range or number of monthly cycles. We conducted a systematic review and meta-analysis of SMC among children up to 15 years of age and up to six monthly cycles. Twelve randomized studies were included, with outcomes stratified by age (< 5/≥ 5 years), by three or four versus five or six cycles, and by drug where possible. Drug regimens included sulfadoxine-pyrimethamine + amodiaquine, amodiaquine-artesunate, and sulfadoxine-pyrimethamine + artesunate. Included studies were all conducted in Sahelian countries in which high-grade resistance to sulfadoxine-pyrimethamine was rare and in zones with parasite prevalence ranging from 1% to 79%. Seasonal malaria chemoprevention resulted in substantial reductions in uncomplicated malaria incidence measured during that transmission season (rate ratio: 0.27, 95% CI: 0.25-0.29 among children < 5 years; rate ratio: 0.27, 95% CI: 0.25-0.30 among children ≥ 5 years) and in the prevalence of malaria parasitemia measured within 4-6 weeks from the final SMC cycle (risk ratio: 0.38, 95% CI: 0.34-0.43 among children < 5 years; risk ratio: 0.23, 95% CI: 0.11-0.48 among children ≥ 5 years). In high-transmission zones, SMC resulted in a moderately reduced risk of any anemia (risk ratio: 0.77, 95% CI: 0.72-0.83 among children < 5 years; risk ratio: 0.70, 95% CI: 0.52-0.95 among children ≥ 5 years [one study]). Children < 10 years of age had a moderate reduction in severe malaria (risk ratio: 0.53, 95% CI: 0.37-0.76) but no evidence of a mortality reduction. The evidence suggests that in areas in which sulfadoxine-pyrimethamine and amodiaquine remained efficacious, SMC effectively reduced malaria disease burden among children both < 5 and ≥ 5 years old and that the number of cycles should be commensurate with the length of the transmission season, up to six cycles.


Subject(s)
Antimalarials , Malaria , Child , Child, Preschool , Humans , Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Artesunate/therapeutic use , Chemoprevention/methods , Drug Combinations , Malaria/epidemiology , Malaria/prevention & control , Malaria/drug therapy , Pyrimethamine/therapeutic use , Seasons , Sulfadoxine/therapeutic use , Adolescent
10.
Future Med Chem ; 15(23): 2165-2179, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37982232

ABSTRACT

Aim: To synthesize and explore the therapeutic potential of amodiaquine analogues. Methodology: New promising analogues were synthesized by nucleophilic substitution at the 4-amino position and were characterized using 1H NMR, 13C NMR and FT-IR spectroscopic techniques. Results: Antibacterial and cytotoxic screening revealed the high potency of these compounds; analogue AS1 had an 34.3 ± 0.18 mm zone of inhibition against Pseudomonas aeruginosa. Excellent activity against fungal strains, that is, Candida albicans (39.6 ± 0.23 mm) was shown by analogue AS2. Analogue AS1 had an IC50 = 4.2 µg/ml against the HeLa cell line (cervical cancer) and binding energy against 5GWK (-8.32688 kcal/mol), 1PFK (-6.4780 kcal/mol) and 1TUP (-6.5279 kcal/mol) in the docking study. Conclusion: The obtained results reveal that these analogues exhibit potent antimicrobial and cytotoxic potential.


Subject(s)
Antineoplastic Agents , Uterine Cervical Neoplasms , Female , Humans , Molecular Structure , HeLa Cells , Structure-Activity Relationship , Amodiaquine/pharmacology , Uterine Cervical Neoplasms/drug therapy , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Candida albicans , Microbial Sensitivity Tests , Molecular Docking Simulation
11.
J Infect Dev Ctries ; 17(9): 1337-1345, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37824364

ABSTRACT

INTRODUCTION: Polymorphonuclear neutrophils (PMN) are involved in pathogen clearance by phagocytosis. However, the role of PMNs in the efficacy of artemisinin-based combination therapy (ACT) is poorly understood. METHODOLOGY: In a prospective longitudinal in vivo study, neutrophil rates were compared with malaria carriage after treatment with different ACTs: Artemether - lumefantrine (AL), Artesunate - amodiaquine (ASAQ), Dihydroartemisinin - piperaquine (DP) or Pyronaridine artesunate (PA). The study cases were classified as having neutropenia, normal neutrophil levels or neutrophilia depending on the level of neutrophils in the blood. This study included 3148 patients and was analyzed using R. RESULTS: On day 7, only four patients in the neutropenia group and treated with AL had a malaria positive blood smear based on microscopy. On day 28, the rate of recurrent parasitemia in the AL arm was significantly higher in neutropenia patients (50.9%) than in patients with normal rates of neutrophils (43.1%) or in those with neutrophilia (6.0%) (p < 0.001). In ASAQ arm, the rate of recurrent Plasmodium falciparum parasitemia was 58.8% in the neutropenia group versus 29.4% in patients with normal rates of neutrophils and 11.8% in patients with neutrophilia (p < 0.001). No patient treated with DP with normal neutrophil counts or neutrophilia was carrying malaria parasites on day 28. Among the 15 patients with parasitemia on day 28 in the PA arm, 11 (73.33%) had neutropenia while 4 (26.67%) had a normal neutrophil count (p < 0.001). CONCLUSIONS: Patients with neutropenia had higher rates of recurrent P. falciparum parasitemia after ACT.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Neutropenia , Humans , Artesunate/therapeutic use , Antimalarials/therapeutic use , Neutrophils , Malaria, Falciparum/drug therapy , Parasitemia/drug therapy , Prospective Studies , Artemether, Lumefantrine Drug Combination/therapeutic use , Amodiaquine/therapeutic use , Artemisinins/therapeutic use , Malaria/drug therapy , Drug Combinations , Neutropenia/chemically induced , Africa , Plasmodium falciparum , Ethanolamines/therapeutic use
12.
Am J Trop Med Hyg ; 109(5): 1047-1056, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37722662

ABSTRACT

Integration of vertical programs for the control of malaria, schistosomiasis, and soil-transmitted helminthiasis has been recommended to achieve elimination of malaria and neglected tropical diseases (NTD) by 2030. This qualitative study was conducted within the context of a randomized controlled trial to explore the perceptions and views of parents/caregivers of at-risk children and healthcare providers to determine their acceptability of the integrated malaria-helminth treatment approach. Randomly selected parents/caregivers of children enrolled in the trial, healthcare providers, trial staff, malaria, and NTD program managers were interviewed using purpose-designed topic guides. Transcripts obtained from the interviews were coded and common themes identified using content analysis were triangulated. Fifty-seven study participants comprising 26 parents/caregivers, 10 study children aged ≥ 10 years, 15 trial staff, four healthcare providers, and two managers from the Senegal Ministry of Health were interviewed. Thirty-eight of the participants (66.7%) were males, and their ages ranged from 10 to 65 years. Overall, the integrated malaria-helminth treatment approach was considered acceptable, but the study participants expressed concerns about the taste, smell, and side effects associated with amodiaquine and praziquantel in the combination package. Reluctance to accept the medications was also observed among children aged 10 to 14 years due to peer influence and gender-sensitive cultural beliefs. Addressing concerns about the taste and smell of amodiaquine and praziquantel is needed to optimize the uptake of the integrated treatment program. Also, culturally appropriate strategies need to be put in place to cater for the inclusion of children aged 10 to 14 years in this approach.


Subject(s)
Helminthiasis , Helminths , Malaria , Child , Male , Animals , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Female , Praziquantel/therapeutic use , Amodiaquine/therapeutic use , Senegal/epidemiology , Helminthiasis/drug therapy , Helminthiasis/epidemiology , Helminthiasis/prevention & control , Malaria/drug therapy , Malaria/prevention & control
13.
N Engl J Med ; 389(13): 1191-1202, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37754284

ABSTRACT

BACKGROUND: Although the clinical efficacy of antimalarial artemisinin-based combination therapies in Africa remains high, the recent emergence of partial resistance to artemisinin in Plasmodium falciparum on the continent is troubling, given the lack of alternative treatments. METHODS: In this study, we used data from drug-efficacy studies conducted between 2016 and 2019 that evaluated 3-day courses of artemisinin-based combination therapy (artesunate-amodiaquine or artemether-lumefantrine) for uncomplicated malaria in Eritrea to estimate the percentage of patients with day-3 positivity (i.e., persistent P. falciparum parasitemia 3 days after the initiation of therapy). We also assayed parasites for mutations in Pfkelch13 as predictive markers of partial resistance to artemisinin and screened for deletions in hrp2 and hrp3 that result in variable performance of histidine rich protein 2 (HRP2)-based rapid diagnostic tests for malaria. RESULTS: We noted an increase in the percentage of patients with day-3 positivity from 0.4% (1 of 273) in 2016 to 1.9% (4 of 209) in 2017 and 4.2% (15 of 359) in 2019. An increase was also noted in the prevalence of the Pfkelch13 R622I mutation, which was detected in 109 of 818 isolates before treatment, from 8.6% (24 of 278) in 2016 to 21.0% (69 of 329) in 2019. The odds of day-3 positivity increased by a factor of 6.2 (95% confidence interval, 2.5 to 15.5) among the patients with Pfkelch13 622I variant parasites. Partial resistance to artemisinin, as defined by the World Health Organization, was observed in Eritrea. More than 5% of the patients younger than 15 years of age with day-3 positivity also had parasites that carried Pfkelch13 R622I. In vitro, the R622I mutation conferred a low level of resistance to artemisinin when edited into NF54 and Dd2 parasite lines. Deletions in both hrp2 and hrp3 were identified in 16.9% of the parasites that carried the Pfkelch13 R622I mutation, which made them potentially undetectable by HRP2-based rapid diagnostic tests. CONCLUSIONS: The emergence and spread of P. falciparum lineages with both Pfkelch13-mediated partial resistance to artemisinin and deletions in hrp2 and hrp3 in Eritrea threaten to compromise regional malaria control and elimination campaigns. (Funded by the Bill and Melinda Gates Foundation and others; Australian New Zealand Clinical Trials Registry numbers, ACTRN12618001223224, ACTRN12618000353291, and ACTRN12619000859189.).


Subject(s)
Antimalarials , Artemether, Lumefantrine Drug Combination , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Humans , Amodiaquine/administration & dosage , Amodiaquine/pharmacology , Amodiaquine/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/pharmacology , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/administration & dosage , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance/genetics , Eritrea/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Prevalence
14.
Parasite ; 30: 32, 2023.
Article in English | MEDLINE | ID: mdl-37646608

ABSTRACT

Malaria is a major public health problem in Madagascar, particularly in coastal areas. We conducted a randomized, controlled, parallel-group study of artemisinin-based combination therapy (ACT) in Mananjary and Farafangana, two localities on the rainy south-east coast of Madagascar, from March to September 2018. The efficacy and safety of artesunate + amodiaquine (ASAQ) and artemether + lumefantrine (AL) were assessed according to the WHO protocol with a 28-day follow-up. Children aged 6 months to 14 years with uncomplicated Plasmodium falciparum malaria were randomized to receive ASAQ or AL for three days (1:1). 347/352 (98.5%) randomized patients reached the study endpoint on day 28. Crude adequate clinical and parasitological response (ACPR) rates were 100% (95% CI: 98.8-100%) in the ASAQ group and 96% (95% CI: 93.1-98.9%) in the AL group (per protocol population). However, the PCR-corrected ACPR rate was 97.7% (95% CI: 95.4-100%) in the AL group. Two cases of recrudescence and three of re-infection were observed. Mild and moderate adverse events, including gastrointestinal and/or nervous disorders, were reported in 11.9% (42/352) of patients. We found that ASAQ and AL were safe and efficacious for treating uncomplicated P. falciparum malaria. They may be used for treatment at health facilities and at the community level, and for mass drug administration campaigns.


Title: Efficacité thérapeutique et sécurité de l'artésunate + amodiaquine et de l'artéméther + luméfantrine pour le traitement du paludisme simple à Plasmodium falciparum chez les enfants sur la côte sud-est pluvieuse de Madagascar. Abstract: Le paludisme demeure un problème majeur de santé publique à Madagascar notamment dans les régions côtières. Nous avons réalisé une étude multisite, randomisée, contrôlée, en groupes parallèles sur la combinaison thérapeutique à base des dérivés d'artémisinine (CTA) à Mananjary et Farafangana, deux localités sur la côte sud-est pluvieuse de Madagascar, de mars au septembre 2018. L'efficacité et la sécurité de l'artésunate + amodiaquine (ASAQ) et de l'artéméther + luméfantrine (AL) ont été évaluées selon le protocole de l'OMS avec un suivi de 28 jours. Des enfants âgés de 6 mois à 14 ans souffrant de paludisme non compliqué à Plasmodium falciparum ont été randomisés (1:1) pour recevoir ASAQ ou AL pendant trois jours. 347/352 (98,5 %) des patients randomisés ont pu être suivis jusqu'au jour 28. Le taux de réponse clinique et parasitologique adéquate (RCPA) était de 100 % (95 % CI : 98,8 ­ 100 %) dans le bras thérapeutique ASAQ et de 96 % (95 % CI : 93,1 ­ 98,9 %) dans le bras thérapeutique AL (population per protocole). Cependant, après correction par PCR, le taux de RCPA était de 97,7 % (95 % CI : 95,4 ­ 100 %) dans le bras thérapeutique AL. Deux cas de recrudescence et trois cas de réinfections ont été observées. Des effets indésirables légers et modérés, notamment des troubles gastro-intestinaux et/ou nerveux, ont été rapportés chez 11,9 % (42/352) des patients. Nos résultats démontrent que l'ASAQ et l'AL sont sûrs et efficaces pour le traitement du paludisme non compliqué à P. falciparum. Ces deux CTA peuvent par conséquent être utilisés pour traiter le paludisme dans les centres de santé et au niveau communautaire, et aussi pendant les campagnes de traitement de masse.


Subject(s)
Amodiaquine , Malaria, Falciparum , Humans , Child , Artesunate , Madagascar , Amodiaquine/adverse effects , Malaria, Falciparum/drug therapy , Artemether, Lumefantrine Drug Combination
15.
Malar J ; 22(1): 240, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612601

ABSTRACT

BACKGROUND: Artesunate-amodiaquine (AS-AQ) and artemether-lumefantrine (AL) are the currently recommended first-and second-line therapies for uncomplicated Plasmodium falciparum infections in Chad. This study assessed the efficacy of these artemisinin-based combinations, proportion of day 3 positive patients, proportions of molecular markers associated with P. falciparum resistance to anti-malarial drugs and variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single-arm prospective study assessing the efficacy of AS-AQ and AL at three sites (Doba, Kelo and Koyom) was conducted between November 2020 to January 2021. Febrile children aged 6 to 59 months with confirmed uncomplicated P. falciparum infection were enrolled sequentially first to AS-AQ and then AL at each site and followed up for 28 days. The primary endpoint was PCR-adjusted adequate clinical and parasitological response (ACPR). Samples collected on day 0 were analysed for mutations in pfkelch13, pfcrt, pfmdr-1, pfdhfr, pfdhps genes and deletions in pfhrp2/pfhrp3 genes. RESULTS: By the end of 28-day follow-up, per-protocol PCR corrected ACPR of 97.8% (CI 95% 88.2-100) in Kelo and 100% in Doba and Kayoma were observed among AL treated patients. For ASAQ, 100% ACPR was found in all sites. All, but one patient, did not have parasites detected on day 3. Out of the 215 day 0 samples, 96.7% showed pfkelch13 wild type allele. Seven isolates carried nonsynonymous mutations not known to be associated artemisinin partial resistance (ART-R). Most of samples had a pfcrt wild type allele (79% to 89%). The most prevalent pfmdr-1 allele detected was the single mutant 184F (51.2%). For pfdhfr and pfdhps mutations, the quintuple mutant allele N51I/C59R/S108N + G437A/540E responsible for SP treatment failures in adults and children was not detected. Single deletion in the pfhrp2 and pfhrp3 gene were detected in 10/215 (4.7%) and 2/215 (0.9%), respectively. Dual pfhrp2/pfhrp3 deletions, potentially threatening the efficacy of HRP2-based RDTs, were observed in 5/215 (2.3%) isolates. CONCLUSION: The results of this study confirm that AS-AQ and AL treatments are highly efficacious in study areas in Chad. The absence of known pfkelch13 mutations in the study sites and the high parasite clearance rate at day 3 suggest the absence of ART-R. The absence of pfdhfr/pfdhps quintuple or sextuple (quintuple + 581G) mutant supports the continued use of SP for IPTp during pregnancy. The presence of parasites with dual pfhrp2/pfhrp3 deletions, potentially threatening the efficacy of HRP2-based RDTs, warrants the continued surveillance. Trial registration ACTRN12622001476729.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Adult , Female , Pregnancy , Humans , Artesunate , Antimalarials/therapeutic use , Amodiaquine/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Chad , Prospective Studies , Artemether , Malaria, Falciparum/drug therapy , Artemisinins/therapeutic use
16.
Chemistry ; 29(55): e202301642, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37427863

ABSTRACT

Malaria is the one of the deadliest infectious diseases worldwide. Chemically, quinolines are excellent ligands for metal coordination and are deployed as drugs for malaria treatment. There is a growing body of evidence indicating that metal complexes can be conjugated with antimalarial quinolines to be used as chemical tools to overcome the disadvantages of quinolines, improving their bioactive speciation, cellular distribution, and subsequently broadening the spectrum of activity to multiple stages of the complex Plasmodium life cycle. In this study, four novel complexes of ruthenium(II)- and gold(I)-containing amodiaquine (AQ) were synthesized, and a careful chemical characterization revealed the precise coordination site of AQ to the metals. Their speciation in solution was investigated, demonstrating the stability of the quinoline-metal bond. RuII - and AuI -AQ complexes were demonstrated to be potent and efficacious in inhibiting parasite growth in multiple stages of the Plasmodium life cycle as assayed in vitro and in vivo. These properties could be attributed to the ability of the metal-AQ complexes to reproduce the suppression of heme detoxification induced by AQ, while also inhibiting other processes in the parasite life cycle; this can be attributed to the action of the metallic species. Altogether, these findings indicate that metal coordination with antimalarial quinolines is a potential chemical tool for drug design and discovery in malaria and other infectious diseases susceptible to quinoline treatment.


Subject(s)
Antimalarials , Coordination Complexes , Malaria , Plasmodium , Quinolines , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Amodiaquine/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Malaria/drug therapy , Quinolines/pharmacology , Quinolines/therapeutic use , Plasmodium falciparum
17.
Lancet Glob Health ; 11(8): e1277-e1289, 2023 08.
Article in English | MEDLINE | ID: mdl-37474234

ABSTRACT

BACKGROUND: In high transmission settings, most school-aged children harbour malaria parasites without showing symptoms, often leading to anaemia and possibly impaired psychomotor and cognitive abilities. We aimed to assess the effectiveness and safety of intermittent preventive treatment for malaria in school-aged children (IPTsc) living in highly endemic areas. METHODS: We did an open-label randomised controlled trial in seven primary schools in northeastern Tanzania. Schoolchildren aged 5-15 years were individually randomly assigned (1:1:1) to receive dihydroartemisinin-piperaquine, artesunate-amodiaquine, or standard of care (control) using a balanced block design. Drugs were administered by schoolteachers, with supervision from study nurses, at months 0 (baseline), 4, and 8, and were given in line with manufacturer's recommendations with dose based on the child's bodyweight. The primary endpoints were change from baseline in mean haemoglobin concentration at months 12 and 20, and clinical incidence of malaria and prevalence of parasitaemia at months 12 and 20 in the intervention groups versus the control group. The outcome data were collected through longitudinal surveys conducted every 4 months. Data were analysed on the basis of intention to treat (including all randomised participants) and per protocol (comprising children who completed the full 3-day regimen of all three IPTsc treatment rounds as assigned). This study is registered with ClinicalTrials.gov (NCT03640403). FINDINGS: Of the 1797 children scheduled for clinical screening, 1566 were enrolled and randomly allocated (526 to receive dihydroartemisinin-piperaquine, 527 to receive artesunate-amodiaquine, and 513 to receive standard of care). Due to COVID-19-related school closures, only two schools were visited at month 12 (135 children in the dihydroartemisinin-piperaquine group, 131 in the artesunate-amodiaquine group, and 118 in the control group). At month 12, compared with the control group, the change from baseline in mean haemoglobin concentration was increased by 0·5 g/dL (95% CI 0·2 to 0·8; p<0·0001) in the dihydroartemisinin-piperaquine group and 0·5 g/dL (0·2 to 0·7; p=0·0020) in the artesunate-amodiaquine group in the intention-to-treat analysis (with similar findings in the per protocol analysis). In the same period, in the intention-to-treat analysis, the prevalence of malaria parasitaemia increased from 28·5% (138 of 485 participants) to 33·6% (39 of 116) in the control group, but decreased from 28·0% (139 of 497) to 12·0% (15 of 125) in the dihydroartemisinin-piperaquine group (-21·6 percentage points [95% CI -31·9 to -11·3], p=0·0001 vs control at month 12) and from 24·7% (124 of 502) to 16·0% (20 of 125) in the artesunate-amodiaquine group (-17·6 percentage points [-28·4 to -6·9], p=0·0015). The decrease for artesunate-amodiaquine was larger in the per protocol analysis (-25·3 percentage points [-36·3 to -14·2], p<0·0001). The protective effect of IPTsc against malaria parasitaemia was 64% (95% CI 39 to 79; p<0·0001) for dihydroartemisinin-piperaquine and 52% (23 to 70; p=0·0015) for artesunate-amodiaquine in the intention-to-treat analysis, and was slightly higher on per protocol analysis. The protective effect against clinical malaria at month 12 was 20% (95% CI 9 to 29; p=0·0002) for dihydroartemisinin-piperaquine and 19% (8 to 28; p=0·0004) for artesunate-amodiaquine. No significant differences in any primary outcomes between the intervention and control groups were noted at month 20. Dihydroartemisinin-piperaquine and artesunate-amodiaquine were associated with a small number of mild adverse events, and there were no treatment-related serious adverse events or deaths. INTERPRETATION: IPTsc with dihydroartemisinin-piperaquine or artesunate-amodiaquine is a safe and effective approach to reducing malaria parasitaemia, clinical malaria, and related morbidities, and is feasible to implement through programmes delivered by schoolteachers. FUNDING: Flemish Interuniversity Council (VLIRUOS), EU EDCTP2 programme (MaReCa project), and Global Minds 2019. TRANSLATION: For the Swahili translation of the abstract see Supplementary Materials section.


Subject(s)
Antimalarials , COVID-19 , Malaria, Falciparum , Malaria , Quinolines , Child , Humans , Amodiaquine/adverse effects , Artesunate/therapeutic use , Antimalarials/adverse effects , Tanzania/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Malaria/epidemiology , Malaria/prevention & control , Quinolines/adverse effects , Incidence , Hemoglobins , Drug Combinations
18.
Malar J ; 22(1): 142, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37127669

ABSTRACT

BACKGROUND: Artemisinin-based combination therapy (ACT) is the most effective treatment for malaria, and has significantly reduced morbimortality. Polymorphisms associated with the Plasmodium falciparum Kelch gene (Pfkelch13) have been associated with delayed parasite clearance even with ACT treatment. METHODS: The Pfkelch13 gene was sequenced from P. falciparum infected patients (n = 159) with uncomplicated malaria in Niger. An adequate clinical and parasitological response (ACPR) was reported in 155 patients. Four (n = 4) patients had treatment failure (TF) that were not reinfections-two of which had late parasitological failures (LPF) and two had late clinical failures (LCF). RESULTS: Thirteen single nucleotide polymorphisms (SNPs) were identified of which seven were non-synonymous (C469R, T508S, R515T, A578S, I465V, I437V, F506L,), and three were synonymous (P443P, P715P, L514L). Three SNP (C469R, F506L, P715P) were present before ACT treatment, while seven mutations (C469R, T508S, R515T, L514L, P443P, I437V, I465V) were selected by artemether/lumefantrine (AL)-five of which were non-synonymous (C469R, T508S, R515T, I437V, I465V). Artesunate/amodiaquine (ASAQ) has selected any mutation. One sample presented three cumulatively non-synonymous SNPs-C469R, T508S, R515T. CONCLUSIONS: This study demonstrates intra-host selection of Pfkelch13 gene by AL. The study highlights the importance of LCF and LPF parasites in the selection of resistance to ACT. Further studies using gene editing are required to confirm the potential implication of resistance to ACT with the most common R515T and T508S mutations. It would also be important to elucidate the role of cumulative mutations.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/therapeutic use , Niger , Drug Combinations , Artemether/therapeutic use , Amodiaquine/therapeutic use , Malaria, Falciparum/drug therapy , Treatment Failure , Polymorphism, Single Nucleotide
19.
J Infect Dis ; 228(7): 926-935, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37221018

ABSTRACT

BACKGROUND: Despite scale-up of seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine (SP-AQ) in children 3-59 months of age in Burkina Faso, malaria incidence remains high, raising concerns regarding SMC effectiveness and selection of drug resistance. Using a case-control design, we determined associations between SMC drug levels, drug resistance markers, and presentation with malaria. METHODS: We enrolled 310 children presenting at health facilities in Bobo-Dioulasso. Cases were SMC-eligible children 6-59 months of age diagnosed with malaria. Two controls were enrolled per case: SMC-eligible children without malaria; and older (5-10 years old), SMC-ineligible children with malaria. We measured SP-AQ drug levels among SMC-eligible children and SP-AQ resistance markers among parasitemic children. Conditional logistic regression was used to compute odds ratios (ORs) comparing drug levels between cases and controls. RESULTS: Compared to SMC-eligible controls, children with malaria were less likely to have any detectable SP or AQ (OR, 0.33 [95% confidence interval, .16-.67]; P = .002) and have lower drug levels (P < .05). Prevalences of mutations mediating high-level SP resistance were rare (0%-1%) and similar between cases and SMC-ineligible controls (P > .05). CONCLUSIONS: Incident malaria among SMC-eligible children was likely due to suboptimal levels of SP-AQ, resulting from missed cycles rather than increased antimalarial resistance to SP-AQ.


Subject(s)
Antimalarials , Malaria , Humans , Child , Infant , Child, Preschool , Burkina Faso/epidemiology , Case-Control Studies , Seasons , Malaria/epidemiology , Malaria/prevention & control , Malaria/drug therapy , Antimalarials/therapeutic use , Antimalarials/pharmacology , Sulfadoxine/therapeutic use , Amodiaquine/therapeutic use , Chemoprevention/methods , Drug Combinations , Drug Resistance
20.
Malar J ; 22(1): 148, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147685

ABSTRACT

BACKGROUND: Malaria is the leading cause of morbidity and mortality among infants and children under-five in sub-Saharan Africa. In the Sahel, seasonal malaria chemoprevention (SMC) is delivered door-to-door in monthly cycles. In each cycle, children are administered sulfadoxine-pyrimethamine (SP) plus amodiaquine (AQ) on Day 1 by community distributors, and AQ on Day 2 and Day 3 by caregivers. Non-adherence to AQ administration by caregivers has implications for emergence of antimalarial resistance. METHODS: Predictors of non-adherence to administration of AQ on Day 2 and Day 3 among caregivers of children aged 3-59 months who had received Day 1 SP and AQ during the last 2020 SMC cycle (n = 12,730) were analysed using data from SMC coverage surveys in Nigeria, Burkina Faso and Togo, and fitting multivariate random-effects logistic regression models. RESULTS: Previous adverse reaction to SMC medicines by eligible children (OR: 0.29, 95% CI 0.24-0.36, p < 0.001), awareness of the importance of administering Day 2 and Day 3 AQ (OR: 2.19, 95% CI 1.69-2.82, p < 0.001), caregiver age, and home visits to caregivers delivered by the Lead Mothers intervention in Nigeria (OR: 2.50, 95% CI 1.93-2.24, p < 0.001), were significantly associated with caregiver adherence to Day 2 and Day 3 AQ administration. CONCLUSIONS: Increasing caregivers' knowledge of SMC and interventions such as Lead Mothers have the potential to improve full adherence to AQ administration.


Subject(s)
Antimalarials , Malaria , Child , Infant , Female , Humans , Amodiaquine/therapeutic use , Caregivers , Burkina Faso , Nigeria , Seasons , Chad , Togo , Malaria/prevention & control , Malaria/drug therapy , Antimalarials/therapeutic use , Chemoprevention , Drug Combinations
SELECTION OF CITATIONS
SEARCH DETAIL
...