Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.123
Filter
1.
FASEB J ; 38(10): e23659, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38733301

ABSTRACT

HDAC3 inhibition has been shown to improve memory and reduce amyloid-ß (Aß) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 µM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aß42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 µM RGFP966, without changes in Aß. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Disease Models, Animal , Histone Deacetylases , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Mice , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice, Transgenic , Brain/metabolism , Brain/pathology , Amyloid beta-Peptides/metabolism , Cell Line, Tumor , Male , Mice, Inbred C57BL , Microglia/metabolism , Phenylenediamines/pharmacology , Acrylamides
2.
J Neuroinflammation ; 21(1): 125, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730470

ABSTRACT

BACKGROUND: Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aß) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aß clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aß by monocytes in AD remains unclear. METHODS: Initially, we collected whole blood samples from sporadic AD patients and isolated the monocytes for RNA sequencing analysis. By establishing APP/PS1 transgenic model mice with monocyte-specific cystatin F overexpression, we assessed the influence of monocyte-derived cystatin F on AD development. We further used a nondenaturing gel to identify the structure of the secreted cystatin F in plasma. Flow cytometry, enzyme-linked immunosorbent assays and laser scanning confocal microscopy were used to analyse the internalization of Aß by monocytes. Pull down assays, bimolecular fluorescence complementation assays and total internal reflection fluorescence microscopy were used to determine the interactions and potential interactional amino acids between the cystatin F protein and Aß. Finally, the cystatin F protein was purified and injected via the tail vein into 5XFAD mice to assess AD pathology. RESULTS: Our results demonstrated that the expression of the cystatin F protein was specifically increased in the monocytes of AD patients. Monocyte-derived cystatin F increased Aß deposition and exacerbated cognitive deficits in APP/PS1 mice. Furthermore, secreted cystatin F in the plasma of AD patients has a dimeric structure that is closely related to clinical signs of AD. Moreover, we noted that the cystatin F dimer blocks the phagocytosis of Aß by monocytes. Mechanistically, the cystatin F dimer physically interacts with Aß to inhibit its recognition and internalization by monocytes through certain amino acid interactions between the cystatin F dimer and Aß. We found that high levels of the cystatin F dimer protein in blood contributed to amyloid pathology and cognitive deficits as a risk factor in 5XFAD mice. CONCLUSIONS: Our findings highlight that the cystatin F dimer plays a crucial role in regulating Aß metabolism via its peripheral clearance pathway, providing us with a potential biomarker for diagnosis and potential target for therapeutic intervention.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice, Transgenic , Monocytes , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Monocytes/metabolism , Mice , Humans , Amyloid beta-Peptides/metabolism , Male , Female , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Aged , Cystatins/metabolism , Cystatins/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Aged, 80 and over , Mice, Inbred C57BL
3.
Open Biol ; 14(5): 240018, 2024 May.
Article in English | MEDLINE | ID: mdl-38745463

ABSTRACT

The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.


Subject(s)
Amyloid beta-Protein Precursor , Contactins , Mice, Knockout , Neurons , Animals , Mice , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Humans , Contactins/metabolism , Contactins/genetics , Neurons/metabolism , Motor Cortex/metabolism , Protein Binding , Cell Movement
4.
Sci Rep ; 14(1): 9970, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38693203

ABSTRACT

Alzheimer's disease (AD) shows a high pathological and symptomatological heterogeneity. To study this heterogeneity, we have developed a patient stratification technique based on one of the most significant risk factors for the development of AD: genetics. We addressed this challenge by including network biology concepts, mapping genetic variants data into a brain-specific protein-protein interaction (PPI) network, and obtaining individualized PPI scores that we then used as input for a clustering technique. We then phenotyped each obtained cluster regarding genetics, sociodemographics, biomarkers, fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging, and neurocognitive assessments. We found three clusters defined mainly by genetic variants found in MAPT, APP, and APOE, considering known variants associated with AD and other neurodegenerative disease genetic architectures. Profiling of these clusters revealed minimal variation in AD symptoms and pathology, suggesting different biological mechanisms may activate the neurodegeneration and pathobiological patterns behind AD and result in similar clinical and pathological presentations, even a shared disease diagnosis. Lastly, our research highlighted MAPT, APP, and APOE as key genes where these genetic distinctions manifest, suggesting them as potential targets for personalized drug development strategies to address each AD subgroup individually.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Positron-Emission Tomography , tau Proteins , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Humans , tau Proteins/genetics , Apolipoproteins E/genetics , Male , Female , Aged , Genetic Predisposition to Disease , Amyloid beta-Protein Precursor/genetics , Protein Interaction Maps/genetics , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism
5.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732223

ABSTRACT

Alzheimer's disease (AD) is characterized by a loss of neurons in the cortex and subcortical regions. Previously, we showed that the progressive degeneration of subcortical monoaminergic (MAergic) neurons seen in human AD is recapitulated in the APPswe/PS1ΔE9 (APP/PS) transgenic mouse model. Because degeneration of cholinergic (Ach) neurons is also a prominent feature of AD, we examined the integrity of the Ach system in the APP/PS model. The overall density of Ach fibers is reduced in APP/PS1 mice at 12 and 18 months of age but not at 4 months of age. Analysis of basal forebrain Ach neurons shows no loss of Ach neurons in the APP/PS model. Thus, since MAergic systems show overt cell loss at 18 months of age, the Ach system is less vulnerable to neurodegeneration in the APP/PS1 model. We also examined whether the proximity to Aß deposition affected the degeneration of Ach and 5-HT afferents. We found that the areas closer to the edges of compact Aß deposits exhibit a more severe loss of afferents than the areas that are more distal to Aß deposits. Collectively, the results indicate that the APP/PS model recapitulates the degeneration of multiple subcortical neurotransmitter systems, including the Ach system. In addition, the results indicate that Aß deposits cause global as well as local toxicity to subcortical afferents.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Cholinergic Neurons , Disease Models, Animal , Mice, Transgenic , Plaque, Amyloid , Presenilin-1 , Animals , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Mice , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Presenilin-1/genetics , Presenilin-1/metabolism , Humans , Amyloid beta-Peptides/metabolism
6.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731398

ABSTRACT

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Subject(s)
Adenosine Triphosphate , Carbon , Citric Acid , Mitochondria , Polyethyleneimine , Protein Kinases , Polyethyleneimine/chemistry , Carbon/chemistry , Adenosine Triphosphate/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Quantum Dots/chemistry , Animals , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial/drug effects , Humans , Cell Line , Reactive Oxygen Species/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
7.
Acta Physiol (Oxf) ; 240(6): e14142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584589

ABSTRACT

AIM: Astrocytes respond to stressors by acquiring a reactive state characterized by changes in their morphology and function. Molecules underlying reactive astrogliosis, however, remain largely unknown. Given that several studies observed increase in the Amyloid Precursor Protein (APP) in reactive astrocytes, we here test whether APP plays a role in reactive astrogliosis. METHODS: We investigated whether APP instigates reactive astroglios by examining in vitro and in vivo the morphology and function of naive and APP-deficient astrocytes in response to APP and well-established stressors. RESULTS: Overexpression of APP in cultured astrocytes led to remodeling of the intermediate filament network, enhancement of cytokine production, and activation of cellular programs centered around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion abrogated remodeling of the intermediate filament network and blunted expression of IFN-stimulated gene products in response to lipopolysaccharide. Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein observed canonically in astrocytes in response to TBI. CONCLUSIONS: The APP thus represents a candidate molecular inducer and regulator of reactive astrogliosis. This finding has implications for understanding pathophysiology of neurodegenerative and other diseases of the nervous system characterized by reactive astrogliosis and opens potential new therapeutic avenues targeting APP and its pathways to modulate reactive astrogliosis.


Subject(s)
Amyloid beta-Protein Precursor , Astrocytes , Gliosis , Animals , Gliosis/metabolism , Gliosis/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Astrocytes/metabolism , Astrocytes/pathology , Mice , Cells, Cultured , Mice, Inbred C57BL , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Mice, Knockout
8.
Glia ; 72(7): 1340-1355, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38597386

ABSTRACT

Several in vivo studies have shown that systemic inflammation, mimicked by LPS, triggers an inflammatory response in the CNS, driven by microglia, characterized by an increase in inflammatory cytokines and associated sickness behavior. However, most studies induce relatively high systemic inflammation, not directly compared with the more common low-grade inflammatory events experienced in humans during the life course. Using mice, we investigated the effects of low-grade systemic inflammation during an otherwise healthy early life, and how this may precondition the onset and severity of Alzheimer's disease (AD)-like pathology. Our results indicate that low-grade systemic inflammation induces sub-threshold brain inflammation and promotes microglial proliferation driven by the CSF1R pathway, contrary to the effects caused by high systemic inflammation. In addition, repeated systemic challenges with low-grade LPS induce disease-associated microglia. Finally, using an inducible model of AD-like pathology (Line 102 mice), we observed that preconditioning with repeated doses of low-grade systemic inflammation, prior to APP induction, promotes a detrimental effect later in life, leading to an increase in Aß accumulation and disease-associated microglia. These results support the notion that episodic low-grade systemic inflammation has the potential to influence the onset and severity of age-related neurological disorders, such as AD.


Subject(s)
Alzheimer Disease , Inflammation , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Transgenic , Microglia , Animals , Microglia/metabolism , Microglia/pathology , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Inflammation/pathology , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Mice , Disease Models, Animal , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Male , Female , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Brain/pathology , Brain/metabolism , Amyloid beta-Peptides/metabolism , Cytokines/metabolism
9.
ACS Chem Neurosci ; 15(10): 2058-2069, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38652895

ABSTRACT

Amyloid plaques composed of fibrils of misfolded Aß peptides are pathological hallmarks of Alzheimer's disease (AD). Aß fibrils are polymorphic in their tertiary and quaternary molecular structures. This structural polymorphism may carry different pathologic potencies and can putatively contribute to clinical phenotypes of AD. Therefore, mapping of structural polymorphism of Aß fibrils and structural evolution over time is valuable to understanding disease mechanisms. Here, we investigated how Aß fibril structures in situ differ in Aß plaque of different mouse models expressing familial mutations in the AßPP gene. We imaged frozen brains with a combination of conformation-sensitive luminescent conjugated oligothiophene (LCO) ligands and Aß-specific antibodies. LCO fluorescence mapping revealed that mouse models APP23, APPPS1, and AppNL-F have different fibril structures within Aß-amyloid plaques depending on the AßPP-processing genotype. Co-staining with Aß-specific antibodies showed that individual plaques from APP23 mice expressing AßPP Swedish mutation have two distinct fibril polymorph regions of core and corona. The plaque core is predominantly composed of compact Aß40 fibrils, and the corona region is dominated by diffusely packed Aß40 fibrils. Conversely, the AßPP knock-in mouse AppNL-F, expressing the AßPP Iberian mutation along with Swedish mutation has tiny, cored plaques consisting mainly of compact Aß42 fibrils, vastly different from APP23 even at elevated age up to 21 months. Age-dependent polymorph rearrangement of plaque cores observed for APP23 and APPPS1 mice >12 months, appears strongly promoted by Aß40 and was hence minuscule in AppNL-F. These structural studies of amyloid plaques in situ can map disease-relevant fibril polymorph distributions to guide the design of diagnostic and therapeutic molecules.


Subject(s)
Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Mice, Transgenic , Plaque, Amyloid , Animals , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Disease Models, Animal , Brain/metabolism , Brain/pathology , Mutation , Aging/metabolism , Aging/pathology , Protein Conformation , Humans
10.
Sheng Li Xue Bao ; 76(2): 257-265, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658375

ABSTRACT

The present study aims to observe the change in expression of heat shock protein 90 (HSP90) along with amyloid-ß (Aß) and phosphorylated Tau (p-Tau) protein levels in the hippocampus tissue of Alzheimer's disease (AD) transgenic animal model with age. APP/PS1 transgenic mice at age of 6-, 9- and 12-month and C57BL/6J mice of the same age were used. The cognitive abilities of these animals were evaluated using a Morris water maze. Western blot or immunohistochemistry was used to detect the expressions of HSP90 and Aß1-42, as well as the phosphorylation levels of Tau protein in the hippocampus. The hsp90 mRNA levels and the morphology and number of cells in the hippocampus were detected with real-time quantitative polymerase chain reaction (qRT-PCR) and Nissl staining, respectively. The results showed that compared with C57BL/6J mice of the same age, HSP90 and hsp90 mRNA expression were decreased (P < 0.05 or P < 0.01), while Aß1-42 and p-Tau protein levels were increased (P < 0.05 or P < 0.01) in the hippocampal tissue of APP/PS1 transgenic mice. Meanwhile, the decrease in HSP90 and hsp90 mRNA expression (P < 0.05 or P < 0.01), the increase in Aß1-42 and p-Tau levels (P < 0.01 or P < 0.05) in hippocampal tissue and the reduction in behavioral ability showed a progressive development with the advancing of age in the APP/PS1 transgenic mice. In conclusion, in the hippocampal tissue of APP/PS1 mice, the decrease in HSP90 expression and the increase in Aß1-42 and p-Tau levels together with the decline of their cognitive ability are age-dependent.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , HSP90 Heat-Shock Proteins , Hippocampus , Mice, Inbred C57BL , Mice, Transgenic , tau Proteins , Animals , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Hippocampus/metabolism , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , tau Proteins/metabolism , tau Proteins/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Male , Disease Models, Animal , Phosphorylation , Age Factors , Aging/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Peptide Fragments/metabolism , Peptide Fragments/genetics , Presenilin-1/genetics , Presenilin-1/metabolism
11.
Alzheimers Res Ther ; 16(1): 70, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575959

ABSTRACT

BACKGROUND: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-ß protein (Aß) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aß pathology and tauopathy in vivo. METHODS: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model of a disease (Krabbe A) characterized by pronounced lysosomal dysfunction. Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. RESULTS: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aß, manifesting as intense, exclusively intracellular aggregates; extracellular Aß deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatD-KO mice were found to develop prominent tauopathy by just ∼ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology present in aged JNPL3 mice. CatD-KO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (∼ 1250%) are present in CatD-KO mice but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aß42. CONCLUSIONS: Our findings support a major role for CatD in the proteostasis of both Aß and tau in vivo. To our knowledge, the CatD-KO mouse line is the only model to develop detectable Aß accumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aß42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.


Subject(s)
Alzheimer Disease , Tauopathies , Aged , Animals , Humans , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cathepsin D , Disease Models, Animal , Mice, Knockout , Mice, Transgenic , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism
12.
Biomed Pharmacother ; 174: 116577, 2024 May.
Article in English | MEDLINE | ID: mdl-38593704

ABSTRACT

INTRODUCTION: Total ginsenosides (TG), the major active constituents of ginseng, have been proven to be beneficial in treatment of Alzheimer's disease (AD). However, the underlying mechanism of TG remains unclear. METHODS: APP/PS1 mice and N2a/APP695 cells were used as in vivo and in vitro model, respectively. Morris water maze (MWM) was used to investigate behavioral changes of mice; neuronal pathological changes were assessed by hematoxylin and eosin (H&E) and nissl staining; immunofluorescence staining was used to examine amyloid beta (Aß) deposition; Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine the expression of relative amyloidogenic genes and proteins. Moreover, the antagonist of PPARγ, GW9662, was used to determine whether the effects of TG on Aß production were associated with PPARγ activity. RESULTS: TG treatment increased the spatial learning and memory abilities of APP/PS1 mice while decreasing the Aß accumulation in the cortex and hippocampus. In N2a/APP695 cells, TG treatment attenuated the secretion of Aß1-40 and Aß1-42 acting as an PPARγ agonist by inhibiting the translocation of NF-κB p65. Additionally, TG treatment also decreased the expression of amyloidogenic pathway related gene BACE1, PS1 and PS2. CONCLUSIONS: TG treatment reduced the production of Aß both in vivo and in vitro. Activating PPARγ might be a potential therapeutic target of TG in facilitating Aß clearance and ameliorating cognitive deficiency in APP/PS1 mice.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Ginsenosides , PPAR gamma , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/drug effects , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Cell Line, Tumor , Disease Models, Animal , Ginsenosides/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Maze Learning/drug effects , Memory/drug effects , Mice, Inbred C57BL , Mice, Transgenic , Peptide Fragments/metabolism , PPAR gamma/drug effects , PPAR gamma/metabolism , Presenilin-1/genetics
13.
J Mol Neurosci ; 74(2): 49, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668787

ABSTRACT

The pathogenesis of Alzheimer's disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred Abcg4 knockout (KO) with the APPSwe,Ind (J9) mouse model of AD to test the hypothesis that loss of Abcg4 would exacerbate the AD phenotype. Unexpectedly, no differences were observed in novel object recognition (NOR) and novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between Abcg4 KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT), and insulin tolerance test (ITT) were also mostly similar between groups with only a few mild metabolic differences noted. Overall, these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G , Alzheimer Disease , Animals , Male , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , ATP Binding Cassette Transporter, Subfamily G/metabolism , ATP Binding Cassette Transporter, Subfamily G/genetics , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL , Plaque, Amyloid/pathology
14.
Cell Mol Life Sci ; 81(1): 139, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480559

ABSTRACT

Neurotoxic amyloid-ß (Aß) peptides cause neurodegeneration in Alzheimer's disease (AD) patients' brains. They are released upon proteolytic processing of the amyloid precursor protein (APP) extracellularly at the ß-secretase site and intramembranously at the γ-secretase site. Several AD mouse models were developed to conduct respective research in vivo. Most of these classical models overexpress human APP with mutations driving AD-associated pathogenic APP processing. However, the resulting pattern of Aß species in the mouse brains differs from those observed in AD patients' brains. Particularly mutations proximal to the ß-secretase cleavage site (e.g., the so-called Swedish APP (APPswe) fostering Aß1-x formation) lead to artificial Aß production, as N-terminally truncated Aß peptides are hardly present in these mouse brains. Meprin ß is an alternative ß-secretase upregulated in brains of AD patients and capable of generating N-terminally truncated Aß2-x peptides. Therefore, we aimed to generate a mouse model for the production of so far underestimated Aß2-x peptides by conditionally overexpressing meprin ß in astrocytes. We chose astrocytes as meprin ß was detected in this cell type in close proximity to Aß plaques in AD patients' brains. The meprin ß-overexpressing mice showed elevated amyloidogenic APP processing detected with a newly generated neo-epitope-specific antibody. Furthermore, we observed elevated Aß production from endogenous APP as well as AD-related behavior changes (hyperlocomotion and deficits in spatial memory). The novel mouse model as well as the established tools and methods will be helpful to further characterize APP cleavage and the impact of different Aß species in future studies.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Humans , Mice , Animals , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Astrocytes/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Proteolysis , Brain/metabolism
15.
Biomed Pharmacother ; 173: 116388, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460371

ABSTRACT

Alzheimer's disease (AD) is the most prevalent type of dementia, disproportionately affecting females, who make up nearly 60% of diagnosed cases. In AD patients, the accumulation of beta-amyloid (Aß) in the brain triggers a neuroinflammatory response driven by neuroglia, worsening the condition. We have previously demonstrated that VU0486846, an orally available positive allosteric modulator (PAM) targeting M1 muscarinic acetylcholine receptors, enhances cognitive function and reduces Aß pathology in female APPswe/PSEN1ΔE9 (APP/PS1) mice. However, it remained unclear whether these improvements were linked to a decrease in neuroglial activation. To investigate, we treated nine-month-old APP/PS1 and wildtype mice with VU0486846 for 8 weeks and analyzed brain slices for markers of microglial activation (ionized calcium binding adaptor molecule 1, Iba1) and astrocyte activation (Glial fibrillary acidic protein, GFAP). We find that VU0486846 reduces the presence of Iba1-positive microglia and GFAP-positive astrocytes in the hippocampus of female APP/PS1 mice and limits the recruitment of these cells to remaining Aß plaques. This study sheds light on an additional mechanism through which novel M1 mAChR PAMs exhibit disease-modifying effects by reducing neuroglial activation and underscore the potential of these ligands for the treatment of AD, especially in females.


Subject(s)
Alzheimer Disease , Morpholines , Pyrazoles , Mice , Humans , Female , Animals , Infant , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic , Receptor, Muscarinic M1 , Amyloid beta-Peptides/metabolism , Disease Models, Animal
16.
Traffic ; 25(3): e12932, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38528836

ABSTRACT

Alzheimer's disease is associated with increased levels of amyloid beta (Aß) generated by sequential intracellular cleavage of amyloid precursor protein (APP) by membrane-bound secretases. However, the spatial and temporal APP cleavage events along the trafficking pathways are poorly defined. Here, we use the Retention Using Selective Hooks (RUSH) to compare in real time the anterograde trafficking and temporal cleavage events of wild-type APP (APPwt) with the pathogenic Swedish APP (APPswe) and the disease-protective Icelandic APP (APPice). The analyses revealed differences in the trafficking profiles and processing between APPwt and the APP familial mutations. While APPwt was predominantly processed by the ß-secretase, BACE1, following Golgi transport to the early endosomes, the transit of APPswe through the Golgi was prolonged and associated with enhanced amyloidogenic APP processing and Aß secretion. A 20°C block in cargo exit from the Golgi confirmed ß- and γ-secretase processing of APPswe in the Golgi. Inhibition of the ß-secretase, BACE1, restored APPswe anterograde trafficking profile to that of APPwt. APPice was transported rapidly through the Golgi to the early endosomes with low levels of Aß production. This study has revealed different intracellular locations for the preferential cleavage of APPwt and APPswe and Aß production, and the Golgi as the major processing site for APPswe, findings relevant to understand the molecular basis of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Sweden , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Mutation
17.
Nutrients ; 16(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542758

ABSTRACT

Research on regulating brain functions with probiotics and postbiotics through the gut-brain axis is attracting attention, offering the possibility of adjuvant therapy for Alzheimer's disease (AD). Three-month-old male APP/PS1 mice were gavaged with live and heat-inactivated S. thermophilus MN-002 for three months. This study demonstrated that live and heat-inactivated S. thermophilus MN-002 improved cognitive dysfunctions in APP/PS1 mice, especially in spatial memory. However, the main effects of live S. thermophilus MN-002 directly altered the intestinal microbiota composition and increased serum IL-1ß and IL-6. Heat-inactivated S. thermophilus MN-002 increased colonic propionic acid levels and enhanced the hippocampus's antioxidant capacity. Furthermore, the changes were more obvious in the high-dose group, such as astrogliosis in the hippocampus. These results indicate that different forms and doses of the same strain, S. thermophilus MN-002, can partly improve cognitive functions in AD model mice via the gut-brain axis.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Male , Animals , Amyloid beta-Protein Precursor/genetics , Mice, Transgenic , Streptococcus thermophilus , Brain-Gut Axis , Hot Temperature , Alzheimer Disease/drug therapy , Disease Models, Animal , Amyloid beta-Peptides/therapeutic use
18.
Prog Neurobiol ; 235: 102591, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484965

ABSTRACT

OBJECTIVE: Hyperexcitability is intimately linked to Alzheimer's disease (AD) pathology, but the precise timing and contributions of neuronal hyperexcitability to disease progression is unclear. Seizure induction in rodent AD models can uncover new therapeutic targets. Further, investigator-evoked seizures can directly establish how hyperexcitability and AD-associated risk factors influence neuropathological hallmarks and disease course at presymptomatic stages. METHODS: Corneal kindling is a well-characterized preclinical epilepsy model that allows for precise control of seizure history to pair to subsequent behavioral assessments. 2-3-month-old APP/PS1, PSEN2-N141I, and transgenic control male and female mice were thus sham or corneal kindled for 2 weeks. Seizure-induced changes in glia, serotonin pathway proteins, and amyloid ß levels in hippocampus and prefrontal cortex were quantified. RESULTS: APP/PS1 females were more susceptible to corneal kindling. However, regardless of sex, APP/PS1 mice experienced extensive seizure-induced mortality versus kindled Tg- controls. PSEN2-N141I mice were not negatively affected by corneal kindling. Mortality correlated with a marked downregulation of hippocampal tryptophan hydroxylase 2 and monoamine oxidase A protein expression versus controls; these changes were not detected in PSEN2-N141I mice. Kindled APP/PS1 mice also exhibited soluble amyloid ß upregulation and glial reactivity without plaque deposition. SIGNIFICANCE: Evoked convulsive seizures and neuronal hyperexcitability in pre-symptomatic APP/PS1 mice promoted premature mortality without pathological Aß plaque deposition, whereas PSEN2-N141I mice were unaffected. Disruptions in serotonin pathway metabolism in APP/PS1 mice was associated with increased glial reactivity without Aß plaque deposition, demonstrating that neuronal hyperexcitability in early AD causes pathological Aß overexpression and worsens long-term outcomes through a serotonin-related mechanism.


Subject(s)
Alzheimer Disease , Mice , Male , Female , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Serotonin , Mice, Transgenic , Plaque, Amyloid/complications , Seizures/complications , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics
19.
Neuromolecular Med ; 26(1): 6, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504005

ABSTRACT

Familial Alzheimer's disease (AD) is a rare disease caused by autosomal-dominant mutations. APP (encoding amyloid precursor protein), PSEN1 (encoding presenilin 1), and PSEN2 (encoding presenilin 2) are the most common genes cause dominant inherited AD. This study aimed to demonstrate a Chinese early-onset AD pedigree presenting as progressive memory impairment, apraxia, visual-spatial disorders, psychobehavioral disorders, and personality changes with a novel APP gene mutation. The family contains four patients, three carries and three normal family members. The proband underwent brain magnetic resonance imaging (MRI), 18F-fludeoxyglucose positron emission tomography (18F-FDG-PET), cerebrospinal fluid amyloid detection, 18F-florbetapir (AV-45) Positron Emission Computed Tomography (PET) imaging, whole-exome sequencing and Sanger sequencing. Brain MRI images showed brain atrophy, especially in the entorhinal cortex, temporal hippocampus, and lateral ventricle dilation. The FDG-PET showed hypometabolism in the frontotemporal, parietal, and hippocampal regions. 18F-florbetapir (AV-45) PET imaging showed cerebral cortex Aß protein deposition. The cerebrospinal fluid amyloid protein test showed Aß42/Aß40 ratio decreases, pathological phosphor-tau level increases. Whole-exome sequencing detected a new missense mutation of codon 671 (M671L), which was a heterozygous A to T point mutation at position 2011 (c.2011A > T) in exon 16 of the amyloid precursor protein, resulting in the replacement of methionine to Leucine. The co-separation analysis was validated in this family. The mutation was found in 3 patients, 3 clinical normal members in the family, but not in the other 3 unaffected family members, 100 unrelated normal subjects, or 100 sporadic patients with AD. This mutation was probably pathogenic and novel in a Chinese Han family with early-onset AD.


Subject(s)
Alzheimer Disease , Aniline Compounds , Ethylene Glycols , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Fluorodeoxyglucose F18 , Mutation , China , Presenilin-1/genetics , Amyloid beta-Peptides/metabolism
20.
J Neurosci Res ; 102(3): e25295, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38515329

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aß) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases. However, the initial transcriptional changes in these microglia in response to amyloid are still unknown. Here, to determine early changes in microglia gene expression, hippocampal microglia from male APPswe/PS1dE9 (APP/PS1) mice and wild-type littermates were isolated and analyzed by RNA sequencing (RNA-seq). By bulk RNA-seq, transcriptomic changes were detected in hippocampal microglia from 6-months-old APP/PS1 mice. By performing single-cell RNA-seq of CD11c-positive and negative microglia from 6-months-old APP/PS1 mice and analysis of the transcriptional trajectory from homeostatic to CD11c-positive microglia, we identified a set of genes that potentially reflect the initial response of microglia to Aß.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Humans , Infant , Male , Mice , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Disease Models, Animal , Genome-Wide Association Study , Mice, Transgenic , Microglia/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Plaque, Amyloid , Presenilin-1/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...