Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
1.
BMC Vet Res ; 20(1): 164, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678277

ABSTRACT

BACKGROUND: Esculentin-1, initially discovered in the skin secretions of pool frogs (Pelophylax lessonae), has demonstrated broad-spectrum antimicrobial activity; however, its immunomodulatory properties have received little attention. RESULTS: In the present study, esculentin-1 cDNA was identified by analysing the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus). Esculentin-1 from this species (esculentin-1PN) encompasses a signal peptide, an acidic spacer peptide, and a mature peptide. Sequence alignments with other amphibian esculentins-1 demonstrated conservation of the peptide, and phylogenetic tree analysis revealed its closest genetic affinity to esculentin-1P, derived from the Fukien gold-striped pond frog (Pelophylax fukienensis). Esculentin-1PN transcripts were observed in various tissues, with the skin exhibiting the highest mRNA levels. Synthetic esculentin-1PN demonstrated antibacterial activity against various pathogens, and esculentin-1PN exhibited bactericidal activity by disrupting cell membrane integrity and hydrolyzing genomic DNA. Esculentin-1PN did not stimulate chemotaxis in RAW264.7, a murine leukemic monocyte/macrophage cell line. However, it amplified the respiratory burst and augmented the pro-inflammatory cytokine gene (TNF-α and IL-1ß) expression in RAW264.7 cells. CONCLUSIONS: This novel finding highlights the immunomodulatory activity of esculentin-1PN on immune cells.


Subject(s)
Amphibian Proteins , Anti-Bacterial Agents , Phylogeny , Ranidae , Animals , Amphibian Proteins/pharmacology , Amphibian Proteins/chemistry , Amphibian Proteins/genetics , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/genetics , Amino Acid Sequence , Skin/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , RAW 264.7 Cells , Sequence Alignment
2.
Dev Comp Immunol ; 137: 104519, 2022 12.
Article in English | MEDLINE | ID: mdl-36041640

ABSTRACT

Brevinins exhibit a wide range of structural features and strong biological activities. Brevinin-2, derived from several amphibians, has shown antimicrobial activities. However, little is known about the wound-healing activity of brevinin-2. In this study, brevinin-2 cDNA was identified from the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus) and it comprises a signal peptide, a propeptide, and a mature peptide. Sequence alignment with brevinin-2 derived from other amphibians showed variability of the mature peptide, and the presence of a C-terminal cyclic heptapeptide domain (Cys-Lys-Xaa4-Cys) in the mature peptide. Dark-spotted frog brevinin-2 belonged to the brevinin-2 cluster and was closely related to brevinin-2HB1 from Pelophylax hubeiensis. Synthetic dark-spotted frog brevinin-2 mature peptide (brevinin-2PN) exhibited antibacterial activity against several pathogens by destroying cell membrane integrity and hydrolysis of genomic DNA. Brevinin-2PN exhibited significant wound-healing activity by accelerating the healing of human skin fibroblast cell scratches, influencing cell migration, and stimulating gene expression of growth factors.


Subject(s)
Amphibian Proteins , Antimicrobial Peptides , Amino Acid Sequence , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Anti-Bacterial Agents/metabolism , Antimicrobial Cationic Peptides/metabolism , Anura/genetics , DNA, Complementary/metabolism , Humans , Protein Sorting Signals , Ranidae/genetics , Skin/metabolism
3.
Dev Comp Immunol ; 129: 104347, 2022 04.
Article in English | MEDLINE | ID: mdl-35007654

ABSTRACT

The enzyme 2'-5'-oligoadenylate synthetase (OAS) is an antiviral protein induced by interferons (IFNs), which plays an important role in IFN-mediated antiviral signaling pathway. In this study, the OAS of Chinese Giant Salamander, Andrias davidianus (AdOAS) was identified for the first time, and the expression profiles in vivo and the antiviral activities in vitro were investigated. The open reading frame (ORF) of AdOAS gene is 1185 bp in length, encoding a putative protein of 394 amino acids, in which a Nucleotidyltransferase (NTase) domain (40-143 aa) and a conserved OAS1 C superfamily domain (165-341 aa) are included. qRT-PCR analysis revealed a broad expression of AdOAS in vivo, with the highest expression level in intestine and heart. After infection with Chinese giant salamander iridovirus (GSIV), the mRNA level of AdOAS in liver increased significantly at 24 h and 48 h post infection and reached the peak at 72 h compared with the control group. The AdOAS mRNA level in kidney increased slightly at 6 h and 12 h post infection, declined to the initial level at 24 h and peaked at 48 h post infection, while in spleen it was slightly up-regulated at 6 h, inhibited at 12 h, 24 h and 48 h, and then significantly increased to the peak at 72 h post infection. In vitro, AdOAS mRNA level in Chinese giant salamander muscle (GSM) cells was not noticeably up-regulated until 24 h and then peaked at 48 h post GSIV infection. In antiviral activity test, the mRNA transcription and protein level of virus major capsid protein (MCP) in AdOAS over-expressed cells was significantly reduced compared with that in control cells by qRT-PCR and western blot analysis. In addition, ddPCR results showed that lower MCP gene copy was found in AdOAS over-expressed cells compared with the control group. These results collectively suggest that AdOAS plays a crucial role against GSIV infection in Chinese giant salamander, and provide a solid base for the further studies on the mechanism of immune defense and the control of the disease in this animal.


Subject(s)
Antiviral Agents/metabolism , Adenine Nucleotides , Amino Acid Sequence , Amphibian Proteins/genetics , Animals , Apoptosis , Cell Line , China , Interferons/metabolism , Iridovirus/physiology , Kidney/metabolism , Ligases/genetics , Ligases/metabolism , Oligoribonucleotides , Open Reading Frames , Signal Transduction/genetics , Spleen/metabolism , Urodela/genetics
4.
Elife ; 112022 01 05.
Article in English | MEDLINE | ID: mdl-34984981

ABSTRACT

Vertebrates evolved mechanisms for sodium conservation and gas exchange in conjunction with migration from aquatic to terrestrial habitats. Epithelial Na+ channel (ENaC) function is critical to systems responsible for extracellular fluid homeostasis and gas exchange. ENaC is activated by cleavage at multiple specific extracellular polybasic sites, releasing inhibitory tracts from the channel's α and γ subunits. We found that proximal and distal polybasic tracts in ENaC subunits coevolved, consistent with the dual cleavage requirement for activation observed in mammals. Polybasic tract pairs evolved with the terrestrial migration and the appearance of lungs, coincident with the ENaC activator aldosterone, and appeared independently in the α and γ subunits. In summary, sites within ENaC for protease activation developed in vertebrates when renal Na+ conservation and alveolar gas exchange were required for terrestrial survival.


Subject(s)
Epithelial Sodium Channels/genetics , Evolution, Molecular , Fishes/genetics , Xenopus laevis/genetics , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Epithelial Sodium Channels/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes/metabolism , Xenopus laevis/metabolism
5.
PLoS One ; 16(10): e0258594, 2021.
Article in English | MEDLINE | ID: mdl-34665841

ABSTRACT

Sri Lanka is an amphibian hotspot of global significance. Its anuran fauna is dominated by the shrub frogs of the genus Pseudophilautus. Except for one small clade of four species in Peninsular India, these cool-wet adapted frogs, numbering some 59 extant species, are distributed mainly across the montane and lowland rain forests of the island. With species described primarily by morphological means, the diversification has never yet been subjected to a molecular species delimitation analysis, a procedure now routinely applied in taxonomy. Here we test the species boundaries of Pseudophilautus in the context of the phylogenetic species concept (PSC). We use all the putative species for which credible molecular data are available (nDNA-Rag-1; mt-DNA- 12S rRNA, 16S rRNA) to build a well resolved phylogeny, which is subjected to species delimitation analyses. The ABGD, bPTP, mPTP and bGMYC species delimitation methods applied to the 16S rRNA frog barcoding gene (for all species), 12S rRNA and Rag-1 nDNA grouped P. procax and P. abundus; P. hallidayi and P. fergusonianus; P. reticulatus and P. pappilosus; P. pleurotaenia and P. hoipolloi; P. hoffmani and P. asankai; P. silvaticus and P. limbus; P. dilmah and P. hankeni; P. fulvus and P. silus.. Surprisingly, all analyses recovered 14 unidentified potential new species as well. The geophylogeny affirms a distribution across the island's aseasonal 'wet zone' and its three principal hill ranges, suggestive of allopatric speciation playing a dominant role, especially between mountain masses. Among the species that are merged by the delimitation analyses, a pattern leading towards a model of parapatric speciation emerges-ongoing speciation in the presence of gene flow. This delimitation analysis reinforces the species hypotheses, paving the way to a reasonable understanding of Sri Lankan Pseudophilautus, enabling both deeper analyses and conservation efforts of this remarkable diversification. http://zoobank.org/urn:lsid:zoobank.org:pub:DA869B6B-870A-4ED3-BF5D-5AA3F69DDD27.


Subject(s)
Anura/classification , DNA Barcoding, Taxonomic/methods , Homeodomain Proteins/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal/genetics , Amphibian Proteins/genetics , Animals , Anura/genetics , Databases, Genetic , India , Phylogeny , Phylogeography , Sequence Analysis, DNA
6.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34389675

ABSTRACT

To identify regulators of triple-negative breast cancer (TNBC), gene expression profiles of malignant parts of TNBC (mTNBC) and normal adjacent (nadj) parts of the same breasts have been compared. We are interested in the roles of estrogen receptor ß (ERß) and the cytochrome P450 family (CYPs) as drivers of TNBC. We examined by RNA sequencing the mTNBC and nadj parts of five women. We found more than a fivefold elevation in mTNBC of genes already known to be expressed in TNBC: BIRC5/survivin, Wnt-10A and -7B, matrix metalloproteinases (MMPs), chemokines, anterior gradient proteins, and lysophosphatidic acid receptor and the known basal characteristics of TNBC, sox10, ROPN1B, and Col9a3. There were two unexpected findings: 1) a strong induction of CYPs involved in activation of fatty acids (CYP4), and in inactivation of calcitriol (CYP24A1) and retinoic acid (CYP26A1); and 2) a marked down-regulation of FOS, FRA1, and JUN, known tethering partners of ERß. ERß is expressed in 20 to 30% of TNBCs and is being evaluated as a target for treating TNBC. We used ERß+ TNBC patient-derived xenografts in mice and found that the ERß agonist LY500703 had no effect on growth or proliferation. Expression of CYPs was confirmed by immunohistochemistry in formalin-fixed and paraffin-embedded (FFPE) TNBC. In TNBC cell lines, the CYP4Z1-catalyzed fatty acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) increased proliferation, while calcitriol decreased proliferation but only after inhibition of CYP24A1. We conclude that CYP-mediated pathways can be drivers of TNBC but that ERß is unlikely to be a tumor suppressor because the absence of its main tethering partners renders ERß functionless on genes involved in proliferation and inflammation.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Estrogen Receptor beta/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Triple Negative Breast Neoplasms/metabolism , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Benzopyrans/pharmacology , Calcitriol/pharmacology , Cytochrome P-450 Enzyme System/genetics , Down-Regulation , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Fatty Acids/metabolism , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , Neoplasms, Experimental , Random Allocation , Survivin/genetics , Survivin/metabolism , Transcriptome , Tretinoin/pharmacology , Triple Negative Breast Neoplasms/genetics , Wnt Proteins/genetics , Wnt Proteins/metabolism
7.
Biosci Rep ; 41(8)2021 08 27.
Article in English | MEDLINE | ID: mdl-34282833

ABSTRACT

The Chinese giant salamander, Andrias davidianus, is the largest amphibian species in the world; it is thus an economically and ecologically important species. The skin of A. davidianus exhibits complex adaptive structural and functional adaptations to facilitate survival in aquatic and terrestrial ecosystems. Here, we report the first full-length amphibian transcriptome from the dorsal skin of A. davidianus, which was assembled using hybrid sequencing and the PacBio and Illumina platforms. A total of 153,038 transcripts were hybrid assembled (mean length of 2039 bp and N50 of 2172 bp), and 133,794 were annotated in at least one database (nr, Swiss-Prot, KEGG, KOGs, GO, and nt). A total of 58,732, 68,742, and 115,876 transcripts were classified into 24 KOG categories, 1903 GO term categories, and 46 KEGG pathways (level 2), respectively. A total of 207,627 protein-coding regions, 785 transcription factors, 27,237 potential long non-coding RNAs, and 8299 simple sequence repeats were also identified. The hybrid-assembled transcriptome recovered more full-length transcripts, had a higher N50 contig length, and a higher annotation rate of unique genes compared with that assembled in previous studies using next-generation sequencing. The high-quality full-length reference gene set generated in this study will help elucidate the genetic characteristics of A. davidianus skin and aid the identification of functional skin proteins.


Subject(s)
Amphibian Proteins/genetics , Gene Expression Profiling , Single-Cell Analysis , Skin/metabolism , Transcriptome , Urodela/genetics , Amphibian Proteins/metabolism , Animals , Databases, Genetic , Female , Gene Expression Regulation , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Skin/cytology , Transcription Factors/genetics , Transcription Factors/metabolism , Urodela/metabolism
8.
Amino Acids ; 53(9): 1405-1413, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34245370

ABSTRACT

Gene-encoded peptides with distinct potent bioactivities enable several animals to take advantage of fierce interspecific interaction, as seen in the skin secretion of amphibians. Unlike, most amphibian species that frequently switches terrestrial-aquatic habitats and hides easily from terrestrial predators, tree frogs of small body size are considered as the vulnerable prey in the arboreal habitat. Here, we show the structural and functional diversity of peptide families based on the skin transcriptome of Hyla japonica, which has evolved to be wrapped as an efficient chemical toolkit for defensive use in arboreal habitat. Generally, the presence of antimicrobial peptide and proteinase inhibitor families reveals the functional consistency of Hyla japonica skin compared to other amphibian species. Furthermore, we found that Anntoxin-like neurotoxins with high expression levels are species-specific in tree frogs. Interestingly, derivatives in the Anntoxin-like family exhibit multiple evolutionary traits in modifying the copy number, folding type, and three-dimensional architecture, which are considered essential for targeting the ion channels of terrestrial predators. Together, our study not only reveals the peptide diversity in the skin secretion of H. japonica, but also draws insights into the predator-deterring strategy for coping with arboreal habitat.


Subject(s)
Amphibian Proteins/metabolism , Antimicrobial Peptides/metabolism , Anura/physiology , Neurotoxins/metabolism , Predatory Behavior , Skin/metabolism , Transcriptome , Amino Acid Sequence , Amphibian Proteins/genetics , Animals , Antimicrobial Peptides/genetics , Anura/classification , Base Sequence , Phylogeny , Sequence Homology , Species Specificity
9.
Sci Rep ; 11(1): 14743, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285310

ABSTRACT

Caudata is an order of amphibians with great variation in genome size, which can reach enormous dimensions in salamanders. In this work, we analysed the activity of transposable elements (TEs) in the transcriptomes obtained from female and male gonads of the Chinese fire-bellied newt, Cynops orientalis, a species with a genome about 12-fold larger than the human genome. We also compared these data with genomes of two basal sarcopterygians, coelacanth and lungfish. In the newt our findings highlighted a major impact of non-LTR retroelements and a greater total TE activity compared to the lungfish Protopterus annectens, an organism also characterized by a giant genome. This difference in TE activity might be due to the presence of young copies in newt in agreement also with the increase in the genome size, an event that occurred independently and later than lungfish. Moreover, the activity of 33 target genes encoding proteins involved in the TE host silencing mechanisms, such as Ago/Piwi and NuRD complex, was evaluated and compared between the three species analysed. These data revealed high transcriptional levels of the target genes in both newt and lungfish and confirmed the activity of NuRD complex genes in adults. Finally, phylogenetic analyses performed on PRDM9 and TRIM28 allowed increasing knowledge about the evolution of these two key genes of the NuRD complex silencing mechanism in vertebrates. Our results confirmed that the gigantism of the newt genomes may be attributed to the activity and accumulation of TEs.


Subject(s)
DNA Transposable Elements/genetics , Gene Silencing , Genome , Salamandridae/genetics , Amphibian Proteins/classification , Amphibian Proteins/genetics , Animals , Evolution, Molecular , Female , Gonads/metabolism , Histone-Lysine N-Methyltransferase/classification , Histone-Lysine N-Methyltransferase/genetics , Male , Phylogeny , Salamandridae/metabolism , Tripartite Motif-Containing Protein 28/classification , Tripartite Motif-Containing Protein 28/genetics , Urodela/genetics
10.
J Immunol ; 207(3): 888-901, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34290105

ABSTRACT

Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that ßγ-crystallin fused aerolysin-like protein and trefoil factor complex (ßγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. ßγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, ßγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the ßγ-CAT-treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that ßγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the ßγ-CAT-treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of ßγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that ßγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.


Subject(s)
Amphibian Proteins/metabolism , Antiviral Agents/metabolism , Cornea/pathology , Herpes Simplex/immunology , Herpesvirus 1, Human/physiology , Multiprotein Complexes/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Trefoil Factors/metabolism , Amphibian Proteins/genetics , Animals , Anura , Bacterial Toxins/genetics , Cornea/virology , Female , HeLa Cells , Host-Pathogen Interactions , Humans , Mice , Microscopy, Electron, Transmission , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Viral Envelope/metabolism , Viral Envelope/ultrastructure , Virus Internalization , gamma-Crystallins/chemistry
11.
Front Immunol ; 12: 613365, 2021.
Article in English | MEDLINE | ID: mdl-34149681

ABSTRACT

Hyla annectans is a tree frog living in the southwestern plateau area of China where there is strong ultraviolet radiation and long duration of sunshine. So their naked skin may possess chemical defense components that protect it from acute photo-damage. However, no such peptide or components has been identified till to date. In the current work, two novel peptides (FW-1, FWPLI-NH2 and FW-2, FWPMI-NH2) were identified from the skin of the tree frog. Five copies of FW-1 and four copies of FW-2 are encoded by an identical gene and released from the same protein precursor, which possess 167 amino acid residues. FW-1 and -2 can exert significant anti-inflammatory functions by directly inhibiting Ultraviolet B irradiation (UVB)-induced secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). They may achieve this function by modulating the UV-induced stress signaling pathways such as Mitogen-activated protein kinases (MAPK) and Nuclear Factor Kappa B (NF-κB). Besides, FW-1 and -2 showed potential antioxidant effects on epidermis by attenuating the UVB-induced reactive oxygen species (ROS) production through an unknown mechanism. Considering small peptides' easy production, storage, and potential photo-protective activity, FW-1/2 might be exciting leading compounds or templates for the development of novel pharmacological agents for the suppression of UVB-induced skin inflammation. Moreover, this study might expand our knowledge on skin defensive mechanism of tree frog upon UVB irradiation.


Subject(s)
Amphibian Proteins/metabolism , Anti-Inflammatory Agents/metabolism , Keratinocytes/physiology , Peptides/metabolism , Skin/metabolism , Ultraviolet Rays/adverse effects , Amphibian Proteins/genetics , Animals , Antioxidants , Anura , China , Cloning, Molecular , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Peptides/genetics , Reactive Oxygen Species/metabolism , Signal Transduction , Skin/pathology , Tumor Necrosis Factor-alpha/metabolism
12.
J Pept Sci ; 27(8): e3330, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33843136

ABSTRACT

Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from an Australian tree frog and exhibits low micromolar activity against Gram-positive bacteria. The antimicrobial properties of Mac1 are linked to its disruption of bacterial lipid membranes, which has been studied extensively by in vitro nuclear magnetic resonance (NMR) spectroscopy and biophysical approaches. Although in vivo NMR has recently proven effective in probing peptide-lipid interplay in live bacterial cells, direct structural characterisation of AMPs has been prohibited by low sensitivity and overwhelming background noise. To overcome this issue, we report a recombinant expression protocol to produce isotopically enriched Mac1. We utilized a double-fusion construct to alleviate toxicity against the Escherichia coli host and generate the native N-free and C-amidated termini Mac1 peptide. The SUMO and intein tags allowed native N-terminus and C-terminal amidation, respectively, to be achieved in a one-pot reaction. The protocol yielded 0.1 mg/L of native, uniformly 15 N-labelled, Mac1, which possessed identical structure and activity to peptide obtained by solid-phase peptide synthesis.


Subject(s)
Amphibian Proteins/genetics , Antimicrobial Cationic Peptides/genetics , Amphibian Proteins/isolation & purification , Antimicrobial Cationic Peptides/isolation & purification
13.
Cells ; 10(3)2021 03 03.
Article in English | MEDLINE | ID: mdl-33802526

ABSTRACT

Vertebrate postembryonic development is regulated by thyroid hormone (T3). Of particular interest is anuran metamorphosis, which offers several unique advantages for studying the role of T3 and its two nuclear receptor genes, TRα and TRß, during postembryonic development. We have recently generated TR double knockout (TRDKO) Xenopus tropicalis animals and reported that TR is essential for the completion of metamorphosis. Furthermore, TRDKO tadpoles are stalled at the climax of metamorphosis before eventual death. Here we show that TRDKO intestine lacked larval epithelial cell death and adult stem cell formation/proliferation during natural metamorphosis. Interestingly, TRDKO tadpole intestine had premature formation of adult-like epithelial folds and muscle development. In addition, T3 treatment of premetamorphic TRDKO tadpoles failed to induce any metamorphic changes in the intestine. Furthermore, RNA-seq analysis revealed that TRDKO altered the expression of many genes in biological pathways such as Wnt signaling and the cell cycle that likely underlay the inhibition of larval epithelial cell death and adult stem cell development caused by removing both TR genes. Our data suggest that liganded TR is required for larval epithelial cell degeneration and adult stem cell formation, whereas unliganded TR prevents precocious adult tissue morphogenesis such as smooth-muscle development and epithelial folding.


Subject(s)
Adult Stem Cells/metabolism , Amphibian Proteins/genetics , Epithelial Cells/metabolism , Intestines/cytology , Larva/genetics , Receptors, Thyroid Hormone/genetics , Thyroid Hormones/genetics , Xenopus/genetics , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Amphibian Proteins/classification , Amphibian Proteins/metabolism , Animals , Animals, Genetically Modified , Apoptosis/genetics , Cell Cycle/genetics , Cell Differentiation/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Gene Ontology , Gene Regulatory Networks , Intestines/drug effects , Intestines/growth & development , Larva/cytology , Larva/drug effects , Larva/growth & development , Metabolic Networks and Pathways/genetics , Metamorphosis, Biological , Molecular Sequence Annotation , Protein Isoforms/deficiency , Protein Isoforms/genetics , Receptors, Thyroid Hormone/deficiency , Thyroid Hormones/metabolism , Thyroid Hormones/pharmacology , Wnt Signaling Pathway/genetics , Xenopus/growth & development , Xenopus/metabolism
14.
Toxicol In Vitro ; 73: 105141, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33713820

ABSTRACT

Deiodinase enzymes are critical for tissue-specific and temporal control of activation or inactivation of thyroid hormones during vertebrate development, including amphibian metamorphosis. We previously screened ToxCast chemicals for inhibitory activity toward human recombinant Type 3 iodothyronine deiodinase enzyme (hDIO3) and subsequently produced Xenopus laevis recombinant dio3 enzyme (Xldio3) with the goals to identify specific chemical inhibitors of Xldio3, to evaluate cross-species sensitivity and explore whether the human assay results are predictive of the amphibian. We identified a subset of 356 chemicals screened against hDIO3 to test against Xldio3, initially at a single concentration (200 µM), and further tested 79 in concentration-response mode. Most chemicals had IC50 values lower for hDIO3 than for Xldio3 and many had steep Hill slopes (a potential indication of non-specific inhibition). However, eight of the most potent chemicals are likely specific inhibitors, with IC50 values of 14 µM or less, Hill slopes near -1 and curves not significantly different between species likely due to conservation of catalytically active amino acids. Controlling for assay conditions, human in vitro screening results can be predictive of activity in the amphibian assay. This study lays the groundwork for future studies using recombinant non-mammalian proteins to test cross-species sensitivity to chemicals. DISCLAIMER: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.


Subject(s)
Amphibian Proteins/antagonists & inhibitors , Biological Assay , Environmental Pollutants/toxicity , Enzyme Inhibitors/toxicity , Iodide Peroxidase/antagonists & inhibitors , Amphibian Proteins/genetics , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Iodide Peroxidase/genetics , Recombinant Proteins , Risk Assessment , Xenopus laevis
15.
J Cell Physiol ; 236(6): 4303-4312, 2021 06.
Article in English | MEDLINE | ID: mdl-33421131

ABSTRACT

The overexpression of epidermal growth factor receptor (EGFR) could result in the development of solid tumors of prostate, breast, gastric, colorectal, ovarian, and head and neck, leading to carcinoma. Antibody therapies are ideal methods to overcome malignant diseases. However, immunoribonucleases are a new generation of antibodies in which an RNase binds to a specific antibody and shows a stronger ability to terminate cancer cells. In this study, we engineered Rana pipiens RNase to bind to the scFv of human antiepidermal growth factor receptor antibody. The molecular dynamic simulations confirmed protein stability and the ability of scFv-ranpirnase (rantoxin) to bind to epidermal growth factor receptor protein. Then, the rantoxin construct was synthesized in a pCDNA 3.1 Neo vector. CHO-K1 cells were used as expression hosts and the construct was transfected. Cells were selected by antibiotic therapies using neomycin, 120 mg/ml, and the high-yield colony was screened by real-time polymerase chain reaction (PCR) methods. Then, the recombinant protein production was confirmed using the sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot analyses. The molecular dynamic simulation (MDS) confirmed that the I467, S468, Q408, and H409 amino acids of EGFR bonded well to rantoxin. As revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses, the rantoxin production and PCR analysis showed that the T3 colony can produce rantoxin messenger RNA fourfold higher than the GAPDH gene. The immunotoxin function was assessed in A431 cancer cells and EGFR-negative HEK293 cells, and IC50  values were estimated to be 22.4 ± 3 and >620.4 ± 5 nM, respectively. The results indicated that the immunotoxins produced in this study had the potential for use as anticancer drugs.


Subject(s)
Amphibian Proteins/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Immunotoxins/pharmacology , Protein Engineering , Ribonucleases/pharmacology , Single-Chain Antibodies/pharmacology , Skin Neoplasms/drug therapy , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Antineoplastic Agents, Immunological/metabolism , Apoptosis/drug effects , Binding Sites, Antibody , CHO Cells , Cell Line, Tumor , Cricetulus , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , ErbB Receptors/metabolism , HEK293 Cells , Humans , Immunotoxins/genetics , Immunotoxins/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Rana pipiens , Ribonucleases/genetics , Ribonucleases/metabolism , Single-Chain Antibodies/metabolism , Skin Neoplasms/immunology , Skin Neoplasms/pathology
16.
Genome Biol Evol ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: mdl-33501944

ABSTRACT

Proteins encoded by antigen-processing genes (APGs) prepare antigens for presentation by the major histocompatibility complex class I (MHC I) molecules. Coevolution between APGs and MHC I genes has been proposed as the ancestral gnathostome condition. The hypothesis predicts a single highly expressed MHC I gene and tight linkage between APGs and MHC I. In addition, APGs should evolve under positive selection, a consequence of the adaptive evolution in MHC I. The presence of multiple highly expressed MHC I genes in some teleosts, birds, and urodeles appears incompatible with the coevolution hypothesis. Here, we use urodele amphibians to test two key expectations derived from the coevolution hypothesis: 1) the linkage between APGs and MHC I was studied in Lissotriton newts and 2) the evidence for adaptive evolution in APGs was assessed using 42 urodele species comprising 21 genera from seven families. We demonstrated that five APGs (PSMB8, PSMB9, TAP1, TAP2, and TAPBP) are tightly linked (<0.5 cM) to MHC I. Although all APGs showed some codons under episodic positive selection, we did not find a pervasive signal of positive selection expected under the coevolution hypothesis. Gene duplications, putative gene losses, and divergent allelic lineages detected in some APGs demonstrate considerable evolutionary dynamics of APGs in salamanders. Overall, our results indicate that if coevolution between APGs and MHC I occurred in urodeles, it would be more complex than envisaged in the original formulation of the hypothesis.


Subject(s)
Amphibian Proteins/genetics , Antigen Presentation/genetics , Evolution, Molecular , Genes, MHC Class I , Urodela/genetics , Amphibian Proteins/chemistry , Amphibian Proteins/classification , Animals , Gene Duplication , Genetic Linkage , Urodela/immunology
17.
Chem Biol Drug Des ; 97(2): 273-282, 2021 02.
Article in English | MEDLINE | ID: mdl-32812694

ABSTRACT

As drug-resistant bacteria have become a serious health problem and have caused thousands of deaths, finding new antibiotics has become an urgent research priority. A novel antimicrobial peptide, named Brevinin-1H, was identified in the skin secretion of Amolops hainanensis through 'shotgun' cloning. It has broad-spectrum antimicrobial activity against tested micro-organisms and has anticancer cell activity. To improve its bioactivity and decrease its cytotoxicity, two structural analogues-Brevinin-1Ha and Brevinin-1HY-were designed based on the secondary structure of the natural peptide. Brevinin-1HY, in which tyrosine substituted Pro11 , had similar activity to the natural peptide against Gram-negative bacteria and cancer cells, but showed a dramatic increase in haemolytic activity and cytotoxicity at its minimum inhibitory concentration. Brevinin-1Ha, which transferred the Rana-box from the C-terminal to a central position, had significantly decreased haemolytic activity, but also in antimicrobial and anticancer activity. The present data suggest that increasing the proportion of α-helix structure in an AMP can increase its target micro-organism bioactivity to some extent.


Subject(s)
Amphibian Proteins/metabolism , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Ranidae/metabolism , Skin/metabolism , Amino Acid Sequence , Amphibian Proteins/genetics , Animals , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biofilms/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/physiology , Hemolysis/drug effects , Humans , Microbial Sensitivity Tests , Protein Structure, Secondary
18.
Dev Comp Immunol ; 116: 103935, 2021 03.
Article in English | MEDLINE | ID: mdl-33242566

ABSTRACT

Bid is a pro-apoptotic BH3-only member of the Bcl-2 superfamily that functions to link the extrinsic apoptotic pathway and the mitochondrial amplification loop of the intrinsic pathway. In this study, the expression and functions of Chinese giant salamander (Andrias davidianus) Bid (AdBid) were investigated. The AdBid cDNA sequence contains an open reading frame (ORF) of 576 nucleotides, encoding a putative protein of 191 aa. AdBid possesses the conserved BH3 interacting domain and shared 34-52% sequence identities with other amphibian Bid. mRNA expression of AdBid was most abundant in muscle. The expression level of AdBid in Chinese giant salamander muscle, kidney and spleen significantly increased after Chinese giant salamander iridovirus (GSIV) infection. Additionally, a plasmid expressing AdBid was constructed and transfected into the Chinese giant salamander muscle cell line (GSM cells). The morphology and cytopathic effect (CPE) and apoptotic process in AdBid over-expressed GSM cells was significantly enhanced during GSIV infection compared with that in control cells. Moreover, a higher level of the virus major capsid protein (MCP) gene copies and protein synthesis was confirmed in the AdBid over-expressed cells. These results indicated that AdBid played a positive role in GSIV induced apoptosis and the viral replication. This study may contribute to the better understanding on the infection mechanism of iridovirus-induced apoptosis.


Subject(s)
Apoptosis , BH3 Interacting Domain Death Agonist Protein/metabolism , Iridoviridae/physiology , Urodela/virology , Virus Replication , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , BH3 Interacting Domain Death Agonist Protein/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , Cytopathogenic Effect, Viral , DNA Virus Infections/metabolism , DNA Virus Infections/pathology , DNA Virus Infections/veterinary , DNA Virus Infections/virology , Gene Expression , Phylogeny , Sequence Analysis , Urodela/classification , Urodela/genetics
19.
Dev Comp Immunol ; 116: 103928, 2021 03.
Article in English | MEDLINE | ID: mdl-33242568

ABSTRACT

Cathelicidins are an important family of antimicrobial peptides (AMPs), which play pivotal roles in vertebrate immune responses against microbial infections. They are regarded as potential drug leads for the development of novel antimicrobial agents and three related drugs have been developed into clinical trials. Thus, it is meaningful to identify more cathelicidins from vertebrate species. Cathelicidins from ranid frogs possess special structural characteristics and activities, but to date only 12 ranid frog cathelicidins have been identified. In the present study, two novel cathelicidins (PN-CATH1 and 2) were identified from the black-spotted frog, Pelophylax nigromaculata. PN-CATHs possess low sequence similarity with the known cathelicidins. They exhibited moderate, but broad-spectrum and rapid antimicrobial activities against the tested bacteria. They kill bacteria by mainly inducing bacterial membrane disruption and possibly generating intracellular ROS formation. They also possess potent anti-biofilm and persister cell killing activity, indicating their potential in combating infections induced by biofilms-forming bacteria. Besides direct antimicrobial activity, they exhibited potent anti-inflammatory activity by effectively inhibiting the LPS-induced production of pro-inflammatory cytokines in mouse macrophages, which could be partly ascribed to their direct LPS-neutralizing ability. Furthermore, PN-CATHs demonstrated powerful in vitro free radical scavenging activities. Ultraviolet radiation significantly increased their in vivo gene expression in frog skin. Meanwhile, they possess weak cytotoxic activity and extremely low hemolytic activity. PN-CATHs represent the first discovery of cathelicidins family AMPs with both potent anti-infective and antioxidant activities. The discovery of PN-CATHs provides potential peptide leads for the development of novel anti-infective and antioxidant drugs.


Subject(s)
Anti-Infective Agents/metabolism , Antioxidants/metabolism , Cathelicidins/metabolism , Ranidae/metabolism , Amino Acid Sequence , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Biofilms/drug effects , Biofilms/growth & development , Cathelicidins/genetics , Macrophages/drug effects , Macrophages/metabolism , Mice , Oxidative Stress/drug effects , Phylogeny , Skin/metabolism
20.
Dev Comp Immunol ; 116: 103963, 2021 03.
Article in English | MEDLINE | ID: mdl-33301796

ABSTRACT

Until recently, different families of urodele amphibians were thought to express distinct subsets of immunoglobulin (Ig) isotypes. In this study, we explored cDNAs encoding Ig heavy-chains (H-chains) in three species of urodele amphibians. We found that Cynops pyrrhogaster, Pleurodeles waltl, and Ambystoma mexicanum each carry genes encoding four Ig H-chain isotypes, including IgM, IgY, IgD, and IgX, similar to those found in anuran amphibians. We also found that urodele IgDs have a long constant region similar to those found in anuran, reptiles, and bony fishes. We also found several putative IgD splice variants. Our findings indicated that P. waltl IgP is not a novel isotype but an IgD splice variant. Altogether, our findings indicate that IgD splice variants may be universally expressed among amphibian species.


Subject(s)
Amphibian Proteins/genetics , Immunoglobulin Isotypes/genetics , Urodela/immunology , Alternative Splicing , Amino Acid Sequence , Amphibians/classification , Amphibians/genetics , Amphibians/immunology , Animals , DNA, Complementary , Immunoglobulin D/genetics , Immunoglobulin Heavy Chains/genetics , Phylogeny , Sequence Alignment , Urodela/classification , Urodela/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...