Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 339
Filter
1.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775150

ABSTRACT

This study lays the groundwork for future lentivirus-mediated gene therapy in patients with Diamond Blackfan anemia (DBA) caused by mutations in ribosomal protein S19 (RPS19), showing evidence of a new safe and effective therapy. The data show that, unlike patients with Fanconi anemia (FA), the hematopoietic stem cell (HSC) reservoir of patients with DBA was not significantly reduced, suggesting that collection of these cells should not constitute a remarkable restriction for DBA gene therapy. Subsequently, 2 clinically applicable lentiviral vectors were developed. In the former lentiviral vector, PGK.CoRPS19 LV, a codon-optimized version of RPS19 was driven by the phosphoglycerate kinase promoter (PGK) already used in different gene therapy trials, including FA gene therapy. In the latter one, EF1α.CoRPS19 LV, RPS19 expression was driven by the elongation factor alpha short promoter, EF1α(s). Preclinical experiments showed that transduction of DBA patient CD34+ cells with the PGK.CoRPS19 LV restored erythroid differentiation, and demonstrated the long-term repopulating properties of corrected DBA CD34+ cells, providing evidence of improved erythroid maturation. Concomitantly, long-term restoration of ribosomal biogenesis was verified using a potentially novel method applicable to patients' blood cells, based on ribosomal RNA methylation analyses. Finally, in vivo safety studies and proviral insertion site analyses showed that lentivirus-mediated gene therapy was nontoxic.


Subject(s)
Anemia, Diamond-Blackfan , Genetic Therapy , Genetic Vectors , Hematopoietic Stem Cells , Lentivirus , Ribosomal Proteins , Anemia, Diamond-Blackfan/therapy , Anemia, Diamond-Blackfan/genetics , Humans , Genetic Therapy/methods , Lentivirus/genetics , Ribosomal Proteins/genetics , Genetic Vectors/genetics , Hematopoietic Stem Cells/metabolism , Animals , Mice , Male , Female , Ribosomes/metabolism , Ribosomes/genetics , Promoter Regions, Genetic , Mutation , Hematopoietic Stem Cell Transplantation/methods
2.
Lancet Haematol ; 11(5): e368-e382, 2024 May.
Article in English | MEDLINE | ID: mdl-38697731

ABSTRACT

Diamond-Blackfan anaemia (DBA), first described over 80 years ago, is a congenital disorder of erythropoiesis with a predilection for birth defects and cancer. Despite scientific advances, this chronic, debilitating, and life-limiting disorder continues to cause a substantial physical, psychological, and financial toll on patients and their families. The highly complex medical needs of affected patients require specialised expertise and multidisciplinary care. However, gaps remain in effectively bridging scientific discoveries to clinical practice and disseminating the latest knowledge and best practices to providers. Following the publication of the first international consensus in 2008, advances in our understanding of the genetics, natural history, and clinical management of DBA have strongly supported the need for new consensus recommendations. In 2014 in Freiburg, Germany, a panel of 53 experts including clinicians, diagnosticians, and researchers from 27 countries convened. With support from patient advocates, the panel met repeatedly over subsequent years, engaging in ongoing discussions. These meetings led to the development of new consensus recommendations in 2024, replacing the previous guidelines. To account for the diverse phenotypes including presentation without anaemia, the panel agreed to adopt the term DBA syndrome. We propose new simplified diagnostic criteria, describe the genetics of DBA syndrome and its phenocopies, and introduce major changes in therapeutic standards. These changes include lowering the prednisone maintenance dose to maximum 0·3 mg/kg per day, raising the pre-transfusion haemoglobin to 9-10 g/dL independent of age, recommending early aggressive chelation, broadening indications for haematopoietic stem-cell transplantation, and recommending systematic clinical surveillance including early colorectal cancer screening. In summary, the current practice guidelines standardise the diagnostics, treatment, and long-term surveillance of patients with DBA syndrome of all ages worldwide.


Subject(s)
Anemia, Diamond-Blackfan , Consensus , Anemia, Diamond-Blackfan/diagnosis , Anemia, Diamond-Blackfan/therapy , Anemia, Diamond-Blackfan/genetics , Humans , Disease Management , Hematopoietic Stem Cell Transplantation
3.
Tidsskr Nor Laegeforen ; 144(4)2024 Mar 19.
Article in Norwegian | MEDLINE | ID: mdl-38506013

ABSTRACT

Background: Anemia in children is common and finding the underlying cause is often uncomplicated. However, in some cases, the underlying diagnosis is rare and difficult to diagnose. Case presentation: A toddler presented with severe anemia with normal red cell indices and a low reticulocyte count. The remaining hematological parameters were normal, bar a slight thrombocytosis. At this point a diagnosis of transient erythroblastopenia of childhood (TEC) was made. The child continued to have slight anemia with intermittent macrocytosis and reticulocytopenia throughout childhood. Growth and development was normal, and there were no signs of congenital abnormalities in the heart or kidneys nor any craniofacial or phalangeal defects. Repeated bone marrow examinations showed no significant abnormal findings. As a teenager the patient was diagnosed with Diamond-Blackfan anemia through an exome-based gene panel which revealed a mutation in the RPL11 gene. Interpretation: Congenital bone marrow failure syndromes do not always present in the classical way, leading to a delayed diagnosis. The increasing availability of different gene panels for patients with persistent abnormal hematological laboratory parameters offers the possibility of a more accurate diagnostic pathway, which is important for adequate follow-up and genetic counselling.


Subject(s)
Anemia, Diamond-Blackfan , Anemia, Hemolytic, Congenital , Anemia , Adolescent , Humans , Anemia/diagnosis , Anemia/etiology , Anemia, Diamond-Blackfan/diagnosis , Anemia, Diamond-Blackfan/genetics , Mutation
4.
Blood Cells Mol Dis ; 106: 102838, 2024 May.
Article in English | MEDLINE | ID: mdl-38413287

ABSTRACT

Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.


Subject(s)
Anemia, Diamond-Blackfan , Anemia, Dyserythropoietic, Congenital , Anemia, Macrocytic , Humans , Anemia, Diamond-Blackfan/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Erythroid Precursor Cells/metabolism , Mutation
5.
J Pediatr Hematol Oncol ; 46(2): e195-e198, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38277626

ABSTRACT

Diamond-Blackfan anemia (DBA) is a rare, inherited bone marrow failure syndrome that is both genetically and clinically heterogeneous. The diagnosis of DBA has changed over time, with advancements in our understanding of the varied genetic etiologies and phenotypic manifestations of the disease. We present a rare case of a patient who never developed erythroid precursor hypoplasia, adding to the understanding of atypical manifestations of DBA. Our patient had spontaneous remission followed by subsequent relapse, both atypical and poorly understood processes in DBA. We highlight important considerations in diagnostically challenging cases and review major outstanding questions surrounding DBA.


Subject(s)
Anemia, Diamond-Blackfan , Humans , Anemia, Diamond-Blackfan/complications , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/diagnosis , Bone Marrow Failure Disorders , Ribosomal Proteins/genetics
6.
Leukemia ; 38(1): 1-9, 2024 01.
Article in English | MEDLINE | ID: mdl-37973818

ABSTRACT

ABSTACT: Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure disorder characterized by erythroid hypoplasia. It primarily affects infants and is often caused by heterozygous allelic variations in ribosomal protein (RP) genes. Recent studies also indicated that non-RP genes like GATA1, TSR2, are associated with DBA. P53 activation, translational dysfunction, inflammation, imbalanced globin/heme synthesis, and autophagy dysregulation were shown to contribute to disrupted erythropoiesis and impaired red blood cell production. The main therapeutic option for DBA patients is corticosteroids. However, half of these patients become non-responsive to corticosteroid therapy over prolonged treatment and have to be given blood transfusions. Hematopoietic stem cell transplantation is currently the sole curative option, however, the treatment is limited by the availability of suitable donors and the potential for serious immunological complications. Recent advances in gene therapy using lentiviral vectors have shown promise in treating RPS19-deficient DBA by promoting normal hematopoiesis. With deepening insights into the molecular framework of DBA, emerging therapies like gene therapy hold promise for providing curative solutions and advancing comprehension of the underlying disease mechanisms.


Subject(s)
Anemia, Diamond-Blackfan , Hematopoietic Stem Cell Transplantation , Infant , Humans , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/therapy , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Genetic Therapy , Erythropoiesis/genetics , Bone Marrow Failure Disorders
7.
Am J Med Genet A ; 194(3): e63454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37897121

ABSTRACT

A 26-year-old female proband with a clinical diagnosis and consistent phenotype of Diamond-Blackfan anemia (DBA, OMIM 105650) without an identified genotype was referred to the Undiagnosed Diseases Network. DBA is classically associated with monoallelic variants that have an autosomal-dominant or -recessive mode of inheritance. Intriguingly, her case was solved by a detection of a digenic interaction between non-allelic RPS19 and RPL27 variants. This was confirmed with a machine learning structural model, co-segregation analysis, and RNA sequencing. This is the first report of DBA caused by a digenic effect of two non-allelic variants demonstrated by machine learning structural model. This case suggests that atypical phenotypic presentations of DBA may be caused by digenic inheritance in some individuals. We also conclude that a machine learning structural model can be useful in detecting digenic models of possible interactions between products encoded by alleles of different genes inherited from non-affected carrier parents that can result in DBA with an unrealized 25% recurrence risk.


Subject(s)
Anemia, Diamond-Blackfan , Humans , Female , Adult , Anemia, Diamond-Blackfan/diagnosis , Anemia, Diamond-Blackfan/genetics , Ribosomal Proteins/genetics , Genotype , Alleles , Phenotype , Base Sequence , Mutation
10.
Pediatr Blood Cancer ; 71(3): e30834, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38149846

ABSTRACT

Diamond-Blackfan anemia (DBA) is a congenital anemia with erythroid cell aplasia. Most of the causative genes are ribosomal proteins. GATA1, a hematopoietic master transcription factor required for erythropoiesis, also causes DBA. GATA1 is located on Xp11.23; therefore, DBA develops only in males in an X-linked inheritance pattern. Here, we report a case of transient erythroblastopenia and moderate anemia in a female newborn infant with a de novo GATA1 variant. In this patient, increased methylation of the GATA1 wild-type allele was observed in erythroid cells. Skewed lyonization of GATA1 may cause mild transient erythroblastopenia in a female patient.


Subject(s)
Anemia, Aplastic , Anemia, Diamond-Blackfan , Anemia, Hemolytic, Congenital , Male , Infant , Infant, Newborn , Humans , Female , Ribosomal Proteins/genetics , Anemia, Diamond-Blackfan/genetics , Erythropoiesis , GATA1 Transcription Factor/genetics
11.
Medicina (Kaunas) ; 59(11)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-38004002

ABSTRACT

Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome associated with malformations. DBA is related to defective ribosome biogenesis, which impairs erythropoiesis, causing hyporegenerative macrocytic anemia. The disease has an autosomal dominant inheritance and is commonly diagnosed in the first year of life, requiring continuous treatment. We present the case of a young woman who, at the age of 21, developed severe symptomatic anemia. Although, due to malformations, a congenital syndrome had been suspected since birth, a confirmation diagnosis was not made until the patient was referred to our center for an evaluation of her anemia. In her neonatal medical history, she presented with anemia that required red blood cell transfusions, but afterwards remained with a stable, mild, asymptomatic anemia throughout her childhood and adolescence. Her family history was otherwise unremarkable. To explain the symptomatic anemia, vitamin deficiencies, autoimmune diseases, bleeding causes, and myeloid and lymphoid neoplasms were investigated and ruled out. A molecular investigation showed the RPL5 gene variant c.392dup, p.(Asn131Lysfs*6), confirming the diagnosis of DBA. All family members have normal blood values and none harbored the mutation. Here, we will discuss the unusual evolution of this case and revisit the literature.


Subject(s)
Anemia, Diamond-Blackfan , Frameshift Mutation , Humans , Young Adult , Infant, Newborn , Female , Adolescent , Child , Frameshift Mutation/genetics , Ribosomal Proteins/genetics , Mutation , Anemia, Diamond-Blackfan/complications , Anemia, Diamond-Blackfan/diagnosis , Anemia, Diamond-Blackfan/genetics , Phenotype
12.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834388

ABSTRACT

Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond-Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins.


Subject(s)
Anemia, Diamond-Blackfan , Dyskeratosis Congenita , Fanconi Anemia , Humans , Animals , Mice , Tumor Suppressor Protein p53/genetics , Bone Marrow Failure Disorders , Fanconi Anemia/genetics , Anemia, Diamond-Blackfan/genetics , Dyskeratosis Congenita/genetics , Telomere/genetics , Nuclear Proteins/genetics , Cell Cycle Proteins/genetics , Proto-Oncogene Proteins/genetics , Exodeoxyribonucleases/genetics
14.
Elife ; 122023 Jun 05.
Article in English | MEDLINE | ID: mdl-37272618

ABSTRACT

Ribosomal protein (Rp) gene haploinsufficiency can result in Diamond-Blackfan Anemia (DBA), characterized by defective erythropoiesis and skeletal defects. Some mouse Rp mutations recapitulate DBA phenotypes, although others lack erythropoietic or skeletal defects. We generated a conditional knockout mouse to partially delete Rps12. Homozygous Rps12 deletion resulted in embryonic lethality. Mice inheriting the Rps12KO/+ genotype had growth and morphological defects, pancytopenia, and impaired erythropoiesis. A striking reduction in hematopoietic stem cells (HSCs) and progenitors in the bone marrow (BM) was associated with decreased ability to repopulate the blood system after competitive and non-competitive BM transplantation. Rps12KO/+ lost HSC quiescence, experienced ERK and MTOR activation, and increased global translation in HSC and progenitors. Post-natal heterozygous deletion of Rps12 in hematopoietic cells using Tal1-Cre-ERT also resulted in pancytopenia with decreased HSC numbers. However, post-natal Cre-ERT induction led to reduced translation in HSCs and progenitors, suggesting that this is the most direct consequence of Rps12 haploinsufficiency in hematopoietic cells. Thus, RpS12 has a strong requirement in HSC function, in addition to erythropoiesis.


Subject(s)
Anemia, Diamond-Blackfan , Pancytopenia , Animals , Mice , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/metabolism , Erythropoiesis/genetics , Genes, Essential , Haploinsufficiency , Hematopoietic Stem Cells/metabolism , Mice, Knockout , Pancytopenia/genetics , Pancytopenia/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
15.
Blood Rev ; 61: 101097, 2023 09.
Article in English | MEDLINE | ID: mdl-37263874

ABSTRACT

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome, usually caused by loss-of function variants in genes encoding ribosomal proteins. The hallmarks of DBA are anemia, congenital anomalies and cancer predisposition. Although DBA usually presents in childhood, the prevalence in later life is increasing due to an expanding repertoire of implicated genes, improvements in genetic diagnosis and increasing life expectancy. Adult patients uniquely suffer the manifestations of end-organ damage caused by the disease and its treatment, and transition to adulthood poses specific issues in disease management. To standardize and optimize care for this rare disease, in this review we provide updated guidance on the diagnosis and management of DBA, with a specific focus on older adolescents and adults. Recommendations are based upon published literature and our pooled clinical experience from three centres in the United Kingdom (U·K.). Uniquely we have also solicited and incorporated the views of affected families, represented by the independent patient organization, DBA U.K.


Subject(s)
Anemia, Diamond-Blackfan , Neoplasms , Adolescent , Humans , Adult , Anemia, Diamond-Blackfan/diagnosis , Anemia, Diamond-Blackfan/epidemiology , Anemia, Diamond-Blackfan/genetics , Rare Diseases , Ribosomal Proteins/genetics , Disease Susceptibility , Mutation
16.
Blood Cells Mol Dis ; 102: 102759, 2023 09.
Article in English | MEDLINE | ID: mdl-37267698

ABSTRACT

Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by congenital anomalies, cancer predisposition and a severe hypo-proliferative anemia. It was the first disease linked to ribosomal dysfunction and >70 % of patients have been identified to have a haploinsufficiency of a ribosomal protein (RP) gene, with RPS19 being the most common mutation. There is significant variability within the disease in terms of phenotype as well as response to therapy suggesting that other genes contribute to the pathophysiology and potential management of this disease. To explore these questions, we performed a genome-wide CRISPR screen in a cellular model of DBA and identified Calbindin 1 (CALB1), a member of the calcium-binding superfamily, as a potential modifier of the disordered erythropoiesis in DBA. We used human derived CD34+ cells cultured in erythroid stimulating media with knockdown of RPS19 as a model for DBA to study the effects of CALB1. We found that knockdown of CALB1 in this DBA model promoted erythroid maturation. We also noted effects of CALB1 knockdown on cell cycle. Taken together, our results reveal CALB1 is a novel regulator of human erythropoiesis and has implications for using CALB1 as a novel therapeutic target in DBA.


Subject(s)
Anemia, Diamond-Blackfan , Anemia , Humans , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/therapy , Erythropoiesis/genetics , Calbindin 1/genetics , Mutation
17.
Int J Lab Hematol ; 45(5): 766-773, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37376976

ABSTRACT

INTRODUCTION: Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome characterized by erythroid aplasia, physical malformation, and cancer predisposition. Twenty ribosomal protein genes and three non-ribosomal protein genes have been identified associated with DBA. METHODS: To investigate the presence of novel mutations and gain a deeper understanding of the molecular mechanisms of disease, targeted next-generation sequencing was performed in 12 patients with clinically suspected DBA. Literatures were retrieved with complete clinical information published in English by November 2022. The clinical features, treatment, and RPS10/RPS26 mutations were analyzed. RESULTS: Among the 12 patients, 11 mutations were identified and 5 of them were novel (RPS19, p.W52S; RPS10, p.P106Qfs*11; RPS26, p.R28*; RPL5, p.R35*; RPL11, p.T44Lfs*40). Including 2 patients in this study, 13 patients with RPS10 mutations and 38 patients with RPS26 mutations were reported from 4 and 6 countries, respectively. The incidences of physical malformation in patients with RPS10 and RPS26 mutations (22% and 36%, respectively) were lower than the overall incidence in DBA patients (~50%). Patients with RPS26 mutations had a worse response rate of steroid therapy than RPS10 (47% vs. 87.5%), but preferred RBC transfusions (67% vs. 44%, p = 0.0253). CONCLUSION: Our findings add to the DBA pathogenic variant database and demonstrate the clinical presentations of the DBA patients with RPS10/RPS26 mutations. It shows that next-generation sequencing is a powerful tool for the diagnosis of genetic diseases such as DBA.


Subject(s)
Anemia, Diamond-Blackfan , Humans , Anemia, Diamond-Blackfan/genetics , Mutation , Genotype
18.
Blood Adv ; 7(17): 4848-4868, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37352261

ABSTRACT

The anemias of myelodysplastic syndrome (MDS) and Diamond Blackfan anemia (DBA) are generally macrocytic and always reflect ineffective erythropoiesis yet result from diverse genetic mutations. To delineate shared mechanisms that lead to cell death, we studied the fate of single erythroid marrow cells from individuals with DBA or MDS-5q. We defined an unhealthy (vs healthy) differentiation trajectory using transcriptional pseudotime and cell surface proteins. The pseudotime trajectories diverge immediately after cells upregulate transferrin receptor (CD71), import iron, and initiate heme synthesis, although cell death occurs much later. Cells destined to die express high levels of heme-responsive genes, including ribosomal protein and globin genes, whereas surviving cells downregulate heme synthesis and upregulate DNA damage response, hypoxia, and HIF1 pathways. Surprisingly, 24% ± 12% of cells from control subjects follow the unhealthy trajectory, implying that heme might serve as a rheostat directing cells to live or die. When heme synthesis was inhibited with succinylacetone, more DBA cells followed the healthy trajectory and survived. We also noted high numbers of messages with retained introns that increased as erythroid cells matured, confirmed the rapid cycling of colony forming unit-erythroid, and demonstrated that cell cycle timing is an invariant property of differentiation stage. Including unspliced RNA in pseudotime determinations allowed us to reliably align independent data sets and accurately query stage-specific transcriptomic changes. MDS-5q (unlike DBA) results from somatic mutation, so many normal (unmutated) erythroid cells persist. By independently tracking erythroid differentiation of cells with and without chromosome 5q deletions, we gained insight into why 5q+ cells cannot expand to prevent anemia.


Subject(s)
Anemia, Diamond-Blackfan , Anemia , Myelodysplastic Syndromes , Humans , Erythropoiesis/genetics , Transcriptome , Anemia/genetics , Ribosomal Proteins/genetics , Anemia, Diamond-Blackfan/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Chromosome Deletion , Heme/metabolism
19.
Haematologica ; 108(11): 3095-3109, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37199130

ABSTRACT

Diamond-Blackfan anemia is a rare genetic bone marrow failure disorder which is usually caused by mutations in ribosomal protein genes. In the present study, we generated a traceable RPS19-deficient cell model using CRISPR-Cas9 and homology-directed repair to investigate the therapeutic effects of a clinically applicable lentiviral vector at single-cell resolution. We developed a gentle nanostraw delivery platform to edit the RPS19 gene in primary human cord bloodderived CD34+ hematopoietic stem and progenitor cells. The edited cells showed expected impaired erythroid differentiation phenotype, and a specific erythroid progenitor with abnormal cell cycle status accompanied by enrichment of TNFα/NF-κB and p53 signaling pathways was identified by single-cell RNA sequencing analysis. The therapeutic vector could rescue the abnormal erythropoiesis by activating cell cycle-related signaling pathways and promoted red blood cell production. Overall, these results establish nanostraws as a gentle option for CRISPR-Cas9- based gene editing in sensitive primary hematopoietic stem and progenitor cells, and provide support for future clinical investigations of the lentiviral gene therapy strategy.


Subject(s)
Anemia, Diamond-Blackfan , Humans , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/therapy , Anemia, Diamond-Blackfan/metabolism , Ribosomal Proteins/genetics , Cell Differentiation , Erythropoiesis , Stem Cells/metabolism , Antigens, CD34
20.
Medicina (Kaunas) ; 59(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36837563

ABSTRACT

Diamond-Blackfan anemia is a rare (6-7 million live births), inherited condition manifesting as severe anemia due to the impaired bone marrow production of red blood cells. We present the unusual case of a six month old infant with a de novo mutation of the RPS19 gene causing Diamond-Blackfan anemia who additionally suffers from severe sinus bradycardia. The infant was diagnosed with this condition at the age of four months; at the age of 6 months, she presents with severe anemia causing hypoxia which, in turn, caused severe dyspnea and polypnea, which had mixed causes (hypoxic and infectious) as the child was febrile. After correction of the overlapping diarrhea, metabolic acidosis, and severe anemia (hemoglobin < 3 g/dL), she developed severe persistent sinus bradycardia immediately after mild sedation (before central venous catheter insertion), not attributable to any of the more frequent causes, with a heart rate as low as 49 beats/min on 24 h Holter monitoring, less than the first percentile for age, but with a regular QT interval and no arrhythmia. The echocardiogram was unremarkable, showing a small interatrial communication (patent foramen ovale with left-to-right shunting), mild left ventricular hypertrophy, normal systolic and diastolic function, and mild tricuspid regurgitation. After red cell transfusion and appropriate antibiotic and supportive treatment, the child's general condition improved dramatically but the sinus bradycardia persisted. We consider this a case of well-tolerated sinus bradycardia and foresee a good cardiologic prognosis, while the hematologic prognosis remains determined by future corticoid response, treatment-related complications and risk of leukemia.


Subject(s)
Anemia, Diamond-Blackfan , Female , Humans , Infant , Anemia, Diamond-Blackfan/diagnosis , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/therapy , Bone Marrow , Bradycardia , Ribosomal Proteins/genetics , White
SELECTION OF CITATIONS
SEARCH DETAIL
...