Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
J Therm Biol ; 100: 103046, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34503793

ABSTRACT

The Mediterranean Triton Charonia seguenzae (Aradas and Benoit, 1870) is an endangered marine gastropod. Re-establishment of C. seguenzae populations in the depleted habitats requires knowledge of its biology and breeding in captivity. Deformities have a huge impact on offspring survival and quality. Temperature has been recorded to affect the development of deformities in marine gastropods. The present study aims to identify the stage of development at which deformities occur, under four temperature regimes (17, 23, 26 and 29 °C). At the stages of trochophore, veliger and free veliger larvae, three capsules that were acclimated at the examined temperatures at the stage of morula were collected, opened and 50 larvae per capsule sampled. Deformities were observed at every examined developmental stage under all tested temperatures. The lower rate of deformities at every stage occurred at 23 °C. The higher tested temperature (29 °C) was lethal and at the lower tested temperature (17 °C) almost every specimen was deformed (96.66%) at eclosion. The effect of acclimation at four developmental stages (morula, trochophore, shell formation and veliger) on the development of deformities at the free veligers of Charonia seguenzae, was studied under three temperature conditions (17, 26 and 29 °C). At eclosion, three capsules were collected, opened and 50 larvae per capsule were sampled. The acclimation at morula and trochophore larva stages led to the higher rates of deformities at eclosion. The size of the free veliger larvae was also affected by temperature with maximum size at eclosion observed at 23 °C. Charonia seguenzae's embryos tolerate elevated temperatures within environmental limits (26 °C) but near future global warming will probably pose a threat to their survival. The free veliger larvae survival at the environmental minimum is related to the time window of the acclimation, since Triton's embryos are more vulnerable to temperature alterations during the early developmental stages.


Subject(s)
Animal Shells/abnormalities , Gastropoda/embryology , Temperature , Thermotolerance , Animal Shells/embryology , Animals , Gastropoda/physiology , Larva/growth & development , Larva/physiology
2.
Environ Sci Pollut Res Int ; 25(23): 22689-22701, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29851016

ABSTRACT

Since the end of the 1980s, white shrimps (Palaemon longirostris) from the Gironde estuary have exhibited exoskeletal malformations, mainly involving cephalothorax, rostrum, scaphocerites and uropods. An 8-month study was carried out in 2015. Each month, 200 individuals were sampled and examined for exoskeletal malformations. Temporal variations in malformation frequency were noted, particularly during the breeding period, along with decreases in the size of non-deformed shrimps related to the appearance of juveniles in breeding sites, and high mortality among deformed shrimps. A significant increase in proportions of deformed shrimp was observed, relating particularly to the size (and therefore the age) of individuals. No significant difference was found between shrimp proportions with different numbers of malformations (one to four) for a fixed size class, nor was there any variation in proportions within different size classes for a fixed number of malformations. This would appear to indicate that the number of malformations is acquired and new malformations do not seem to appear during the life cycle, except for the smallest (youngest) shrimps. The malformation spectrum showed no significant differences between the biggest and smallest individuals for the different malformation associations, except for those involving cephalothorax, rostrum and uropods. This would suggest that some malformation associations lead to a higher mortality rate in shrimps subjected to them, due to greater impairment of feeding and/or swimming behaviour. Multiple component analysis of the different types of malformation showed correlations between exoskeletal pieces (rostrum and cephalothorax) and appendixes (scaphocerites and uropods). Regarding metal contamination in shrimp, no significant difference was highlighted between deformed and non-deformed shrimps. Organic pollutants were not measured in tissues. Certain herbicides such as metolachlore and chlortoluron were detected at high concentrations in the Gironde estuary during the breeding period corresponding to the higher occurrence of exoskeletal malformations.


Subject(s)
Animal Shells/abnormalities , Metals, Heavy/analysis , Palaemonidae/anatomy & histology , Water Pollutants, Chemical/analysis , Animal Shells/drug effects , Animals , Female , France , Metals, Heavy/metabolism , Palaemonidae/drug effects , Seasons , Water Pollutants, Chemical/metabolism
3.
Mar Pollut Bull ; 126: 363-371, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29421113

ABSTRACT

This study described the occurrence of abnormalities in bivalve larvae from the Puck Bay. Analyses of plankton samples collected in 2012-2013 showed that larval Mytilus trossulus, Mya arenaria, and Cerastoderma glaucum exhibited abnormalities that could indicate adverse environmental impacts. The deformities were mainly in shells, but missing soft tissue fragments and protruding vela were also noted. In addition to larval studies, we analyzed benthic postlarvae of Mytilus trossulus. Interestingly, grooves and notches at different locations of the prodissoconch, dissoconch, and shell margin were observed. Some of these deformations were reminiscent of the indentations found on the shell edge of larvae. Comparing the proportion of abnormal postlarvae to larvae with shell abnormalities suggested that the survival of larvae with shell abnormalities was low. Overall, our results suggested that the ratio of abnormal bivalve larvae could be used as an indicator of the biological effects of hazardous substances in the pelagic environment.


Subject(s)
Animal Shells/abnormalities , Bivalvia , Environmental Monitoring/methods , Larva , Animals , Baltic States , Bays , Environmental Pollution , Hazardous Substances
4.
J Hazard Mater ; 339: 281-291, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28658637

ABSTRACT

Prednisolone (PDS), a potent synthetic glucocorticoid is widely prescribed for its exceptional anti-inflammatory properties. Several studies have detected the environmental presence of PDS in water bodies which has led to an ecological concern for its toxicity to non-target aquatic biota. The present study investigated the effects of exposure to PDS on different life-cycle stages and generations of the freshwater snail, Physa acuta. This continuous exposure over a period of multiple generations resulted in generational impairments at measured endpoints. LOEC values (p<0.001) for PDS exposure ranged from 32 to 4µg/L in exposed F0-F2 generations. Global DNA methylation (% 5-methyl cytosine) of adult progeny was found to be affected at higher test concentrations in comparison to the parent snails. Partially formed to completely missed growth components of shell structure and shell thinning in abnormally underdeveloped PDS exposed snails of F1 and F2 generation, was also observed in this multigenerational exposure experiment. The multigenerational study confirmed P. acuta as a promising bioindicator since critical effects of the long term glucocorticoid exposure opens up the way for further investigations on transgenerational toxicity in environmental toxicology and risk assessment and to monitor glucocorticoid pollution in aqueous ecosystem.


Subject(s)
Prednisolone/toxicity , Snails/drug effects , Water Pollutants, Chemical/toxicity , Animal Shells/abnormalities , Animal Shells/drug effects , Animals , Anti-Inflammatory Agents/toxicity , DNA Methylation/drug effects , Snails/genetics , Snails/growth & development
5.
Parazitologiia ; 51(1): 38-44, 2017.
Article in Russian | MEDLINE | ID: mdl-29401574

ABSTRACT

The taiga tick (Icodes persulcatus, Schulze, 1930) is the main and most epidemiologically dangerous vector of tick-born encephalitis virus (TBEV) and Borrelia in most parts of Russia's territory (Alekseev et al., 2008). The purpose of this article is to describe the incidence rate of I. persulcatus males with exoskeleton anomalies in populations of the Asiatic part of Russia. A total of 2630 taiga tick males were morphologically analyzed. They were collected in Far Eastern, Siberian and Ural Federal Districts (respectively, FEFD, SFD, UFD) in 15 geographically remote locations. It is shown that in all populations there are adult ticks with impaired exoskeleton, among which two types dominate: twin dents at the back of conscutum (P11), and uneven surface of conscutum - a "shagreen skin" (P9). The frequency of abnormalities in males from the areas with temperate monsoon and temperate continental climate (FEFD) was definitely lower (6.5 ± 1.05 %), than in individuals from the territories of SFD (29.7 ± 1.03 %) and UFD (25.8 ± 3.93 %) with continental and sharply continental climate. FEFD territory is also characterized by a less number of males having two simultaneous exoskeleton anomalies. Similar district-preconditioned differences in the frequency of recorded body distortions are also typical of females, with a higher percentage of deviant individuals in comparison with males. Thus, the identified polymorphism of exoskeleton structure of the taiga tick may reflect the natural phenogeographical variability of this trait and might not be the result of human impact.


Subject(s)
Animal Shells/abnormalities , Ixodes/anatomy & histology , Animals , Climate , Female , Ixodes/genetics , Male , Phenotype , Siberia
6.
Integr Zool ; 8(2): 197-208, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23731815

ABSTRACT

Increases in extreme environmental events are predicted to be major results of ongoing global climate change and may impact the persistence of species. We examined the effects of heat and cold waves during embryonic development of painted turtles (Chrysemys picta) in natural nests on the occurrence of abnormal shell morphologies in hatchlings. We found that nests exposed to extreme hot temperatures for >60 h produced more hatchlings with abnormalities than nests exposed to extreme hot temperatures for shorter periods, regardless of whether or not nesting females displayed abnormal morphologies. We observed no effect of extreme cold nest temperatures on the occurrence of hatchlings with abnormalities. Moreover, the frequency of nesting females with abnormal shell morphologies was approximately 2-fold lower than that of their offspring, suggesting that such abnormalities are negatively correlated with survival and fitness. Female turtles could potentially buffer their offspring from extreme heat by altering aspects of nesting behavior, such as choosing shadier nesting sites. We addressed this hypothesis by examining the effects of shade cover on extreme nest temperatures and the occurrence of hatchling abnormalities. While shade cover was negatively correlated with the occurrence of extreme hot nest temperatures, it was not significantly correlated with abnormalities. Therefore, female choice of shade cover does not appear to be a viable target for selection to reduce hatchling abnormalities. Our results suggest that increases in the frequency and intensity of heat waves associated with climate change might perturb developmental programs and thereby reduce the fitness of entire cohorts of turtles.


Subject(s)
Animal Shells/abnormalities , Embryonic Development/physiology , Nesting Behavior/physiology , Temperature , Turtles/embryology , Animals , Climate Change , Female , Illinois , Linear Models , Population Dynamics , Time Factors , Turtles/abnormalities
7.
Chemosphere ; 93(2): 201-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23751124

ABSTRACT

Contemporary environmental challenges have emphasized the need to critically assess the use of bivalve mollusks in chemical monitoring (identification and quantification of pollutants) and biomonitoring (estimation of environmental quality). Many authors, however, have considered these approaches within a single context, i.e., as a means of chemical (e.g. metal) monitoring. Bivalves are able to accumulate substantial amounts of metals from ambient water, but evidence for the drastic effects of accumulated metals (e.g. as a TBT-induced shell deformation and imposex) on the health of bivalves has not been documented. Metal bioaccumulation is a key tool in biomonitoring; bioavailability, bioaccumulation, and toxicity of various metals in relation to bivalves are described in some detail including the development of biodynamic metal bioaccumulation model. Measuring metal in the whole-body or the tissue of bivalves themselves does not accurately represent true contamination levels in the environment; these data are critical for our understanding of contaminant trends at sampling sites. Only rarely has metal bioaccumulation been considered in combination with data on metal concentrations in parts of the ecosystem, observation of biomarkers and environmental parameters. Sclerochemistry is in its infancy and cannot be reliably used to provide insights into the pollution history recorded in shells. Alteration processes and mineral crystallization on the inner shell surface are presented here as a perspective tool for environmental studies.


Subject(s)
Bivalvia/metabolism , Environmental Monitoring/methods , Environmental Pollutants/metabolism , Metals/metabolism , Animal Shells/abnormalities , Animal Shells/metabolism , Animals , Bivalvia/anatomy & histology , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...