Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 428
Filter
1.
Nature ; 629(8010): 235-243, 2024 May.
Article in English | MEDLINE | ID: mdl-38499039

ABSTRACT

Biogenic monoamines-vital transmitters orchestrating neurological, endocrinal and immunological functions1-5-are stored in secretory vesicles by vesicular monoamine transporters (VMATs) for controlled quantal release6,7. Harnessing proton antiport, VMATs enrich monoamines around 10,000-fold and sequester neurotoxicants to protect neurons8-10. VMATs are targeted by an arsenal of therapeutic drugs and imaging agents to treat and monitor neurodegenerative disorders, hypertension and drug addiction1,8,11-16. However, the structural mechanisms underlying these actions remain unclear. Here we report eight cryo-electron microscopy structures of human VMAT1 in unbound form and in complex with four monoamines (dopamine, noradrenaline, serotonin and histamine), the Parkinsonism-inducing MPP+, the psychostimulant amphetamine and the antihypertensive drug reserpine. Reserpine binding captures a cytoplasmic-open conformation, whereas the other structures show a lumenal-open conformation stabilized by extensive gating interactions. The favoured transition to this lumenal-open state contributes to monoamine accumulation, while protonation facilitates the cytoplasmic-open transition and concurrently prevents monoamine binding to avoid unintended depletion. Monoamines and neurotoxicants share a binding pocket that possesses polar sites for specificity and a wrist-and-fist shape for versatility. Variations in this pocket explain substrate preferences across the SLC18 family. Overall, these structural insights and supporting functional studies elucidate the mechanism of vesicular monoamine transport and provide the basis to develop therapeutics for neurodegenerative diseases and substance abuse.


Subject(s)
Biogenic Monoamines , Drug Interactions , Vesicular Monoamine Transport Proteins , Humans , 1-Methyl-4-phenylpyridinium/chemistry , 1-Methyl-4-phenylpyridinium/metabolism , 1-Methyl-4-phenylpyridinium/pharmacology , Amphetamine/chemistry , Amphetamine/pharmacology , Amphetamine/metabolism , Binding Sites , Biogenic Monoamines/chemistry , Biogenic Monoamines/metabolism , Cryoelectron Microscopy , Dopamine/chemistry , Dopamine/metabolism , Models, Molecular , Norepinephrine/chemistry , Norepinephrine/metabolism , Protein Binding , Protons , Reserpine/pharmacology , Reserpine/chemistry , Reserpine/metabolism , Serotonin/chemistry , Serotonin/metabolism , Substrate Specificity , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure
2.
J Cereb Blood Flow Metab ; 44(3): 434-445, 2024 03.
Article in English | MEDLINE | ID: mdl-37882727

ABSTRACT

Whole-brain mapping of drug effects are needed to understand the neural underpinnings of drug-related behaviors. Amphetamine administration is associated with robust increases in striatal dopamine (DA) release. Dopaminergic terminals are, however, present across several associative brain regions, which may contribute to behavioral effects of amphetamine. Yet the assessment of DA release has been restricted to a few brain regions of interest. The present work employed positron emission tomography (PET) with [11C]raclopride to investigate regional and temporal characteristics of amphetamine-induced DA release across twenty sessions in adult female Sprague Dawley rats. Amphetamine was injected intravenously (2 mg/kg) to cause displacement of [11C]raclopride binding from DA D2-like receptors, assessed using temporally sensitive pharmacokinetic PET model (lp-ntPET). We show amphetamine-induced [11C]raclopride displacement in the basal ganglia, and no changes following saline injections. Peak occupancy was highest in nucleus accumbens, followed by caudate-putamen and globus pallidus. Importantly, significant amphetamine-induced displacement was also observed in several extrastriatal regions, and specifically in thalamus, insula, orbitofrontal cortex, and secondary somatosensory area. For these, peak occupancy occurred later and was lower as compared to the striatum. Collectively, these findings demonstrate distinct amphetamine-induced DA responses across the brain, and that [11C]raclopride-PET can be employed to detect such spatiotemporal differences.


Subject(s)
Amphetamine , Dopamine , Female , Rats , Animals , Amphetamine/pharmacology , Amphetamine/metabolism , Raclopride/pharmacokinetics , Dopamine/metabolism , Rats, Sprague-Dawley , Positron-Emission Tomography/methods , Brain/metabolism , Corpus Striatum/metabolism
3.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958641

ABSTRACT

Khat (Catha edulis) is an evergreen shrub whose buds and leaves give a state of delight and euphoria when chewed. Cathinone, an amphetamine-like stimulant that is among the active ingredients in khat, is able to downregulate glutamate transporter subtype I (GLT-1). Neurobehavioral dysfunctions such as altered locomotor activity, anorexia, and nociception have been observed in animals exposed to cathinone. Interestingly, treatment with a ß-lactam antibiotic such as ceftriaxone, which upregulates GLT-1, normalizes cathinone-induced conditioned place preference, and alters repetitive movements in rats. However, little is known about the role of the glutamatergic system in memory dysfunction and anxiety-like behaviors in mice exposed to khat. We found here that clavulanic acid, a ß-lactam-containing compound and GLT-1 upregulator, would modulate the neurobehavioral changes, including memory impairment and anxiety-like behaviors, associated with repeated exposure of mice to khat. Our data supported that clavulanic acid could improve memory impairment and anxiety-like behaviors through upregulating GLT-1 in the nucleus accumbens (NAc), an effect abolished with a selective GLT-1 blocker. This upregulation was associated with restored glutamate/cystine antiporter expression in the NAc using a Western blotting assay. Cathine and cathinone were identified in khat extract using the gas chromatography technique. Our work provides preclinical insight into the efficacy of ß-lactam-containing compounds for the attenuation of neurobehavioral changes induced by khat exposure.


Subject(s)
Catha , Nucleus Accumbens , Mice , Rats , Animals , Clavulanic Acid/pharmacology , Nucleus Accumbens/metabolism , Anxiety/chemically induced , Anxiety/drug therapy , Memory Disorders/metabolism , Amphetamine/metabolism
4.
Nature ; 624(7992): 672-681, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935376

ABSTRACT

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Amines/metabolism , Amphetamine/metabolism , Antipsychotic Agents/chemistry , Antipsychotic Agents/metabolism , Binding Sites , Catecholamines/agonists , Catecholamines/chemistry , Catecholamines/metabolism , Cryoelectron Microscopy , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/ultrastructure , Ligands , Molecular Dynamics Simulation , Mutation , Polypharmacology , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Species Specificity , Substrate Specificity
5.
Curr Biol ; 33(22): 5011-5022.e6, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37879332

ABSTRACT

Repeated exposure to psychostimulants, such as amphetamine, causes a long-lasting enhancement in the behavioral responses to the drug, called behavioral sensitization.1 This phenomenon involves several neuronal systems and brain areas, among which the dorsal striatum plays a key role.2 The endocannabinoid system (ECS) has been proposed to participate in this effect, but the neuronal basis of this interaction has not been investigated.3 In the CNS, the ECS exerts its functions mainly acting through the cannabinoid type-1 (CB1) receptor, which is highly expressed at terminals of striatal medium spiny neurons (MSNs) belonging to both the direct and indirect pathways.4 In this study, we show that, although striatal CB1 receptors are not involved in the acute response to amphetamine, the behavioral sensitization and related synaptic changes require the activation of CB1 receptors specifically located at striatopallidal MSNs (indirect pathway). These results highlight a new mechanism of psychostimulant sensitization, a phenomenon that plays a key role in the health-threatening effects of these drugs.


Subject(s)
Cannabinoids , Central Nervous System Stimulants , Amphetamine/pharmacology , Amphetamine/metabolism , Receptors, Cannabinoid/metabolism , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/metabolism , Neurons/metabolism , Corpus Striatum/physiology , Endocannabinoids/pharmacology , Cannabinoids/pharmacology
6.
J Biol Chem ; 299(8): 105063, 2023 08.
Article in English | MEDLINE | ID: mdl-37468107

ABSTRACT

Amphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca2+-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca2+ levels, we employ the fluorescent Ca2+ sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRABDA1H expressed in cocultured "sniffer" cells. In the presence of the Na+-channel blocker tetrodotoxin to prevent exocytotic DA release, AMPH induced in the cultured neurons a profound dose-dependent efflux of DA that was blocked both by inhibition of DAT with cocaine and by inhibition of the vesicular monoamine transporter-2 with Ro-4-1284 or reserpine. However, the AMPH-induced DA efflux was not accompanied by an increase in cytosolic Ca2+ and was unaffected by blockade of voltage-gated calcium channels or chelation of cytosolic Ca2+. The independence of cytosolic Ca2+ was further supported by activation of N-methyl-D-aspartate-type ionotropic glutamate receptors leading to a marked increase in cytosolic Ca2+ without affecting AMPH-induced DA efflux. Curiously, AMPH elicited spontaneous Ca2+ spikes upon blockade of the D2 receptor, suggesting that AMPH can regulate intracellular Ca2+ in an autoreceptor-dependent manner regardless of the apparent independence of Ca2+ for AMPH-induced efflux. We conclude that AMPH-induced DA efflux in dopaminergic neurons does not require cytosolic Ca2+ but is strictly dependent on the concerted action of AMPH on both vesicular monoamine transporter-2 and DAT.


Subject(s)
Amphetamine , Dopamine Plasma Membrane Transport Proteins , Dopamine , Amphetamine/metabolism , Amphetamine/pharmacology , Cocaine/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Vesicular Monoamine Transport Proteins , Humans , Cell Line, Tumor
7.
Brain Res ; 1800: 148189, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36462646

ABSTRACT

Organic cation transporter-3 (OCT3) is widely distributed in the brain with high expression in portions of the stress axis. These high capacity, polyspecific transporters function in monoamine clearance and are sensitive to the stress hormone corticosterone. In rats, withdrawal from chronic amphetamine increases OCT3 expression in specific limbic brain regions involved anxiety and stress responses, including the ventral hippocampus, central nucleus of amygdala (CeA) and dorsomedial hypothalamus. (DMH). Previous studies show that glucocorticoid receptor (GR) agonists increase OCT1 mRNA and OCT2 mRNA expression in non-neural tissues. Thus, we hypothesized that corticosterone increases OCT3 expression in the brain by activating GRs. Male Sprague-Dawley rats were pre-treated daily with the GR antagonist mifepristone (20 mg/kg; sc.) or vehicle followed 45 min later by injections of corticosterone or vehicle for 2 weeks. Corticosterone treatment significantly increased OCT3 expression in the ventral hippocampus and increased anxiety-like behavior. However, these effects were not blocked by mifepristone. Interestingly, treatment with mifepristone alone reduced plasma corticosterone levels and increased serotonin transporter and GR expression in the ventral hippocampus but did not significantly affect OCT3 expression or behavior. No treatment effects on OCT3, serotonin transporter or GR expression were observed in the DMH, CeA or dorsal hippocampus. Our findings suggest that corticosterone increases OCT3 expression in the ventral hippocampus by a mechanism independent of GRs, and that mifepristone and corticosterone can act in an independent manner to affect HPA axis-related physiological and behavioral parameters.


Subject(s)
Corticosterone , Receptors, Glucocorticoid , Rats , Male , Animals , Receptors, Glucocorticoid/metabolism , Rats, Sprague-Dawley , Serotonin/metabolism , Hypothalamo-Hypophyseal System/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Mifepristone/pharmacology , Pituitary-Adrenal System/metabolism , Hippocampus/metabolism , Amphetamine/pharmacology , Amphetamine/metabolism , Anxiety
8.
Nicotine Tob Res ; 25(5): 1047-1051, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36107715

ABSTRACT

INTRODUCTION: Tobacco smoking is a major public health burden. The mesocortical dopamine system-including the dorsolateral prefrontal cortex (dlPFC)-plays an important role in cognitive function. Dysregulated dopamine signaling in dlPFC is associated with cognitive deficits such as impairments in attention, learning, working memory, and inhibitory control. We recently showed that dlPFC dopamine D2/3-type receptor (D2R) availability was significantly lower in people who smoke than in healthy-controls and that dlPFC amphetamine-induced dopamine release was lower in females who smoke relative to males who smoke and female healthy-controls. However, we did not examine whether the smoking-related dopamine deficits were related to cognitive deficits. AIMS AND METHODS: The goal of this study was to relate dopamine metrics to cognitive performance in people who smoke and healthy-controls. In total 24 (12 female) people who smoke cigarettes and 25 sex- and age-matched healthy-controls participated in two same-day [11C]FLB457 positron emission tomography (PET) scans before and after amphetamine administration. Two outcome measures were calculated-D2R availability (non-displaceable binding potential; BPND) and amphetamine-induced dopamine release (%ΔBPND). Cognition (verbal learning and memory) was assessed with a computerized test from the CogState battery (International Shopping List). RESULTS: People who smoke had significantly worse immediate (p = .04) and delayed (p = .03) recall than healthy-controls. Multiple linear regression revealed that for people who smoke only, lower D2R availability was associated with worse immediate (p = .04) and delayed (p < .001) recall. %ΔBPND was not significantly related to task performance. CONCLUSION: This study demonstrated that lower dlPFC D2R availability in people who smoke is associated with disruptions in cognitive function that may underlie difficulty with resisting smoking. IMPLICATIONS: This is the first study to directly relate dopamine metrics in the prefrontal cortex to cognitive function in people who smoke cigarettes compared to healthy-controls. The current work included a well-characterized subject sample with regards to demographic and smoking variables, as well as a validated neurocognitive test of verbal learning and memory. The findings of this study extend previous literature by relating dopamine metrics to cognition in people who smoke, providing a better understanding of brain-behavior relationships.


Subject(s)
Cigarette Smoking , Dopamine , Male , Humans , Female , Dopamine/metabolism , Amphetamine/metabolism , Amphetamine/pharmacology , Prefrontal Cortex/diagnostic imaging , Positron-Emission Tomography/methods , Verbal Learning
9.
Food Chem Toxicol ; 169: 113415, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36096289

ABSTRACT

The biological effects and fate of the chiral illicit drug amphetamine in the presence and absence of microplastics on freshwater algae (Chlorella pyrenoids), including acute toxicity, growth inhibition, photosynthetic pigment content, oxidative stress, lipid peroxidation, and enantioselective fate were assessed. An agglomeration and the shading effects of microplastics in algae suspension were also determined. Microplastics were observed to increase the toxicity of amphetamine to algae and reduce algae cell growth. Exposed Chlorella pyrenoids exhibited a reduced algae cell counts in an agglomeration test, wherein algae cells decreased between 18% and 56% among treatment groups exposed to 5-50 mg L-1 of microplastics. The agglomeration test suggested that microplastics might significantly increase the adverse effect on algae. Furthermore, our experiments demonstrated enantioselective degradation of amphetamine in algae, and demonstrated that the S-enantiomer was preferably degraded by algae cells. Adding microplastics to the algae suspension significantly reduced the enantioselectivity, with an EF value of 0.41 compared with amphetamine-alone group (0.34) after 21 d exposure. These results demonstrated the first evidence of microplastics acting as a vehicle to enhance amphetamine toxicity to Chlorella pyrenoids, as well as provided new insights into the co-effect of microplastics and organic contaminants on food source.


Subject(s)
Amphetamine , Chlorella , Food Contamination , Illicit Drugs , Microplastics , Water Pollutants, Chemical , Amphetamine/metabolism , Amphetamine/toxicity , Chlorella/drug effects , Chlorella/metabolism , Illicit Drugs/metabolism , Illicit Drugs/toxicity , Microplastics/metabolism , Microplastics/toxicity , Water Pollutants, Chemical/toxicity
10.
Neurobiol Learn Mem ; 192: 107636, 2022 07.
Article in English | MEDLINE | ID: mdl-35597434

ABSTRACT

Repeated intermittent exposure to psychostimulants, such as amphetamine, leads to a progressive enhancement of the drug's ability to increase both behavioral and brain neurochemical responses. The expression of these enhancements, known as sensitization, can be regulated by Pavlovian conditioned stimuli. Cues that are associated with drug experience can facilitate sensitization so that it only occurs in the presence of these stimuli (context-specific sensitization). In contrast, cues that are explicitly related to the absence of drugs (conditioned inhibitors) can prevent the expression of sensitization. We hypothesized that disrupting conditioned inhibition would enable amphetamine sensitization in new contexts. Using male Sprague Dawley rats and a two-context amphetamine conditioning procedure, we found that extinguishing amphetamine experience in one environment led to the loss of conditioned inhibition in a separate context. Thus, amphetamine-induced sensitized locomotion, as well as both enhanced dopamine and glutamate neurotransmission in the nucleus accumbens, were observed in a context where the drug was never experienced before. A similar loss of contextual control of sensitization was seen after using baclofen/muscimol microinjections to transiently inhibit the medial prefrontal cortex, basolateral amygdala, or ventral subiculum of the hippocampus. In other words, compared to control infusions, these intracranial injections of GABA-receptor agonists were able to block conditioned inhibitors from preventing the expression of sensitized locomotion. Together, these findings reveal the importance of conditioned inhibitors for regulating addiction-like behavior. The results suggest that dopaminergic and glutamatergic brain circuitry controls the context-specific expression of amphetamine sensitization.


Subject(s)
Amphetamine , Conditioning, Classical , Amphetamine/metabolism , Amphetamine/pharmacology , Animals , Dopamine/physiology , Male , Nucleus Accumbens/physiology , Rats , Rats, Sprague-Dawley
11.
Mol Pharmacol ; 101(3): 123-131, 2022 03.
Article in English | MEDLINE | ID: mdl-34906999

ABSTRACT

Aberrant dopamine (DA) signaling is associated with several psychiatric disorders, such as autism, bipolar disorder, addiction, and Parkinson's disease, and several medications that target the DA transporter (DAT) can induce or treat these disorders. In addition, psychostimulants, such as cocaine and D-amphetamine (AMPH), rely on the competitive interactions with the transporter's substrate binding site to produce their rewarding effects. Agents that exhibit noncompetitive, allosteric modulation of DAT remain an important topic of investigation due to their potential therapeutic applications. We previously identified a novel allosteric modulator of human DAT, KM822, that can decrease the affinity of cocaine for DAT and attenuate cocaine-elicited behaviors; however, whether DAT is the sole mediator of KM822 actions in vivo is unproven given the large number of potential off-target sites. Here, we provide in silico and in vitro evidence that the allosteric site engaged by KM822 is conserved between human DAT and Caenorhabditis elegans DAT-1. KM822 binds to a similar pocket in DAT-1 as previously identified in human DAT. In functional dopamine uptake assays, KM822 affects the interaction between AMPH and DAT-1 by reducing the affinity of AMPH for DAT-1. Finally, through a combination of genetic and pharmacological in vivo approaches we provide evidence that KM822 diminishes the behavioral actions of AMPH on swimming-induced paralysis through a direct allosteric modulation of DAT-1. More broadly, our findings demonstrate allosteric modulation of DAT as a behavior modifying strategy and suggests that Caenorhabditis elegans can be operationalized to identify and investigate the interactions of DAT allosteric modulators. SIGNIFICANCE STATEMENT: We previously demonstrated that the dopamine transporter (DAT) allosteric modulator KM822 decreases cocaine affinity for human DAT. Here, using in silico and in vivo genetic approaches, we extend this finding to interactions with amphetamine, demonstrating evolutionary conservation of the DAT allosteric site. In Caenorhabditis elegans, we report that KM822 suppresses amphetamine behavioral effects via specific interactions with DAT-1. Our findings reveal Caenorhabditis elegans as a new tool to study allosteric modulation of DAT and its behavioral consequences.


Subject(s)
Amphetamine/metabolism , Caenorhabditis elegans Proteins/metabolism , Dopamine Agents/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Amphetamine/pharmacology , Animals , COS Cells , Caenorhabditis elegans , Caenorhabditis elegans Proteins/chemistry , Chlorocebus aethiops , Dopamine Agents/pharmacology , Dopamine Plasma Membrane Transport Proteins/chemistry , Dose-Response Relationship, Drug , Drosophila melanogaster , Protein Binding/drug effects , Protein Binding/physiology , Protein Structure, Secondary
12.
Arch Toxicol ; 95(10): 3223-3234, 2021 10.
Article in English | MEDLINE | ID: mdl-34414480

ABSTRACT

Amphetamine is widely consumed as drug of abuse due to its stimulating and cognitive enhancing effects. Since amphetamine has been on the market for quite a long time and it is one of the most commonly used stimulants worldwide, to date there is still limited information on its effects on the metabolome. In recent years, untargeted toxicometabolomics have been increasingly used to study toxicity-related pathways of such drugs of abuse to find and identify important endogenous and exogenous biomarkers. In this study, the acute effects of amphetamine intake on plasma and urinary metabolome in rats were investigated. For this purpose, samples of male Wistar rats after a single dose of amphetamine (5 mg/kg) were compared to a control group using an untargeted metabolomics approach. Analysis was performed using normal and reversed phase liquid chromatography coupled to high-resolution mass spectrometry using positive and negative ionization mode. Statistical evaluation was performed using Welch's two-sample t test, hierarchical clustering, as well as principal component analysis. The results of this study demonstrate a downregulation of amino acids in plasma samples after amphetamine exposure. Furthermore, four new potential biomarkers N-acetylamphetamine, N-acetyl-4-hydroxyamphetamine, N-acetyl-4-hydroxyamphetamine glucuronide, and amphetamine succinate were identified in urine. The present study complements previous data and shows that several studies are necessary to elucidate altered metabolic pathways associated with acute amphetamine exposure.


Subject(s)
Amphetamine/toxicity , Central Nervous System Stimulants/toxicity , Metabolome/drug effects , Metabolomics , Amino Acids/blood , Amphetamine/metabolism , Animals , Biomarkers/metabolism , Central Nervous System Stimulants/metabolism , Chromatography, Liquid , Down-Regulation/drug effects , Male , Mass Spectrometry , Principal Component Analysis , Rats , Rats, Wistar
13.
J Anal Toxicol ; 45(1): 99-104, 2021 Feb 06.
Article in English | MEDLINE | ID: mdl-32476010

ABSTRACT

Selegiline (SE) is a selective, irreversible monoamine oxidase-B inhibitor, used for reducing symptoms in early-stage Parkinson's disease. The metabolites of SE include l-methamphetamine, l-amphetamine and desmethylselegiline (DSE). The stereoisomers of SE metabolites, d-methamphetamine and d-amphetamine are highly addictive psychostimulants and some of the most abused drugs in South Korea. In order to differentiate medical SE users form illicit methamphetamine abusers, it is important to distinguish between the l-isomers and d-isomers in urine samples. A 52-year-old male, seemingly under the influence of intoxication and demonstrating abnormal behavior, was reported to the police. The initial urine test using a methamphetamine detection kit demonstrated a positive result. Given the initial results, the police officer requested a further analysis of the urine sample. The urine sample was screened using headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Both methamphetamine and amphetamine were detected, in addition to SE and DSE. To quantitate methamphetamine and amphetamine by HS-SPME-GC-MS, we performed a standard addition method due to the matrix effect of the case sample. Consistent with previous studies, our results indicated that the ratio of amphetamine to methamphetamine was 0.27, which was in the range of SE ingestion. Furthermore, we confirmed l-methamphetamine and l-amphetamine by chiral derivatization using (R)-(-)-α-methoxy-α-(trifluoromethyl) phenylacetyl chloride.


Subject(s)
Amphetamine/metabolism , Selegiline/metabolism , Substance Abuse Detection , Central Nervous System Stimulants , Gas Chromatography-Mass Spectrometry , Humans , Methamphetamine , Republic of Korea
14.
Neurotox Res ; 38(4): 1049-1060, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32929685

ABSTRACT

Schizophrenia patients show very complex symptoms in several psychopathological domains. Some of these symptoms remain poorly treated. Therefore, continued effort is needed to find novel pharmacological strategies for improving schizophrenia symptoms. Recently, minocycline, a second-generation tetracycline, has been suggested as an adjunctive treatment for schizophrenia. The antipsychotic-like effect of doxycycline, a minocycline analog, was investigated here. We found that both minocycline and doxycycline prevented amphetamine-induced prepulse inhibition (PPI) disruption. However, neither of them blocked MK801-induced effects, albeit doxycycline had a modest impact against ketamine-induced effects. Neither c-Fos nor nNOS expression, which was evaluated in limbic regions, were modified after acute or sub-chronic treatment with doxycycline. Therefore, apomorphine inducing either PPI disruption and climbing behavior was not prevented by doxycycline. This result discards a direct blockade of D2-like receptors, also suggested by the lack of doxycycline cataleptic-induced effect. Contrasting, doxycycline prevented SKF 38393-induced effects, suggesting a preferential doxycycline action at D1-like rather than D2-like receptors. However, doxycycline did not bind to the orthosteric sites of D1, D2, D3, D4, 5-HT2A, 5-HT1A, and A2A receptors suggesting no direct modulation of these receptors. Our data corroborate the antipsychotic-like effect of doxycycline. However, these effects are probably not mediated by doxycycline direct interaction with classical receptors enrolled in the antipsychotic effect.


Subject(s)
Doxycycline/therapeutic use , Prepulse Inhibition/drug effects , Schizophrenia/diagnosis , Schizophrenia/drug therapy , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/metabolism , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Amphetamine/metabolism , Amphetamine/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Apomorphine/toxicity , Dopamine Agonists/metabolism , Dopamine Agonists/pharmacology , Dopamine Antagonists/metabolism , Dopamine Antagonists/pharmacology , Doxycycline/metabolism , Doxycycline/pharmacology , Forecasting , Male , Mice , Prepulse Inhibition/physiology , Receptors, Dopamine/metabolism , Schizophrenia/chemically induced , Schizophrenia/metabolism
15.
Int J Mol Sci ; 21(17)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32839415

ABSTRACT

Methamphetamine (MA) is a highly addictive central nervous system stimulant. Drug addiction is not a static condition but rather a chronically relapsing disorder. Hair is a valuable and stable specimen for chronic toxicological monitoring as it retains toxicants and metabolites. The primary focus of this study was to discover the metabolic effects encompassing diverse pathological symptoms of MA addiction. Therefore, metabolic alterations were investigated in human hair following heavy MA abuse using both targeted and untargeted mass spectrometry and through integrated network analysis. The statistical analyses (t-test, variable importance on projection score, and receiver-operator characteristic curve) demonstrated that 32 metabolites (in targeted metabolomics) as well as 417 and 224 ion features (in positive and negative ionization modes of untargeted metabolomics, respectively) were critically dysregulated. The network analysis showed that the biosynthesis or metabolism of lipids, such as glycosphingolipids, sphingolipids, glycerophospholipids, and ether lipids, as well as the metabolism of amino acids (glycine, serine and threonine; cysteine and methionine) is affected by heavy MA abuse. These findings reveal crucial metabolic effects caused by MA addiction, with emphasis on the value of human hair as a diagnostic specimen for determining drug addiction, and will aid in identifying robust diagnostic markers and therapeutic targets.


Subject(s)
Amphetamine/analysis , Central Nervous System Stimulants/analysis , Hair/chemistry , Methamphetamine/analysis , Substance-Related Disorders/diagnosis , Adult , Amino Acids/chemistry , Amino Acids/classification , Amino Acids/isolation & purification , Amino Acids/metabolism , Amphetamine/administration & dosage , Amphetamine/metabolism , Case-Control Studies , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/metabolism , Glycerophospholipids/chemistry , Glycerophospholipids/classification , Glycerophospholipids/isolation & purification , Glycerophospholipids/metabolism , Glycosphingolipids/chemistry , Glycosphingolipids/classification , Glycosphingolipids/isolation & purification , Glycosphingolipids/metabolism , Humans , Lipid Metabolism/physiology , Male , Metabolomics/methods , Methamphetamine/administration & dosage , Methamphetamine/metabolism , Middle Aged , Principal Component Analysis , Sphingolipids/chemistry , Sphingolipids/classification , Sphingolipids/isolation & purification , Sphingolipids/metabolism , Substance Abuse Detection/methods , Substance-Related Disorders/metabolism , Tandem Mass Spectrometry
16.
Int J Mol Sci ; 21(8)2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32325754

ABSTRACT

Halogenation of amphetamines and methcathinones has become a common method to obtain novel psychoactive substances (NPS) also called "legal highs". The para-halogenated derivatives of amphetamine and methcathinone are available over the internet and have entered the illicit drug market but studies on their potential neurotoxic effects are rare. The primary aim of this study was to explore the neurotoxicity of amphetamine, methcathinone and their para-halogenated derivatives 4-fluoroamphetamine (4-FA), 4-chloroamphetamine (PCA), 4-fluoromethcathinone (4-FMC), and 4-chloromethcathinone (4-CMC) in undifferentiated and differentiated SH-SY5Y cells. We found that 4-FA, PCA, and 4-CMC were cytotoxic (decrease in cellular ATP and plasma membrane damage) for both cell types, whereby differentiated cells were less sensitive. IC50 values for cellular ATP depletion were in the range of 1.4 mM for 4-FA, 0.4 mM for PCA and 1.4 mM for 4-CMC. The rank of cytotoxicity observed for the para-substituents was chloride > fluoride > hydrogen for both amphetamines and cathinones. Each of 4-FA, PCA and 4-CMC decreased the mitochondrial membrane potential in both cell types, and PCA and 4-CMC impaired the function of the electron transport chain of mitochondria in SH-SY5Y cells. 4-FA, PCA, and 4-CMC increased the ROS level and PCA and 4-CMC induced apoptosis by the endogenous pathway. In conclusion, para-halogenation of amphetamine and methcathinone increases their neurotoxic properties due to the impairment of mitochondrial function and induction of apoptosis. Although the cytotoxic concentrations were higher than those needed for pharmacological activity, the current findings may be important regarding the uncontrolled recreational use of these compounds.


Subject(s)
Amphetamine/toxicity , Apoptosis/drug effects , Cell Differentiation/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Neuroblastoma/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amphetamine/chemistry , Amphetamine/metabolism , Amphetamines/metabolism , Amphetamines/toxicity , Cell Line, Tumor , Electron Transport/drug effects , Halogenation , Humans , Inhibitory Concentration 50 , Methylamines/metabolism , Methylamines/toxicity , Mitochondria/metabolism , Oxygen Consumption/drug effects , Propiophenones/metabolism , Propiophenones/toxicity , Reactive Oxygen Species/metabolism , Superoxides/metabolism
17.
J Anal Toxicol ; 44(1): 36-40, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31263895

ABSTRACT

An amphetamine interference was observed during the development of an liquid chromatography-high-resolution mass spectrometry (LC-HRMS) multi-class confirmation method for the determination of 47 drugs and metabolites in urine. The interference passed all qualitative criteria for amphetamine leading to potential false-positive results. Upon investigation, it was found that the amphetamine interference was correlated with the presence of high levels of gabapentin. Gabapentin is routinely detected in patient urine specimens at levels in excess of 1 mg/mL as it is widely prescribed at high doses and does not undergo significant metabolism. The source of the interference was identified as a gabapentin in-source fragment isomeric with protonated amphetamine. Here we describe the characterization of this interference and how its effect was mitigated in the LC-HRMS method.


Subject(s)
Amphetamine/metabolism , Gabapentin/metabolism , Amphetamine/chemistry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Gabapentin/chemistry , Humans
18.
J Anal Toxicol ; 44(2): 200-205, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-31384953

ABSTRACT

Amphetamines, frequently used recreational drugs with high risk of toxicity, are commonly included in urine drug screens. This screening is based on enzyme immunoassay, which is a quick and easy-to-perform technique, but may lack specificity resulting from cross-reactivity with other compounds, causing false positive results. We present two cases of presumed false positive MULTIGENT® amphetamine/methamphetamine and MULTIGENT® ecstasy (Abbott®) immunoassays with the beta-blocker metoprolol. Both metoprolol-poisoned patients presented positive urine screening despite no history of drug abuse. No confirmation for amphetamine molecular structures was found with gas chromatography-mass spectrometry. The cross-reactivity was further investigated by doping urine samples with metoprolol and its two major phase-I metabolites. Metoprolol showed positive results for both amphetamine and MDMA tests at low concentrations (200 and 150 µg/mL, respectively). Metoprolol metabolites cross-reacted with the amphetamines immunoassay only, but at higher concentrations (i.e., 2000 µg/mL for α-hydroxymetoprolol and 750 µg/mL for O-demethylmetoprolol). In conclusion, false positive results in amphetamines and MDMA immunoassays are possible in the presence of metoprolol. Toxicologists should be aware of frequent analytical interferences with immunoassays and a detailed medication history should be taken into consideration for interpretation. In vitro investigation of suspected cross-reactivity should include not only the parent drug but also its related metabolites.


Subject(s)
Amphetamine/metabolism , Immunoenzyme Techniques/methods , N-Methyl-3,4-methylenedioxyamphetamine/metabolism , Substance Abuse Detection/methods , Adult , Amphetamines , Cross Reactions , Female , Forensic Toxicology , Gas Chromatography-Mass Spectrometry , Humans , Immunoassay , Male , Methamphetamine , Metoprolol/analogs & derivatives , Metoprolol/metabolism , Middle Aged
19.
Behav Brain Res ; 376: 112187, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31473284

ABSTRACT

Measuring ultrasonic vocalizations (USVs) allows studying psychoactive drug use-related affective states in laboratory rats and may help understand changes underlying the progress of addictions. We aimed at finding an effective scheme for amphetamine self-administration training in rats, identifying factors affecting their anticipatory and drug-evoked, frequency-modulated 50-kHz USV responses, and verifying whether the rewarding action of amphetamine promotes current drug intake during the training. Therefore, we monitored amphetamine intake and anticipatory and drug-evoked USVs in two rat cohorts trained using two different training schemes. Then we retrospectively divided these cohorts into low-amphetamine and high-amphetamine intake subsets and analyzed their frequency-modulated 50-kHz USV responses accordingly. Anticipatory (i.e., drug-context-related) USVs as well as USVs induced by self-administration training-related non-pharmacological manipulations (tested in an additional rat group) showed surprisingly high call rates but faded spontaneously relatively quickly. Only the scheme employing short cycles of training sessions (two instead of six) and intermittent instead of continuous intra-session drug availability yielded long-lasting escalation of amphetamine intake in a sizable subset. This subset showed high initial amphetamine-evoked USV call rate, which suggests that a strong rewarding action of the drug early in the SA training favors intake escalation. A major decrease in the drug-evoked USVs during advanced training indicated the emergence of tolerance to the rewarding action in these rats, a phenomenon that is characteristic of addiction. Frequency-modulated 50-kHz rat USVs are a good index of the rewarding action of amphetamine at the absence of USVs induced by drug context and other training-related factors.


Subject(s)
Amphetamine/pharmacology , Anticipation, Psychological/drug effects , Vocalization, Animal/drug effects , Amphetamine/metabolism , Animals , Central Nervous System Stimulants/pharmacology , Conditioning, Psychological , Drug Tolerance , Male , Motivation , Rats , Rats, Sprague-Dawley , Reward , Self Administration , Ultrasonic Waves , Ultrasonics , Vocalization, Animal/physiology
20.
Behav Brain Res ; 376: 112176, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31449910

ABSTRACT

Previous research in humans and animals suggests that prior exposure to stress alters responsivity to drugs of abuse, including psychostimulants. Male rats show an augmented striatal dopamine response to methamphetamine following exposure to chronic unpredictable stress (CUS). Compared to males, female rats have been shown to be highly sensitive to the effects of stimulants and stress independently, however few studies have examined the interaction between stress and stimulants in female rats. Therefore, the current study investigated whether prior exposure to chronic stress potentiated the behavioral and neurochemical responses to an acute injection of methamphetamine in female rats. Adult female Sprague-Dawley rats were either exposed to CUS or left undisturbed (control) and then two weeks later received an injection of 1.0 or 7.5 mg/kg methamphetamine. Based on open field findings, a subsequent group of rats were exposed to CUS or left undisturbed and then two weeks later received 7.5 mg/kg methamphetamine and either dopamine efflux in the dorsal striatum or nucleus accumbens was measured or methamphetamine and amphetamine levels were measured in the brain and plasma. Female rats exposed to CUS traveled greater distances in the open field immediately following an injection of 7.5 mg/kg, but not 1.0 mg/kg, of methamphetamine and then showed high levels or stereotypy similar to control rats. Animals exposed to CUS had significantly greater increases in dorsal striatum dopamine following an acute injection of 7.5 mg/kg methamphetamine compared to control rats, but not in the nucleus accumbens. These differences were not due to group differences in levels of methamphetamine or amphetamine in the brain or plasma. The current findings demonstrate stress-augmented neurochemical responses to a dose of methamphetamine, similar to that self-administered, which increases understanding of the cross-sensitization between stress and methamphetamine in females.


Subject(s)
Central Nervous System Stimulants/pharmacology , Methamphetamine/pharmacology , Stress, Psychological/metabolism , Amphetamine/metabolism , Amphetamine-Related Disorders/metabolism , Animals , Central Nervous System Stimulants/metabolism , Chronic Disease , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Dose-Response Relationship, Drug , Female , Methamphetamine/metabolism , Movement/drug effects , Movement/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...