Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Chemosphere ; 358: 141909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593960

ABSTRACT

The extensive use of fenitrothion (FNT) in agricultural practices induces its persistence in soil and waterways. Therefore, it is essential to implement effective management practices such as using cyanobacteria for FNT removal and accumulation, particularly under accidental contamination. To this end, we evaluated the responses of two freshwater cyanobacteria taxa, Nostoc muscorum and Anabaena laxa to mild (7.5 mg L-1) and high (15 mg L-1) levels of FNT over a period of 7 d. Compared to N. muscorum, A. laxa was more tolerant to FNT, exhibiting higher FNT uptake and removal efficiencies at mild (16.3%) and high (17.5%) levels. FNT induced a dose-dependent decrease in cell growth, Chl a, phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase activities, which were more pronounced in N. muscorum. Moreover, FNT significantly increased oxidative damage markers i.e., increased lipid peroxidation (MDA), protein oxidation, H2O2 levels and NADPH oxidase enzyme activity, to more extent in N. muscorum. Compared to N. muscorum, A. laxa had high antioxidant capacity (FRAP), glutathione and increased activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase and superoxide dismutase, suggesting a robust antioxidant defense mechanism to mitigate FNT toxicity. However, N. muscorum devoted the induction of ascorbate content and the activity of catalase, peroxidase, monodehydroascorbate reductase, ascorbate peroxidase, and dehydroascorbate reductase enzymes. Although A. laxa had greater intracellular FNT, it experienced less FNT-induced oxidative stress, likely due to over production of antioxidants. Consequently, A. laxa is considered as a promising candidate for FNT phycoremediation. Our findings provide fundamental information on species-specific toxicity of FNT among cyanobacteria and the environmental risk of FNT toxicity in aquatic environments.


Subject(s)
Fenitrothion , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Fenitrothion/toxicity , Fenitrothion/metabolism , Fresh Water , Cyanobacteria/metabolism , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Anabaena/metabolism , Anabaena/drug effects , Antioxidants/metabolism , Nostoc muscorum/metabolism , Glutathione Transferase/metabolism , Biodegradation, Environmental , Hydrogen Peroxide/metabolism
2.
J Plant Res ; 137(3): 521-543, 2024 May.
Article in English | MEDLINE | ID: mdl-38460108

ABSTRACT

The present study examined the regulatory mechanism of hydrogen sulfide (H2S) and nitric oxide (NO) in nickel (Ni) stressed cyanobacteria viz., Nostoc muscorum and Anabaena sp. by analyzing growth, photosynthetic pigments, biochemical components (protein and carbohydrate), exopolysaccharides (EPS), inorganic nitrogen content, and activity of enzymes comprised in nitrogen metabolism and Ni accumulation. The 1 µM Ni substantially diminished growth by 18% and 22% in N. muscorum and Anabaena sp. respectively, along with declining the pigment contents (Chl a/Car ratio and phycobiliproteins), and biochemical components. It also exerted negative impacts on inorganic uptake of nitrate and nitrite contents; nitrate reductase and nitrite reductase; and ammonium assimilating enzymes (glutamine synthetase, glutamate synthase, and glutamate dehydrogenase exhibited a reverse trend) activities. Nonetheless, the adverse impact of Ni can be mitigated through the exogenous supplementation of NaHS [sodium hydrosulfide (8 µM); H2S donor] and SNP [sodium nitroprusside (10 µM); NO donor] which showed substantial improvement on growth, pigments, nitrogen metabolism, and EPS layer and noticeably occurred as a consequence of a substantial reduction in Ni accumulation content which minimized the toxicity effects. The accumulation of Ni on both the cyanobacterial cell surface (EPS layer) are confirmed by the SEM-EDX analysis. Further, the addition of NO scavenger (PTIO; 20 µM) and inhibitor of NO (L-NAME; 100 µM); and H2S scavenger (HT; 20 µM) and H2S inhibitor (PAG; 50 µM) reversed the positive responses of H2S and NO and damages were more prominent under Ni stress thereby, suggesting the downstream signaling of H2S on NO-mediated alleviation. Thus, this study concludes the crosstalk mechanism of H2S and NO in the mitigation of Ni-induced toxicity in rice field cyanobacteria.


Subject(s)
Hydrogen Sulfide , Nickel , Nitric Oxide , Nitrogen , Oryza , Nitric Oxide/metabolism , Nickel/metabolism , Hydrogen Sulfide/metabolism , Nitrogen/metabolism , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Nostoc muscorum/metabolism , Polysaccharides, Bacterial/metabolism , Anabaena/metabolism , Anabaena/drug effects , Anabaena/growth & development , Stress, Physiological , Nitroprusside/pharmacology
3.
Environ Res ; 249: 118310, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38331154

ABSTRACT

Organophosphorus (OP) insecticides are widely used for on-field pest control, constituting about 38% of global pesticide consumption. Insecticide tolerance has been recorded in microorganisms isolated from the contaminated soil. However, the cross-tolerance of laboratory-enriched cultures remains poorly understood. A chlorpyrifos tolerant (T) strain of Anabaena sp. PCC 7119 was developed through continuous enrichment of the wild strain (W). The cross-tolerance of the T strain to the OP insecticide dimethoate was assessed by measuring photosynthetic performance, key enzyme activities and degradation potential. The presence of dimethoate led to a significant reduction in the growth and pigment content of the W strain. In contrast, the T strain demonstrated improved growth and metabolic performance. Chl a and carotenoids were degraded faster than phycobiliproteins in both strains. The T strain exhibited superior photosynthetic performance, metabolic efficiency and photosystem functions, than of W strain, at both the tested dimethoate concentrations (100 and 200 µM). The treated T strain had more or less a normal OJIP fluorescence transient and bioenergetic functions, while the W strain showed a greater fluorescence rise at ≤ 300 µs indicating the inhibition of electron donation to PS II, and at 2 ms due to reduced electron release beyond QA. The T strain had significantly higher levels of esterase and phosphatases, further enhanced by insecticide treatment. Dimethoate degradation efficiency of the T strain was significantly higher than of the W strain. T strain also removed chlorpyrifos more efficiently than W strain at both the tested concentrations. The BCFs of both chlorpyrifos and dimethoate were lower in the T strain compared to the W strain. These findings suggest that the enriched strain exhibits promising results in withstanding dimethoate toxicity and could be explored for its potential as a bioremediating organism for OP degradation.


Subject(s)
Anabaena , Chlorpyrifos , Dimethoate , Insecticides , Chlorpyrifos/toxicity , Dimethoate/toxicity , Anabaena/drug effects , Insecticides/toxicity , Photosynthesis/drug effects
4.
Arch Microbiol ; 203(7): 4367-4383, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34120198

ABSTRACT

The present study was undertaken to investigate the arsenite (As III)-induced changes in the diazotrophic cyanobacterium Anabaena PCC 7120. It was observed that the growth of cyanobacterial decreased with increase in As (III) concentration. The cells exposed to As (III) showed morphological variation (deformity) due to the formation of deeper constrictions in vegetative cells. Strain showed increased heterocyst differentiation (1.6-fold higher) whereas decreased nitrogenase activity at the concentration of 40 ppm As (III). The activities of NR, NiR, urease and GS decreased with increase in As (III) concentrations and attained their minimum levels at 40 ppm of As (III). The Ca2+-dependent ATPase activity increased with increase in As (III) concentration and attained its about 2.72-fold higher level at 40 ppm of As (III). In contrast, sharp decline in Mg2+-dependent ATPase activity (28%) was recorded at 1 ppm of As (III) over untreated control. The rates of photosynthetic O2 evolution and respiration decreased with increase in As (III) concentration and attained its minimal level at 40 ppm of As (III). Therefore, this study highlighted arsenite regimes efficiently correlated with behavioral changes in consort with strain.


Subject(s)
Anabaena , Arsenites , Anabaena/drug effects , Anabaena/metabolism , Arsenites/pharmacology , Bacterial Proteins/metabolism , Environmental Pollutants/pharmacology , Enzyme Activation/drug effects , Nitrogen/metabolism , Nitrogen Fixation/drug effects , Nitrogenase/metabolism
5.
Sci Rep ; 11(1): 2893, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536576

ABSTRACT

In the present study, defensive strategies of H2O2 mediated NO signaling were analyzed in Cd stressed Nostoc muscorum and Anabaena sp. Exogenously supplied SNP (10 µM) and H2O2 (1 µM) lessen the toxicity of Cd (6 µM) but without NO; H2O2 was unable to release the stress from cyanobacterial cells potentially. The reduced contents of exopolysaccharide, protein content, endogenous NO and enzymatic antioxidants (SOD, POD, CAT, and GST) due to Cd toxicity, were found increased significantly after exogenous application of H2O2 and SNP thereafter, cyanobacterial calls flourished much better after releasing toxic level of Cd. Moreover, increased level of ROS due to Cd stress also normalized under exogenous application of H2O2 and SNP. However, chelation of NO hindered the signaling mechanism of H2O2 that diminished its potential against Cd stress while signaling of NO has not been hindered by chelation of H2O2 and NO potentially released the Cd stress from cyanobacterial cells. In conclusion, current findings demonstrated the synergistic signaling between H2O2 and NO towards the improvement of cyanobacterial tolerance to Cd stress, thereby enhancing the growth and antioxidant defense system of test cyanobacteria that improved fertility and productivity of soil even under the situation of metal contamination.


Subject(s)
Anabaena/drug effects , Cadmium/toxicity , Nostoc muscorum/drug effects , Oryza/growth & development , Soil Pollutants/toxicity , Anabaena/metabolism , Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Nostoc muscorum/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Seedlings/growth & development , Soil Microbiology
6.
Toxins (Basel) ; 12(8)2020 08 13.
Article in English | MEDLINE | ID: mdl-32823543

ABSTRACT

Produced by cyanobacteria and some plants, BMAA is considered as an important environmental factor in the occurrence of some neurodegenerative diseases. Neither the underlying mechanism of its toxicity, nor its biosynthetic or metabolic pathway in cyanobacteria is understood. Interestingly, BMAA is found to be toxic to some cyanobacteria, making it possible to dissect the mechanism of BMAA metabolism by genetic approaches using these organisms. In this study, we used the cyanobacterium Anabaena PCC 7120 to isolate BMAA-resistant mutants. Following genomic sequencing, several mutations were mapped to two genes involved in amino acids transport, suggesting that BMAA was taken up through amino acid transporters. This conclusion was supported by the protective effect of several amino acids against BMAA toxicity. Furthermore, targeted inactivation of genes encoding different amino acid transport pathways conferred various levels of resistance to BMAA. One mutant inactivating all three major amino acid transport systems could no longer take up BMAA and gained full resistance to BMAA toxicity. Therefore, BMAA is a substrate of amino acid transporters, and cyanobacteria are interesting models for genetic analysis of BMAA transport and metabolism.


Subject(s)
Amino Acid Transport Systems/genetics , Amino Acids, Diamino/metabolism , Amino Acids/metabolism , Anabaena/genetics , Anabaena/metabolism , Amino Acids, Diamino/pharmacology , Anabaena/drug effects , Cyanobacteria Toxins , Genome, Bacterial , Mutation , Neurotoxins/metabolism
7.
BMC Microbiol ; 20(1): 206, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32660415

ABSTRACT

BACKGROUND: Cyanobacteria are well known for their inherent ability to serve as atmospheric nitrogen fixers and as bio-fertilizers; however, increased contaminants in aquatic ecosystem significantly decline the growth and function of these microbes in paddy fields. Plant growth regulators play beneficial role in combating the negative effects induced by heavy metals in photoautotroph. Current study evaluates the potential role of indole acetic acid (IAA; 290 nm) and kinetin (KN; 10 nm) on growth, nitrogen metabolism and biochemical constituents of two paddy field cyanobacteria Nostoc muscorum ATCC 27893 and Anabaena sp. PCC 7120 exposed to two concentrations of chromium (CrVI; 100 µM and 150 µM). RESULTS: Both the tested doses of CrVI declined the growth, ratio of chlorophyll a to carotenoids (Chl a/Car), contents of phycobiliproteins; phycocyanin (PC), allophycocyanin (APC), and phycoerythrin (PE), protein and carbohydrate associated with decrease in the inorganic nitrogen (nitrate; NO3- and nitrite; NO2-) uptake rate that results in the decrease in nitrate and ammonia assimilating enzymes; nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT) except glutamate dehydrogenase (GDH). However, exogenous supplementation of IAA and KN exhibited alleviating effects on growth, nitrogen metabolism and exopolysaccharide (EPS) (first protective barrier against metal toxicity) contents in both the cyanobacteria, which probably occurred as a result of a substantial decrease in the Cr uptake that lowers the damaging effects. CONCLUSION: Overall result of the present study signifies affirmative role of the phytohormone in minimizing the toxic effects induced by chromium by stimulating the growth of cyanobacteria thereby enhancing its ability as bio-fertilizer that improved fertility and productivity of soil even in metal contaminated condition.


Subject(s)
Bacterial Proteins/metabolism , Chromium/toxicity , Cyanobacteria/growth & development , Plant Growth Regulators/pharmacology , Polysaccharides, Bacterial/metabolism , Anabaena/chemistry , Anabaena/drug effects , Anabaena/growth & development , Carotenoids/analysis , Chlorophyll A/analysis , Cyanobacteria/chemistry , Cyanobacteria/drug effects , Gene Expression Regulation, Bacterial/drug effects , Indoleacetic Acids/pharmacology , Kinetin/pharmacology , Nitrogen/metabolism , Phycocyanin/analysis , Stress, Physiological
8.
Biochem J ; 477(6): 1149-1158, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32150261

ABSTRACT

Searching for compounds that inhibit the growth of photosynthetic organisms highlighted a prominent effect at micromolar concentrations of the nitroheteroaromatic thioether, 2-nitrothiophene, applied in the light. Since similar effects were reminiscent to those obtained also by radicals produced under excessive illumination or by herbicides, and in light of its redox potential, we suspected that 2-nitrothiophene was reduced by ferredoxin, a major reducing compound in the light. In silico examination using docking and tunneling computing algorithms of the putative interaction between 2-nitrothiophene and cyanobacterial ferredoxin has suggested a site of interaction enabling robust electron transfer from the iron-sulfur cluster of ferredoxin to the nitro group of 2-nitrothiophene. ESR and oximetry analyses of cyanobacterial cells (Anabaena PCC7120) treated with 50 µM 2-nitrothiophene under illumination revealed accumulation of oxygen radicals and peroxides. Gas chromatography mass spectrometry analysis of 2-nitrothiophene-treated cells identified cytotoxic nitroso and non-toxic amino derivatives. These products of the degradation pathway of 2-nitrohiophene, which initializes with a single electron transfer that forms a short-live anion radical, are then decomposed to nitrate and thiophene, and may be further reduced to a nitroso hydroxylamine and amino derivatives. This mechanism of toxicity is similar to that of nitroimidazoles (e.g. ornidazole and metronidazole) reduced by ferredoxin in anaerobic bacteria and protozoa, but differs from that of ornidazole in planta.


Subject(s)
Anabaena/metabolism , Ferredoxins/metabolism , Herbicides/metabolism , Photosynthesis/physiology , Thiophenes/metabolism , Anabaena/drug effects , Ferredoxins/pharmacology , Herbicides/pharmacology , Photosynthesis/drug effects , Protein Structure, Tertiary , Thiophenes/chemistry
9.
Chemosphere ; 240: 124966, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31726608

ABSTRACT

The hepatotoxic cyanotoxins microcystins (MCs) are emerging contaminants naturally produced by cyanobacteria. Yet their ecological role remains unsolved, previous research suggests that MCs have allelopathic effects on competing photosynthetic microorganisms, even eliciting toxic effects on other freshwater cyanobacteria. In this context, the bioluminescent recombinant cyanobacterium Anabaena sp. PCC7120 CPB4337 (hereinafter Anabaena) was exposed to extracts of MCs. These were obtained from eight natural samples from freshwater reservoirs that contained MCs with a concentration range of 0.04-11.9 µg MCs L-1. MCs extracts included the three most common MCs variants (MC-LR, MC-RR, MC-YR) in different proportions (MC-LR: 100-0%; MC-RR: 100-0%; MC-YR: 14.2-0%). The Anabaena bioassay based on bioluminescence inhibition has been successfully used to test the toxicity of many emerging contaminants (e.g., pharmaceuticals) but never for cyanotoxins prior to this study. Exposure of Anabaena to MCs extracts induced a decrease in its bioluminescence with effective concentration decreasing bioluminescence by 50% ranging from 0.4 to 50.5 µg MC L-1 in the different samples. Bioluminescence responses suggested an interaction between MCs variants which was analyzed via the Additive Index method (AI), indicating an antagonistic effect (AI < 0) of MC-LR and MC-RR present in the samples. Additionally, MC extracts exposure triggered an increase of intracellular free Ca2+ in Anabaena. In short, this study supports the use of the Anabaena bioassay as a sensitive tool to assess the presence of MCs at environmentally relevant concentrations and opens interesting avenues regarding the interactions between MCs variants and the possible implication of Ca2+ in the mode of action of MCs towards cyanobacteria.


Subject(s)
Biological Assay/methods , Ecotoxicology/methods , Microcystins/toxicity , Anabaena/drug effects , Anabaena/metabolism , Calcium/metabolism , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Fresh Water/microbiology
10.
Chemosphere ; 243: 125355, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31759214

ABSTRACT

Cyanobacteria produce a series of secondary metabolites, one of which is beta-N-methylamino-l-alanine (BMAA). BMAA is considered to be the cause of human neurodegeneration. Compared with other cyanotoxins, the role of BMAA in cyanobacteria remains unclear. To investigate this question, six strains of cyanobacteria were cultured and tested in this experiment with an optimized and validated BMAA determination method. The results show that four strains can produce BMAA. The effects of nutrient levels on the production of BMAA by Anabaena sp. FACHB-418 were studied by changing the initial concentrations of nitrate (NaNO3) and phosphate (K2HPO4) in mediums. Bound BMAA was detected in all samples and the concentrations were within 50-100 ng/g. Free BMAA was presence when the concentration of nitrogen was lower than 1.7 mg/L (121.43 µM). Free BMAA was released from the dead and ruptured cells during the cell decline period, so dissolved BMAA cannot be detectable in the adaptation and logarithmic periods, but could be abundant in the decline periods. Statistical analyses show that free BMAA concentrations were negatively correlated with nitrogen strongly (p = 2.334 × 10-10 and r = -0.842), but positively correlated with phosphorus weakly (p = 0.016 and r = 0.405). Moreover, the results of culture experiments indicated that exogenous BMAA could inhibit the growth of cyanobacteria that cannot produce BMAA, and the effect was enhanced as the concentration of exogenous BMAA increased. This phenomenon implies that the production of BMAA may be the stress response by some cyanobacteria to low nitrogen conditions to kill other cyanobacteria, i.e., their competitors.


Subject(s)
Amino Acids, Diamino/metabolism , Cyanobacteria/metabolism , Neurotoxins/metabolism , Anabaena/drug effects , Cyanobacteria Toxins , Nitrates/metabolism , Nitrogen/metabolism
11.
Environ Pollut ; 253: 497-506, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31330342

ABSTRACT

Sanguinarine has strong inhibitory effects against the cyanobacterium Microcystis aeruginosa. However, previous studies were mainly limited to laboratory tests. The efficacy of sanguinarine for mitigation of cyanobacterial blooms under field conditions, and its effects on aquatic microbial community structure remain unknown. To elucidate these issues, we carried out in situ cyanobacterial bloom mitigation tests. Our results showed that sanguinarine decreased population densities of the harmful cyanobacteria Microcystis and Anabaena. The inhibitory effects of sanguinarine on these cyanobacteria lasted 17 days, after which the harmful cyanobacteria recovered and again became the dominant species. Concentrations of microcystins in the sanguinarine treatments were lower than those of the untreated control except during the early stage of the field test. The results of community DNA pyrosequencing showed that sanguinarine decreased the relative abundance of the prokaryotic microorganisms Cyanobacteria, Actinobacteria, Planctomycetes and eukaryotic microorganisms of Cryptophyta, but increased the abundance of the prokaryotic phylum Proteobacteria and eukaryotic microorganisms within Ciliophora and Choanozoa. The shifting of prokaryotic microbial community in water column was directly related to the toxicity of sanguinarine, whereas eukaryotic microbial community structure was influenced by factors other than direct toxicity. Harmful cyanobacteria mitigation efficacy and microbial ecological effects of sanguinarine presented in this study will inform the broad application of sanguinarine in cyanobacteria mitigation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzophenanthridines/pharmacology , Cyanobacteria/drug effects , Eutrophication/drug effects , Isoquinolines/pharmacology , Microbiota/drug effects , Anabaena/drug effects , Microcystins , Microcystis/drug effects , Water Microbiology
12.
Aquat Toxicol ; 214: 105238, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31301544

ABSTRACT

Abiotic stresses enhance the cellular level of reactive oxygen species (ROS) which consequently leads to toxic methylglyoxal (MG) production. Glyoxalases (GlyI & GlyII) catalyze the conversion of toxic MG into non-toxic lactic acid but their properties and functions have been overlooked in cyanobacteria. This is the first attempt to conduct a genome-wide analysis of GlyI protein (PF00903) from Anabaena sp. PCC7120. Out of total nine GlyI domain possessing proteins, only three (Alr2321, Alr4469, All1022) harbour conserve His/Glu/His/Glu metal binding site at their homologous position and are deficient in conserved region specific for Zn2+ dependent members. Their biochemical, structural and functional characterization revealed that only Alr2321 is a homodimeric Ni2+ dependent active GlyI with catalytic efficiency 11.7 × 106 M-1 s-1. It has also been found that Alr2321 is activated by various divalent metal ions and has maximum GlyI activity with Ni2+ followed by Co2+ > Mn2+ > Cu2+ and no activity with Zn2+. Moreover, the expression of alr2321 was found to be maximally up-regulated under heat (19 fold) followed by cadmium, desiccation, arsenic, salinity and UV-B stresses. BL21/pGEX-5X2-alr2321 showed improved growth under various abiotic stresses as compared to BL21/pGEX-5X2 by increased scavenging of intracellular MG and ROS levels. Taken together, these results suggest noteworthy links between intracellular MG and ROS, its detoxification by Alr2321, a member of GlyI family of Anabaena sp. PCC7120, in relation to abiotic stress.


Subject(s)
Anabaena/enzymology , Lactoylglutathione Lyase/metabolism , Pyruvaldehyde/metabolism , Reactive Oxygen Species/metabolism , Stress, Physiological , Amino Acid Motifs , Amino Acid Sequence , Anabaena/drug effects , Inactivation, Metabolic/drug effects , Kinetics , Lactoylglutathione Lyase/chemistry , Lactoylglutathione Lyase/genetics , Metals/pharmacology , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Structural Homology, Protein , Substrate Specificity/drug effects
13.
FEBS Lett ; 593(14): 1818-1826, 2019 07.
Article in English | MEDLINE | ID: mdl-31116406

ABSTRACT

The filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is an important model organism for studying cell differentiation, nitrogen fixation, and photosynthesis. This cyanobacterium possesses a high number of membrane transporters. Not much is known about the roles of the membrane transporters, especially the ATP-binding cassette (ABC) transporters, in the multidrug resistance of this cyanobacterium. In the present work, we performed a mutational analysis of the genes alr4280/alr4281/alr4282 and alr3647/alr3648/alr3649 that code for the components of putative ABC exporters and are homologous to the DevBCA heterocyst-specific glycolipid exporter. We show that these genes are essential for resistance to different drugs and are not essential for heterocyst development.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Anabaena/drug effects , Anabaena/genetics , Drug Resistance, Multiple/genetics , Anti-Bacterial Agents/pharmacology , Multigene Family/genetics , Mutation
14.
Nat Commun ; 10(1): 545, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30710081

ABSTRACT

Antimetabolites are small molecules that inhibit enzymes by mimicking physiological substrates. We report the discovery and structural elucidation of the antimetabolite 7-deoxy-sedoheptulose (7dSh). This unusual sugar inhibits the growth of various prototrophic organisms, including species of cyanobacteria, Saccharomyces, and Arabidopsis. We isolate bioactive 7dSh from culture supernatants of the cyanobacterium Synechococcus elongatus. A chemoenzymatic synthesis of 7dSh using S. elongatus transketolase as catalyst and 5-deoxy-D-ribose as substrate allows antimicrobial and herbicidal bioprofiling. Organisms treated with 7dSh accumulate 3-deoxy-D-arabino-heptulosonate 7-phosphate, which indicates that the molecular target is 3-dehydroquinate synthase, a key enzyme of the shikimate pathway, which is absent in humans and animals. The herbicidal activity of 7dSh is in the low micromolar range. No cytotoxic effects on mammalian cells have been observed. We propose that the in vivo inhibition of the shikimate pathway makes 7dSh a natural antimicrobial and herbicidal agent.


Subject(s)
Anabaena/growth & development , Antimetabolites/pharmacology , Arabidopsis/growth & development , Cyanobacteria/metabolism , Heptoses/pharmacology , Metabolic Networks and Pathways , Shikimic Acid/metabolism , Anabaena/drug effects , Antifungal Agents/pharmacology , Arabidopsis/drug effects , Cell Death/drug effects , Cell Line , Heptoses/isolation & purification , Herbicides/toxicity , Metabolic Networks and Pathways/drug effects , Metabolome , Phosphorus-Oxygen Lyases/antagonists & inhibitors , Phosphorus-Oxygen Lyases/metabolism , Photosynthesis/drug effects , Seedlings/drug effects , Seedlings/growth & development , Synechococcus/metabolism
15.
Toxins (Basel) ; 11(1)2019 01 15.
Article in English | MEDLINE | ID: mdl-30650515

ABSTRACT

Globally, eutrophication and warming of aquatic ecosystems has increased the frequency and intensity of cyanobacterial blooms and their associated toxins, with the simultaneous detection of multiple cyanotoxins often occurring. Despite the co-occurrence of cyanotoxins such as microcystins and anatoxin-a (ATX) in water bodies, their effects on phytoplankton communities are poorly understood. The individual and combined effects of microcystin-LR (MC-LR) and ATX on the cyanobacteria Microcystis spp., and Anabaena variabilis (a.k.a. Trichormus variabilis), and the chlorophyte, Selenastrum capricornutum were investigated in the present study. Cell density, chlorophyll-a content, and the maximum quantum efficiency of photosystem II (Fv/Fm) of Microcystis cells were generally lowered after exposure to ATX or MC-LR, while the combined treatment with MC-LR and ATX synergistically reduced the chlorophyll-a concentration of Microcystis strain LE-3. Intracellular levels of microcystin in Microcystis LE-3 significantly increased following exposure to MC-LR + ATX. The maximum quantum efficiency of photosystem II of Anabaena strain UTEX B377 declined during exposure to the cyanotoxins. Nitrogen fixation by Anabaena UTEX B377 was significantly inhibited by exposure to ATX, but was unaffected by MC-LR. In contrast, the combination of both cyanotoxins (MC-LR + ATX) caused a synergistic increase in the growth of S. capricornutum. While the toxins caused an increase in the activity of enzymes that scavenge reactive oxygen species in cyanobacteria, enzyme activity was unchanged or decreased in S. capricornutum. Collectively this study demonstrates that MC-LR and ATX can selectively promote and inhibit the growth and performance of green algae and cyanobacteria, respectively, and that the combined effect of these cyanotoxins was often more intense than their individual effects on some strains. This suggests that the release of multiple cyanotoxins in aquatic ecosystems, following the collapse of blooms, may influence the succession of plankton communities.


Subject(s)
Anabaena/drug effects , Chlorophyceae/drug effects , Microcystins/toxicity , Microcystis/drug effects , Tropanes/toxicity , Anabaena/growth & development , Anabaena/metabolism , Chlorophyceae/growth & development , Chlorophyceae/metabolism , Cyanobacteria Toxins , Drug Synergism , Glutathione Transferase/metabolism , Marine Toxins , Microcystis/growth & development , Microcystis/metabolism , Nitrogen Fixation/drug effects , Peroxidase/metabolism , Superoxide Dismutase/metabolism
16.
Protoplasma ; 256(3): 681-691, 2019 May.
Article in English | MEDLINE | ID: mdl-30456698

ABSTRACT

The present study was aimed at understanding the effects of heat stress on selected physiological and biochemical parameters of a model cyanobacterium, Anabaena PCC 7120 in addition to amelioration strategy using exogenous Ca2+. A comparison of the cells exposed to heat stress (0-24 h) in the presence or absence of Ca2+ clearly showed reduction in colony-forming ability and increase in reactive oxygen species (ROS) leading to loss in the viability of cells of Ca2+-deficient cultures. There was higher level of saturation in membrane lipids of the cells supplemented with Ca2+ along with higher accumulation of proline. Similarly, higher quantum yield (7.8-fold) in Ca2+-supplemented cultures indicated role of Ca2+ in regulation of photosynthesis. Relative electron transport rate (rETR) decreased in both the sets with the difference in the rate of decrease (slow) in Ca2+-supplemented cultures. The Ca2+-supplemented sets also maintained high levels of open reaction centers of PS II in comparison to Ca2+-deprived cells. Increase in transcripts of both subunits ((rbcL and rbcS) of RubisCO from Ca2+-supplemented Anabaena cultures pointed out the role of Ca2+ in sustenance of photosynthesis of cells via CO2 fixation, thus, playing an important role in maintaining metabolic status of the heat-stressed cyanobacterium.


Subject(s)
Anabaena/physiology , Calcium/pharmacology , Cell Membrane/metabolism , Heat-Shock Response , Photosynthesis , Protective Agents/pharmacology , Anabaena/drug effects , Anabaena/genetics , Calcium/metabolism , Cell Membrane/drug effects , Electron Transport/drug effects , Fatty Acids/metabolism , Gene Expression Regulation, Bacterial/drug effects , Heat-Shock Response/drug effects , Heat-Shock Response/genetics , Microbial Viability/drug effects , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Proline/metabolism , Reactive Oxygen Species/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
17.
Toxins (Basel) ; 10(11)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30453523

ABSTRACT

Cyanobacteria synthesize neurotoxic ß-N-methylamino-l-alanine (BMAA). The roles of this non-protein amino acid in cyanobacterial cells are insufficiently studied. During diazotrophic growth, filamentous cyanobacteria form single differentiated cells, called heterocysts, which are separated by approximately 12⁻15 vegetative cells. When combined nitrogen is available, heterocyst formation is blocked and cyanobacterial filaments contain only vegetative cells. In the present study, we discovered that exogenous BMAA induces the process of heterocyst formation in filamentous cyanobacteria under nitrogen-replete conditions that normally repress cell differentiation. BMAA treated cyanobacteria form heterocyst-like dark non-fluorescent non-functional cells. It was found that glutamate eliminates the BMAA mediated derepression. Quantitative polymerase chain reaction (qPCR) permitted to detect the BMAA impact on the transcriptional activity of several genes that are implicated in nitrogen assimilation and heterocyst formation in Anabaena sp. PCC 7120. We demonstrated that the expression of several essential genes increases in the BMAA presence under repressive conditions.


Subject(s)
Amino Acids, Diamino/pharmacology , Anabaena/drug effects , Bacterial Toxins/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Anabaena/genetics , Cyanobacteria Toxins
18.
J Basic Microbiol ; 58(12): 1061-1070, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30207396

ABSTRACT

In recent years, release of chemical pollutants has increased due to anthropogenic activities. Heterocystous filamentous cyanobacteria constitute dominant paddy microflora and are excellent biofertilizers augmenting rice productivity. Cyanobacteria are frequently exposed to toxic metals, nickel and arsenic are one of the major toxicants present. We exposed two species of diazotrophic cyanobacteria Anabaena sp. PCC 7120 and Anabaena doliolum, to sub-lethal concentrations (15.0 and 9.0 µM) of Ni2+ and (17.0 and 11 mM) of arsenite (AsIII) and analyzed at different days of treatments (0, 1, 7, and 15 days) for oxidative damage and antioxidative biomarkers. Lipid peroxidation was enhanced (1.5- to 2.5-fold increase in MDA content), indicating damaging effects of Ni2+ and As(III) on membrane. Although Ni2+ and As(III), both induced oxidative stress in both species, Anabaena PCC 7120 experienced less stress than A. doliolum. This could be explained by a higher activity of antioxidant enzymes catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) in Anabaena PCC 7120 (4.6-, 2.0- and 1.4-fold [Ni2+ ] 3.2-, 2.5-, and 2.08-fold [As]) compared to A. doliolum (4.2-, 2.5-, and 1.3-fold [Ni2+ ] and 3.2-, 3.33-, and 1.8-fold [As]). Moreover, superoxide dismutase registered less inhibition in Anabaena sp. PCC 7120 (1.5 and 1.8) compared to A. doliolum (1.8 and 2.3) under Ni2+ and As(III) stress. In addition to, IBR revealed that As(III) imposes severe impact on both strain, however, A. doliolum suffers most. Therefore, the study demonstrates interspecies variation in survival strategy of two Anabaena species and difference in potential of two different toxicants to produce oxidative stress.


Subject(s)
Anabaena/drug effects , Anabaena/physiology , Antioxidants/metabolism , Arsenites/toxicity , Nickel/toxicity , Oxidative Stress/drug effects , Biomarkers/metabolism , Environmental Pollutants/toxicity , Gene Expression/drug effects , Genes, Bacterial/genetics , Lipid Peroxidation/drug effects , Oxidative Stress/physiology , Species Specificity
19.
Aquat Toxicol ; 202: 36-45, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30007153

ABSTRACT

Cyanobacteria are a natural inhabitant of paddy field and enhance the crop productivity in an eco-friendly manner. Cadmium (Cd) is a perilous trace metal element which not only limits the crop productivity but also inhibits the growth and nitrogen-fixing ability of these diazotrophs as well as the biodiversity of rice field semiaquatic agroecosystems. However, the impact of Cd toxicity in diazotrophic cyanobacteria is yet not adequately addressed. Therefore, in the present study, three diazotrophic cyanobacterial species, i.e., Anabaena sp. PCC7120, Anabaena L31, and Anabaena doliolum were subjected to their LC50 doses of Cd, and their physiological (PSII, Psi, respiration, energy status and nitrogen fixation rate), biochemical variables (such as antioxidant contents and antioxidant enzymes) together with morphological parameters were evaluated. The results of physiological variables suggested that the Cd exposure adversely affects the photosynthesis, respiration, and biological nitrogen fixation ability across three Anabaena species. The results of biochemical variables in terms of accumulation of antioxidants (glutathione, thiol, phytochelatin and proline) content as well as antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), catalase-peroxidase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD) revealed that their inter-species stress tolerance behavior may be attributed to the differential accumulation of antioxidants as well as differential antioxidant enzyme activity in three species. Furthermore, the enhanced antioxidant enzymes activity such as GST, GR, CAT, and SOD in Anabaena L31 advocated significantly higher as compared to Anabaena PCC7120 and Anabaena doliolum. In conclusion, Cd-toxicity assessment regarding physiological, biochemical and morphological aspects across three species identified Anabaena L31 as Cd-resistant species than the other two tested species, i.e., Anabaena PCC7120 and Anabaena doliolum.


Subject(s)
Anabaena/drug effects , Cadmium/toxicity , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity , Anabaena/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Catalase/metabolism , Glutathione/metabolism , Glutathione Reductase/metabolism , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
20.
Environ Microbiol Rep ; 10(3): 369-377, 2018 06.
Article in English | MEDLINE | ID: mdl-29624906

ABSTRACT

Various species of cyanobacteria, diatoms and dinoflagellates are capable of synthesizing the non-proteinogenic neurotoxic amino acid ß-N-methylamino-L-alanine (BMAA), which is known to be a causative agent of human neurodegeneration. Similar to most cyanotoxins, the biological and ecological functions of BMAA in cyanobacteria are unknown. In this study, we show for the first time that BMAA, in micromolar amounts, inhibits the formation of heterocysts (specialized nitrogen-fixing cells) in heterocystous, diazotrophic cyanobacteria [Anabaena sp. PCC 7120, Nostoc punctiforme PCC 73102 (ATCC 29133), Nostoc sp. strain 8963] under conditions of nitrogen starvation. The inhibitory effect of BMAA is abolished by the addition of glutamate. To understand the genetic reason for the observed phenomenon, we used qPCR to study the expression of key genes involved in cell differentiation and nitrogen metabolism in the model cyanobacterium Anabaena sp. PCC 7120. We observed that in the presence of BMAA, Anabaena sp. PCC 7120 does not express two essential genes associated with heterocyst differentiation, namely, hetR and hepA. We also found that addition of BMAA to cyanobacterial cultures with mature heterocysts inhibits nifH gene expression and nitrogenase activity.


Subject(s)
Amino Acids, Diamino/toxicity , Anabaena/drug effects , Nitrogen Fixation/drug effects , Nostoc/drug effects , Anabaena/genetics , Anabaena/growth & development , Cyanobacteria Toxins , Gene Expression Regulation, Bacterial/drug effects , Genes, Essential/drug effects , Glutamic Acid/pharmacology , Nostoc/genetics , Nostoc/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...