Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.446
Filter
1.
Commun Biol ; 7(1): 605, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769398

ABSTRACT

Alzheimer's disease (AD) is broadly characterized by neurodegeneration, pathology accumulation, and cognitive decline. There is considerable variation in the progression of clinical symptoms and pathology in humans, highlighting the importance of genetic diversity in the study of AD. To address this, we analyze cell composition and amyloid-beta deposition of 6- and 14-month-old AD-BXD mouse brains. We utilize the analytical QUINT workflow- a suite of software designed to support atlas-based quantification, which we expand to deliver a highly effective method for registering and quantifying cell and pathology changes in diverse disease models. In applying the expanded QUINT workflow, we quantify near-global age-related increases in microglia, astrocytes, and amyloid-beta, and we identify strain-specific regional variation in neuron load. To understand how individual differences in cell composition affect the interpretation of bulk gene expression in AD, we combine hippocampal immunohistochemistry analyses with bulk RNA-sequencing data. This approach allows us to categorize genes whose expression changes in response to AD in a cell and/or pathology load-dependent manner. Ultimately, our study demonstrates the use of the QUINT workflow to standardize the quantification of immunohistochemistry data in diverse mice, - providing valuable insights into regional variation in cellular load and amyloid deposition in the AD-BXD model.


Subject(s)
Alzheimer Disease , Brain , Disease Models, Animal , Genetic Variation , Animals , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Mice , Brain/metabolism , Brain/pathology , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Male
2.
Nat Med ; 30(5): 1284-1291, 2024 May.
Article in English | MEDLINE | ID: mdl-38710950

ABSTRACT

This study aimed to evaluate the impact of APOE4 homozygosity on Alzheimer's disease (AD) by examining its clinical, pathological and biomarker changes to see whether APOE4 homozygotes constitute a distinct, genetically determined form of AD. Data from the National Alzheimer's Coordinating Center and five large cohorts with AD biomarkers were analyzed. The analysis included 3,297 individuals for the pathological study and 10,039 for the clinical study. Findings revealed that almost all APOE4 homozygotes exhibited AD pathology and had significantly higher levels of AD biomarkers from age 55 compared to APOE3 homozygotes. By age 65, nearly all had abnormal amyloid levels in cerebrospinal fluid, and 75% had positive amyloid scans, with the prevalence of these markers increasing with age, indicating near-full penetrance of AD biology in APOE4 homozygotes. The age of symptom onset was earlier in APOE4 homozygotes at 65.1, with a narrower 95% prediction interval than APOE3 homozygotes. The predictability of symptom onset and the sequence of biomarker changes in APOE4 homozygotes mirrored those in autosomal dominant AD and Down syndrome. However, in the dementia stage, there were no differences in amyloid or tau positron emission tomography across haplotypes, despite earlier clinical and biomarker changes. The study concludes that APOE4 homozygotes represent a genetic form of AD, suggesting the need for individualized prevention strategies, clinical trials and treatments.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Biomarkers , Homozygote , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/cerebrospinal fluid , Apolipoprotein E4/genetics , Aged , Male , Female , Biomarkers/cerebrospinal fluid , Middle Aged , Positron-Emission Tomography , Aged, 80 and over , tau Proteins/genetics , tau Proteins/cerebrospinal fluid , Age of Onset , Apolipoprotein E3/genetics , Cohort Studies , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Amyloid/genetics
3.
Phys Chem Chem Phys ; 26(20): 14664-14674, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38715538

ABSTRACT

Amyloid fibrils have been implicated in the pathogenesis of several neurodegenerative diseases, the most prevalent example being Alzheimer's disease (AD). Despite the prevalence of AD, relatively little is known about the structure of the associated amyloid fibrils. This has motivated our studies of fibril structures, extended here to the familial Arctic mutant of Aß1-42, E22G-Aß1-42. We found E22G-AßM0,1-42 is toxic to Escherichia coli, thus we expressed E22G-Aß1-42 fused to the self-cleavable tag NPro in the form of its EDDIE mutant. Since the high surface activity of E22G-Aß1-42 makes it difficult to obtain more than sparse quantities of fibrils, we employed 1H detected magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments to characterize the protein. The 1H detected 13C-13C methods were first validated by application to fully protonated amyloidogenic nanocrystals of GNNQQNY, and then applied to fibrils of the Arctic mutant of Aß, E22G-Aß1-42. The MAS NMR spectra indicate that the biosynthetic samples of E22G-Aß1-42 fibrils comprise a single conformation with 13C chemical shifts extracted from hCH, hNH, and hCCH spectra that are very similar to those of wild type Aß1-42 fibrils. These results suggest that E22G-Aß1-42 fibrils have a structure similar to that of wild type Aß1-42.


Subject(s)
Amyloid beta-Peptides , Peptide Fragments , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Amyloid/chemistry , Amyloid/metabolism , Nuclear Magnetic Resonance, Biomolecular , Escherichia coli/genetics , Escherichia coli/metabolism , Mutation , Humans
4.
Commun Biol ; 7(1): 569, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750228

ABSTRACT

Accumulation of amyloid-ß (Aß) and tau tangles are hallmarks of Alzheimer's disease. Aß is extracellular while tau tangles are typically intracellular, and it is unknown how these two proteinopathies are connected. Here, we use data of 1206 elders and test that RNA expression levels of GPER1, a transmembrane protein, modify the association of Aß with tau tangles. GPER1 RNA expression is related to more tau tangles (p = 0.001). Moreover, GPER1 expression modifies the association of immunohistochemistry-derived Aß load with tau tangles (p = 0.044). Similarly, GPER1 expression modifies the association between Aß proteoforms and tau tangles: total Aß protein (p = 0.030) and Aß38 peptide (p = 0.002). Using single nuclei RNA-seq indicates that GPER1 RNA expression in astrocytes modifies the relation of Aß load with tau tangles (p = 0.002), but not GPER1 in excitatory neurons or endothelial cells. We conclude that GPER1 may be a link between Aß and tau tangles driven mainly by astrocytic GPER1 expression.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Receptors, Estrogen , Receptors, G-Protein-Coupled , tau Proteins , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , tau Proteins/metabolism , tau Proteins/genetics , Female , Male , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Aged , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Aged, 80 and over , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Astrocytes/metabolism
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166928, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38660915

ABSTRACT

Huntington's disease (HD) is a progressive neurodegenerative disorder with clinical presentations of moderate to severe cognitive, motor, and psychiatric disturbances. HD is caused by the trinucleotide repeat expansion of CAG of the huntingtin (HTT) gene. The mutant HTT protein containing pathological polyglutamine (polyQ) extension is prone to misfolding and aggregation in the brain. It has previously been observed that copper and iron concentrations are increased in the striata of post-mortem human HD brains. Although it has been shown that the accumulation of mutant HTT protein can interact with copper, the underlying HD progressive phenotypes due to copper overload remains elusive. Here, in a Drosophila model of HD, we showed that copper induces dose-dependent aggregational toxicity and enhancement of Htt-induced neurodegeneration. Specifically, we found that copper increases mutant Htt aggregation, enhances the accumulation of Thioflavin S positive ß-amyloid structures within Htt aggregates, and consequently alters autophagy in the brain. Administration of copper chelator D-penicillamine (DPA) through feeding significantly decreases ß-amyloid aggregates in the HD pathological model. These findings reveal a direct role of copper in potentiating mutant Htt protein-induced aggregational toxicity, and further indicate the potential impact of environmental copper exposure in the disease onset and progression of HD.


Subject(s)
Copper , Huntingtin Protein , Huntington Disease , Animals , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Autophagy/drug effects , Autophagy/genetics , Brain/metabolism , Brain/pathology , Brain/drug effects , Copper/metabolism , Copper/toxicity , Disease Models, Animal , Drosophila melanogaster/drug effects , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Mutation , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology
6.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659053

ABSTRACT

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Organoids , Pluripotent Stem Cells , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Organoids/metabolism , Organoids/pathology , Pluripotent Stem Cells/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/antagonists & inhibitors , tau Proteins/metabolism , tau Proteins/genetics , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Brain/metabolism , Brain/pathology , Models, Biological
7.
J Mol Neurosci ; 74(2): 49, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668787

ABSTRACT

The pathogenesis of Alzheimer's disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred Abcg4 knockout (KO) with the APPSwe,Ind (J9) mouse model of AD to test the hypothesis that loss of Abcg4 would exacerbate the AD phenotype. Unexpectedly, no differences were observed in novel object recognition (NOR) and novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between Abcg4 KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT), and insulin tolerance test (ITT) were also mostly similar between groups with only a few mild metabolic differences noted. Overall, these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G , Alzheimer Disease , Animals , Male , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , ATP Binding Cassette Transporter, Subfamily G/metabolism , ATP Binding Cassette Transporter, Subfamily G/genetics , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL , Plaque, Amyloid/pathology
8.
Sheng Li Xue Bao ; 76(2): 257-265, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658375

ABSTRACT

The present study aims to observe the change in expression of heat shock protein 90 (HSP90) along with amyloid-ß (Aß) and phosphorylated Tau (p-Tau) protein levels in the hippocampus tissue of Alzheimer's disease (AD) transgenic animal model with age. APP/PS1 transgenic mice at age of 6-, 9- and 12-month and C57BL/6J mice of the same age were used. The cognitive abilities of these animals were evaluated using a Morris water maze. Western blot or immunohistochemistry was used to detect the expressions of HSP90 and Aß1-42, as well as the phosphorylation levels of Tau protein in the hippocampus. The hsp90 mRNA levels and the morphology and number of cells in the hippocampus were detected with real-time quantitative polymerase chain reaction (qRT-PCR) and Nissl staining, respectively. The results showed that compared with C57BL/6J mice of the same age, HSP90 and hsp90 mRNA expression were decreased (P < 0.05 or P < 0.01), while Aß1-42 and p-Tau protein levels were increased (P < 0.05 or P < 0.01) in the hippocampal tissue of APP/PS1 transgenic mice. Meanwhile, the decrease in HSP90 and hsp90 mRNA expression (P < 0.05 or P < 0.01), the increase in Aß1-42 and p-Tau levels (P < 0.01 or P < 0.05) in hippocampal tissue and the reduction in behavioral ability showed a progressive development with the advancing of age in the APP/PS1 transgenic mice. In conclusion, in the hippocampal tissue of APP/PS1 mice, the decrease in HSP90 expression and the increase in Aß1-42 and p-Tau levels together with the decline of their cognitive ability are age-dependent.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , HSP90 Heat-Shock Proteins , Hippocampus , Mice, Inbred C57BL , Mice, Transgenic , tau Proteins , Animals , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Hippocampus/metabolism , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , tau Proteins/metabolism , tau Proteins/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Male , Disease Models, Animal , Phosphorylation , Age Factors , Aging/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Peptide Fragments/metabolism , Peptide Fragments/genetics , Presenilin-1/genetics , Presenilin-1/metabolism
9.
Transl Psychiatry ; 14(1): 184, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600070

ABSTRACT

The prevalence of Alzheimer's disease (AD) is increasing as the population ages, and patients with AD have a poor prognosis. However, knowledge on factors for predicting the survival of AD remains sparse. Here, we aimed to systematically explore predictors of AD survival. We searched the PubMed, Embase and Cochrane databases for relevant literature from inception to December 2022. Cohort and case-control studies were selected, and multivariable adjusted relative risks (RRs) were pooled by random-effects models. A total of 40,784 reports were identified, among which 64 studies involving 297,279 AD patients were included in the meta-analysis after filtering based on predetermined criteria. Four aspects, including demographic features (n = 7), clinical features or comorbidities (n = 13), rating scales (n = 3) and biomarkers (n = 3), were explored and 26 probable prognostic factors were finally investigated for AD survival. We observed that AD patients who had hyperlipidaemia (RR: 0.69) were at a lower risk of death. In contrast, male sex (RR: 1.53), movement disorders (including extrapyramidal signs) (RR: 1.60) and cancer (RR: 2.07) were detrimental to AD patient survival. However, our results did not support the involvement of education, hypertension, APOE genotype, Aß42 and t-tau in AD survival. Our study comprehensively summarized risk factors affecting survival in patients with AD, provided a better understanding on the role of different factors in the survival of AD from four dimensions, and paved the way for further research.


Subject(s)
Alzheimer Disease , Humans , Male , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Biomarkers , Case-Control Studies , Genotype , Risk Factors , tau Proteins/genetics
10.
ACS Chem Neurosci ; 15(10): 2058-2069, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38652895

ABSTRACT

Amyloid plaques composed of fibrils of misfolded Aß peptides are pathological hallmarks of Alzheimer's disease (AD). Aß fibrils are polymorphic in their tertiary and quaternary molecular structures. This structural polymorphism may carry different pathologic potencies and can putatively contribute to clinical phenotypes of AD. Therefore, mapping of structural polymorphism of Aß fibrils and structural evolution over time is valuable to understanding disease mechanisms. Here, we investigated how Aß fibril structures in situ differ in Aß plaque of different mouse models expressing familial mutations in the AßPP gene. We imaged frozen brains with a combination of conformation-sensitive luminescent conjugated oligothiophene (LCO) ligands and Aß-specific antibodies. LCO fluorescence mapping revealed that mouse models APP23, APPPS1, and AppNL-F have different fibril structures within Aß-amyloid plaques depending on the AßPP-processing genotype. Co-staining with Aß-specific antibodies showed that individual plaques from APP23 mice expressing AßPP Swedish mutation have two distinct fibril polymorph regions of core and corona. The plaque core is predominantly composed of compact Aß40 fibrils, and the corona region is dominated by diffusely packed Aß40 fibrils. Conversely, the AßPP knock-in mouse AppNL-F, expressing the AßPP Iberian mutation along with Swedish mutation has tiny, cored plaques consisting mainly of compact Aß42 fibrils, vastly different from APP23 even at elevated age up to 21 months. Age-dependent polymorph rearrangement of plaque cores observed for APP23 and APPPS1 mice >12 months, appears strongly promoted by Aß40 and was hence minuscule in AppNL-F. These structural studies of amyloid plaques in situ can map disease-relevant fibril polymorph distributions to guide the design of diagnostic and therapeutic molecules.


Subject(s)
Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Mice, Transgenic , Plaque, Amyloid , Animals , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Disease Models, Animal , Brain/metabolism , Brain/pathology , Mutation , Aging/metabolism , Aging/pathology , Protein Conformation , Humans
11.
Adv Sci (Weinh) ; 11(18): e2307734, 2024 May.
Article in English | MEDLINE | ID: mdl-38430535

ABSTRACT

The hepatic content of amyloid beta (Aß) decreases drastically in human and rodent cirrhosis highlighting the importance of understanding the consequences of Aß deficiency in the liver. This is especially relevant in view of recent advances in anti-Aß therapies for Alzheimer's disease (AD). Here, it is shown that partial hepatic loss of Aß in transgenic AD mice immunized with Aß antibody 3D6 and its absence in amyloid precursor protein (APP) knockout mice (APP-KO), as well as in human liver spheroids with APP knockdown upregulates classical hallmarks of fibrosis, smooth muscle alpha-actin, and collagen type I. Aß absence in APP-KO and deficiency in immunized mice lead to strong activation of transforming growth factor-ß (TGFß), alpha secretases, NOTCH pathway, inflammation, decreased permeability of liver sinusoids, and epithelial-mesenchymal transition. Inversely, increased systemic and intrahepatic levels of Aß42 in transgenic AD mice and neprilysin inhibitor LBQ657-treated wild-type mice protect the liver against carbon tetrachloride (CCl4)-induced injury. Transcriptomic analysis of CCl4-treated transgenic AD mouse livers uncovers the regulatory effects of Aß42 on mitochondrial function, lipid metabolism, and its onco-suppressive effects accompanied by reduced synthesis of extracellular matrix proteins. Combined, these data reveal Aß as an indispensable regulator of cell-cell interactions in healthy liver and a powerful protector against liver fibrosis.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Liver , Mice, Transgenic , Animals , Mice , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Liver/metabolism , Liver/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Humans , Mice, Knockout , Mice, Inbred C57BL
12.
J Tradit Chin Med ; 44(2): 289-302, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504535

ABSTRACT

OBJECTIVE: To discuss the influence of Sailuotong (, SLT) on the Neurovascular Unit (NVUs) of amyloid precursor protein (APP)/presenilin-1(PS1) mice and evaluate the role of gas supplementation in activating blood circulation during the progression of Alzheimer's disease (AD). METHODS: The mice were allocated into the following nine groups: (a) the C57 Black (C57BL) sham-operated group (control group), (b) ischaemic treatment in C57BL mice (the C57 ischaemic group), (c) the APP/PS1 sham surgery group (APP/PS1 model group), (d) ischaemic treatment in APP/PS1 mice (APP/PS1 ischaemic group), (e) C57BL mice treated with aspirin following ischaemic treatment (C57BL ischaemic + aspirin group), (f) C57BL mice treated with SLT following ischaemic treatment (C57BL ischaemic + SLT group), (g) APP/PS1 mice treated with SLT (APP/PS1 + SLT group), (h) APP/PS1 mice treated with donepezil hydrochloride following ischaemic treatment (APP/PS1 ischaemic + donepezil hydrochloride group) and (i) APP/PS1 mice treated with SLT following ischaemic treatment (APP/PS1 ischaemic + SLT group). The ischaemic model was established by operating on the bilateral common carotid arteries and creating a microembolism. The Morris water maze and step-down tests were used to detect the spatial behaviour and memory ability of mice. The hippocampus of each mouse was observed by haematoxylin and eosin (HE) and Congo red staining. The ultrastructure of NVUs in each group was observed by electron microscopy, and various biochemical indicators were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression level was detected by Western blot. The mRNA expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The results of the Morris water maze and step-down tests showed that ischemia reduced learning and memory in the mice, which were restored by SLT. The results of HE staining showed that SLT restored the pathological changes of the NVUs. The Congo red staining results revealed that SLT also improved the scattered orange-red sediments in the upper cortex and hippocampus of the APP/PS1 and APP/PS1 ischaemic mice. Furthermore, SLT significantly reduced the content of Aß, improved the vascular endothelium and repaired the mitochondrial structures. The ELISA detection, western blot detection and qRT-PCR showed that SLT significantly increased the vascular endothelial growth factor (VEGF), angiopoietin and basic fibroblast growth factor, as well as the levels of gene and protein expression of low-density lipoprotein receptor-related protein-1 (LRP-1) and VEGF in brain tissue. CONCLUSIONS: By increasing the expression of VEGF, SLT can promote vascular proliferation, up-regulate the expression of LRP-1, promote the clearance of Aß and improve the cognitive impairment of APP/PS1 mice. These results confirm that SLT can improve AD by promoting vascular proliferation and Aß clearance to protect the function of NVUs.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Drugs, Chinese Herbal , Mice , Animals , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mice, Transgenic , Vascular Endothelial Growth Factor A , Donepezil , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Congo Red , Mice, Inbred C57BL , Aspirin , Disease Models, Animal
13.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474288

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease mostly affecting the elderly population. It is characterized by cognitive decline that occurs due to impaired neurotransmission and neuronal death. Even though deposition of amyloid beta (Aß) peptides and aggregation of hyperphosphorylated TAU have been established as major pathological hallmarks of the disease, other factors such as the interaction of genetic and environmental factors are believed to contribute to the development and progression of AD. In general, patients initially present mild forgetfulness and difficulty in forming new memories. As it progresses, there are significant impairments in problem solving, social interaction, speech and overall cognitive function of the affected individual. Osteoarthritis (OA) is the most recurrent form of arthritis and widely acknowledged as a whole-joint disease, distinguished by progressive degeneration and erosion of joint cartilage accompanying synovitis and subchondral bone changes that can prompt peripheral inflammatory responses. Also predominantly affecting the elderly, OA frequently embroils weight-bearing joints such as the knees, spine and hips leading to pains, stiffness and diminished joint mobility, which in turn significantly impacts the patient's standard of life. Both infirmities can co-occur in older adults as a result of independent factors, as multiple health conditions are common in old age. Additionally, risk factors such as genetics, lifestyle changes, age and chronic inflammation may contribute to both conditions in some individuals. Besides localized peripheral low-grade inflammation, it is notable that low-grade systemic inflammation prompted by OA can play a role in AD pathogenesis. Studies have explored relationships between systemic inflammatory-associated diseases like obesity, hypertension, dyslipidemia, diabetes mellitus and AD. Given that AD is the most common form of dementia and shares similar risk factors with OA-both being age-related and low-grade inflammatory-associated diseases, OA may indeed serve as a risk factor for AD. This work aims to review literature on molecular mechanisms linking OA and AD pathologies, and explore potential connections between these conditions alongside future prospects and innovative treatments.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Osteoarthritis , Humans , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Cross-Sectional Studies , Multimorbidity , Inflammation
15.
Nat Commun ; 15(1): 2594, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519490

ABSTRACT

In the ALDH2 rs671 variant, a guanine changes to an adenine, resulting in a dramatic decrease in the catalytic activity of the enzyme. Population-based data are contradictory about whether this variant increases the risk of Alzheimer's disease. In East Asian populations, the prevalence of the ALDH2 rs671 variant is 30-50%, making the National Human Brain Bank for Development and Function (the largest brain bank in East Asia) an important resource to explore the link between the ALDH2 rs671 polymorphism and Alzheimer's disease pathology. Here, using 469 postmortem brains, we find that while the ALDH2 rs671 variant is associated with increased plaque deposits and a higher Aß40/42 ratio, it is not an independent risk factor for Alzheimer's disease. Mechanistically, we show that lower ALDH2 activity leads to 4-HNE accumulation in the brain. The (R)-4-HNE enantiomer adducts to residue Lys53 of C99, favoring Aß40 generation in the Golgi apparatus. Decreased ALDH2 activity also lowers inflammatory factor secretion, as well as amyloid ß phagocytosis and spread in brains of patients with Alzheimer's disease. We thus define the relationship between the ALDH2 rs671 polymorphism and amyloid ß pathology, and find that ALDH2 rs671 is a key regulator of Aß40 or Aß42 generation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/genetics , Alzheimer Disease/genetics , Polymorphism, Single Nucleotide , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase/genetics , Genetic Predisposition to Disease
16.
Gene ; 912: 148368, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38485038

ABSTRACT

Neurodegenerative diseases such as Alzheimer's disease (AD) are still an important issue for scientists because it is difficult to cure with the available molecular medications and conventional treatments. Due to the complex nature of the brain structures and heterogeneous morphological and physiological properties of neuronal cells, interventions for cerebral-related disorders using surgical approaches, and classical and ongoing treatments remain hard for physicians. Furthermore, the development of newly designed medications attempts to target AD are not successful in improving AD, because abnormalities of tau protein, aggregation of amyloid ß (Aß) peptide, inflammatory responses, etc lead to advanced neurodegeneration processes that conventional treatments cannot stop them. In recent years, novel diagnostic strategies and therapeutic approaches have been developed to identify and cure early pathological events of AD. Accordingly, many gene-based therapies have been developed and introduce the therapeutic potential to prevent and cure AD. On the other hand, genetic investigations and postmortem assessments have detected a large number of factors associated with AD pathology. Also, genetically diverse animal models of AD help us to detect and prioritize novel resilience mechanisms. Hence, gene therapy can be considered an effective and powerful tool to identify and treat human diseases. Ultimately, gene study and gene-based therapy with a critical role in the detection and cure of various human disorders will have a fundamental role in our lives forever. This scientific review paper discusses the present status of different therapeutic strategies, particularly gene-based therapy in treating AD, along with its challenges.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Brain/metabolism , Models, Animal
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382624

ABSTRACT

Accumulation of insoluble deposits of amyloid ß-peptide (Aß), derived from amyloid precursor protein (APP) processing, represents one of the major pathological hallmarks of Alzheimer's disease (AD). Perturbations in APP transport and hydrolysis could lead to increased Aß production. However, the precise mechanisms underlying APP transport remain elusive. The GDP dissociation inhibitor2 (GDI2), a crucial regulator of Rab GTPase activity and intracellular vesicle and membrane trafficking, was investigated for its impact on AD pathogenesis through neuron-specific knockout of GDI2 in 5xFAD mice. Notably, deficiency of GDI2 significantly ameliorated cognitive impairment, prevented neuronal loss in the subiculum and cortical layer V, reduced senile plaques as well as astrocyte activation in 5xFAD mice. Conversely, increased activated microglia and phagocytosis were observed in GDI2 ko mice. Further investigation revealed that GDI2 knockout led to more APP co-localized with the ER rather than the Golgi apparatus and endosomes in SH-SY5Y cells, resulting in decreased Aß production. Collectively, these findings suggest that GDI2 may regulate Aß production by modulating APP intracellular transport and localization dynamics. In summary, our study identifies GDI2 as a pivotal regulator governing APP transport and process implicated in AD pathology; thus highlighting its potential as an attractive pharmacological target for future drug development against AD.


Subject(s)
Alzheimer Disease , Guanine Nucleotide Dissociation Inhibitors , Neuroblastoma , Animals , Humans , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Memory Disorders/genetics , Neurons/metabolism
19.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396782

ABSTRACT

Amyloid-ß (Aß) proteotoxicity is associated with Alzheimer's disease (AD) and is caused by protein aggregation, resulting in neuronal damage in the brain. In the search for novel treatments, Drosophila melanogaster has been extensively used to screen for anti-Aß proteotoxic agents in studies where toxic Aß peptides are expressed in the fly brain. Since drug molecules often are administered orally there is a risk that they fail to reach the brain, due to their inability to cross the brain barrier. To circumvent this problem, we have designed a novel Drosophila model that expresses the Aß peptides in the digestive tract. In addition, a built-in apoptotic sensor provides a fluorescent signal from the green fluorescent protein as a response to caspase activity. We found that expressing different variants of Aß1-42 resulted in proteotoxic phenotypes such as reduced longevity, aggregate deposition, and the presence of apoptotic cells. Taken together, this gut-based Aß-expressing fly model can be used to study the mechanisms behind Aß proteotoxicity and to identify different substances that can modify Aß proteotoxicity.


Subject(s)
Alzheimer Disease , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Drosophila/metabolism , Drosophila melanogaster/metabolism , Amyloid beta-Peptides/genetics , Gastrointestinal Tract/metabolism , Disease Models, Animal
20.
Age Ageing ; 53(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38342754

ABSTRACT

Alzheimer's Disease (ad) is the most common cause of dementia, and in addition to cognitive decline, it directly contributes to physical frailty, falls, incontinence, institutionalisation and polypharmacy in older adults. Increasing availability of clinically validated biomarkers including cerebrospinal fluid and positron emission tomography to assess both amyloid and tau pathology has led to a reconceptualisation of ad as a clinical-biological diagnosis, rather than one based purely on clinical phenotype. However, co-pathology is frequent in older adults which influence the accuracy of biomarker interpretation. Importantly, some older adults with positive amyloid or tau pathological biomarkers may never experience cognitive impairment or dementia. These strides towards achieving an accurate clinical-biological diagnosis are occurring alongside recent positive phase 3 trial results reporting statistically significant effects of anti-amyloid Disease-Modifying Therapies (DMTs) on disease severity in early ad. However, the real-world clinical benefit of these DMTs is not clear and concerns remain regarding how trial results will translate to real-world clinical populations, potential adverse effects (including amyloid-related imaging abnormalities), which can be severe and healthcare systems readiness to afford and deliver potential DMTs to appropriate populations. Here, we review recent advances in both clinical-biological diagnostic classification and future treatment in older adults living with ad. Advocating for access to both more accurate clinical-biological diagnosis and potential DMTs must be done so in a holistic and gerontologically attuned fashion, with geriatricians advocating for enhanced multi-component and multi-disciplinary care for all older adults with ad. This includes those across the ad severity spectrum including older adults potentially ineligible for emerging DMTs.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/therapy , Cognitive Dysfunction/psychology , Positron-Emission Tomography , Biomarkers , Phenotype , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...