Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
1.
Front Immunol ; 12: 769775, 2021.
Article in English | MEDLINE | ID: mdl-34804060

ABSTRACT

The crosstalk between the immune system and microbiota drives an amazingly complex mutualistic symbiosis. In mammals, the upper respiratory tract acts as a gateway for pathogen invasion, and the dynamic interaction between microbiota and mucosal immunity on its surface can effectively prevent disease development. However, the relationship between virus-mediated mucosal immune responses and microbes in lower vertebrates remains uncharacterized. In this study, we successfully constructed an infection model by intraperitoneally injecting common carp (Cyprinus carpio) with spring viremia of carp virus (SVCV). In addition to the detection of the SVCV in the nose and pharynx of common carp, we also identified obvious histopathological changes following viral infection. Moreover, numerous immune-related genes were significantly upregulated in the nose and pharynx at the peak of SVCV infection, after which the expression levels decreased to levels similar to those of the control group. Transcriptome sequencing results revealed that pathways associated with bacterial infection in the Toll-like receptor pathway and the Nod-like receptor pathway were activated in addition to the virus-related Rig-I-like receptor pathway after SVCV infection, suggesting that viral infection may be followed by opportunistic bacterial infection in these mucosal tissues. Using 16S rRNA gene sequencing, we further identified an upward trend in pathogenic bacteria on the mucosal surface of the nose and pharynx 4 days after SVCV infection, after which these tissues eventually reached new homeostasis. Taken together, our results suggest that the dynamic interaction between mucosal immunity and microbiota promotes the host to a new ecological state.


Subject(s)
Bacteria/immunology , Carps/immunology , Fish Diseases/immunology , Immunity, Mucosal/immunology , Pharynx/immunology , Rhabdoviridae/immunology , Animal Structures/immunology , Animal Structures/microbiology , Animal Structures/virology , Animals , Bacteria/classification , Bacteria/genetics , Carps/microbiology , Carps/virology , Fish Diseases/microbiology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/methods , Homeostasis/genetics , Homeostasis/immunology , Immunity, Mucosal/genetics , Pharynx/microbiology , Pharynx/virology , Phylogeny , RNA, Ribosomal, 16S/genetics , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/immunology , Rhabdoviridae/genetics , Rhabdoviridae/physiology , Signal Transduction/genetics , Signal Transduction/immunology
2.
Bull Exp Biol Med ; 171(5): 671-675, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34617176

ABSTRACT

We studied the localization and severity of morphological changes in CNS and internal organs of animals intacerebrally infected with a low-attenuated rubella virus strain "Orlov-14". The data obtained can be used as morphological criteria reflecting low level of attenuation of rubella virus strains to improve the control of the safety of attenuated strains of live rubella vaccines.


Subject(s)
Animal Structures/pathology , Central Nervous System/pathology , Central Nervous System/virology , Rubella virus/immunology , Vaccines, Attenuated/administration & dosage , Animal Structures/virology , Animals , Blood-Brain Barrier/pathology , Blood-Brain Barrier/virology , Cells, Cultured , Child , Humans , Injections, Intraventricular , Macaca mulatta , Rabbits , Random Allocation , Rubella/cerebrospinal fluid , Rubella/pathology , Rubella/virology , Rubella virus/physiology , Vaccines, Attenuated/adverse effects , Viral Load , Virus Activation/physiology
3.
Braz J Microbiol ; 51(4): 2145-2152, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32638274

ABSTRACT

We investigated the porcine lymphotropic herpesvirus (PLHV) DNA presence in multiple organs of pigs. Biological samples (n = 136) included tissue fragments of the central nervous system, heart, kidney, liver, lungs, spleen, urinary bladder, and urine. Sixty-eight (50%) organs were PLHV DNA-positive. None of the urine samples were detected with the virus genome. Although the presence of the PLHV DNA in the urinary bladder and kidney has been detected, it was not possible to show whether urine can be considered an effective route of virus shedding. This study warns to the risk of PLHV zoonotic transmission by xenotransplantation of tissues of porcine origin.


Subject(s)
Animal Structures/virology , DNA, Viral/analysis , Gammaherpesvirinae/genetics , Herpesviridae Infections/veterinary , Swine Diseases/virology , Animals , Brazil , Genome, Viral , Herpesviridae Infections/urine , Swine , Transplantation, Heterologous/adverse effects
4.
Theranostics ; 10(14): 6430-6447, 2020.
Article in English | MEDLINE | ID: mdl-32483462

ABSTRACT

Rationale: Zika virus (ZIKV) is a pathogenic virus known to cause a wide range of congenital abnormalities, including microcephaly, Guillain-Barre syndrome, meningoencephalitis, and other neurological complications, in humans. This study investigated the noninvasive detection of ZIKV infection in vivo, which is necessary for elucidating the virus's mechanisms of viral replication and pathogenesis, as well as to accelerate the development of anti-ZIKV therapeutic strategies. Methods: In this study, a recombinant ZIKV harbouring Nluc gene (ZIKV-Nluc) was designed, recovered, and purified. The levels of bioluminescence were directly correlated with viral loads in vitro and in vivo. The dynamics of ZIKV infection in A129 (interferon (IFN)-α/ß receptor deficient), AG6 (IFN-α/ß and IFN-γ receptor deficient), and C57BL/6 mice were characterized. Pregnant dams were infected with ZIKV-Nluc at E10 via intra footpad injection. Then, the pooled immune sera (anti-ZIKV neutralizing antibodies) #22-1 in ZIKV-Nluc virus-infected mice were visualized. Results: ZIKV-Nluc showed a high genetic stability and replicated well in cells with similar properties to the wild-type ZIKV (ZIKVwt). Striking bioluminescence signals were consistently observed in animal organs, including spleen, intestine, testis, uterus/ovary, and kidney. The ileocecal junction was found to be the crucial visceral target. Infection of pregnant dams with ZIKV-Nluc showed that ZIKV was capable of crossing the maternal-fetal barrier to infect the fetuses via vertical transmission. Furthermore, it was visualized that treatment with the pooled immune sera was found to greatly restrict the spread of the ZIKV-Nluc virus in mice. Conclusions: This study is the first to report the real-time noninvasive tracking of the progression of ZIKV invading immune-sheltered tissues and propagating vertically during pregnancy. The results demonstrate that ZIKV-Nluc represents a powerful tool for the study of the replication, dissemination, pathogenesis, and treatment of ZIKV in vitro and in vivo.


Subject(s)
Luminescent Measurements/methods , Zika Virus Infection/diagnostic imaging , Animal Structures/diagnostic imaging , Animal Structures/immunology , Animal Structures/virology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Disease Models, Animal , Female , Fetus/diagnostic imaging , Fetus/virology , Infectious Disease Transmission, Vertical , Mice , Mice, Inbred C57BL/virology , Pregnancy , Viral Load/drug effects , Viral Load/immunology , Virus Replication/drug effects , Virus Replication/immunology , Zika Virus/drug effects , Zika Virus Infection/immunology
5.
PLoS Negl Trop Dis ; 14(3): e0008047, 2020 03.
Article in English | MEDLINE | ID: mdl-32187187

ABSTRACT

Since Zika virus (ZIKV) emerged as a global human health threat, numerous studies have pointed to Aedes aegypti as the primary vector due to its high competence and propensity to feed on humans. The majority of vector competence studies have been conducted between 26-28°C, but arboviral extrinsic incubation periods (EIPs), and therefore transmission efficiency, are known to be affected strongly by temperature. To better understand the relationship between ZIKV EIPs and temperature, we evaluated the effect of adult mosquito exposure temperature on ZIKV infection, dissemination, and transmission in Ae. aegypti at four temperatures: 18°C, 21°C, 26°C, and 30°C. Mosquitoes were exposed to viremic mice infected with a 2015 Puerto Rican ZIKV strain, and engorged mosquitoes were sorted into the four temperatures with 80% RH and constant access to 10% sucrose. ZIKV infection, dissemination, and transmission rates were assessed via RT-qPCR from individual mosquito bodies, legs and wings, and saliva, respectively, at three to five time points per temperature from three to 31 days, based on expectations from other flavivirus EIPs. The median time from ZIKV ingestion to transmission (median EIP, EIP50) at each temperature was estimated by fitting a generalized linear mixed model for each temperature. EIP50 ranged from 5.1 days at 30°C to 24.2 days at 21°C. At 26°C, EIP50 was 9.6 days. At 18°C, only 15% transmitted by day 31 so EIP50 could not be estimated. This is among the first studies to characterize the effects of temperature on ZIKV EIP in Ae. aegypti, and the first to do so based on feeding of mosquitoes on a live, viremic host. This information is critical for modeling ZIKV transmission dynamics to understand geographic and seasonal limits of ZIKV risk; it is especially relevant for determining risk in subtropical regions with established Ae. aegypti populations and relatively high rates of return travel from the tropics (e.g. California or Florida), as these regions typically experience cooler temperature ranges than tropical regions.


Subject(s)
Aedes/radiation effects , Aedes/virology , Environmental Exposure , Mosquito Vectors/radiation effects , Mosquito Vectors/virology , Temperature , Zika Virus/growth & development , Animal Structures/virology , Animals , Disease Models, Animal , Disease Transmission, Infectious , Female , Mice , Models, Statistical , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Zika Virus Infection/transmission
6.
J Gen Virol ; 100(11): 1478-1490, 2019 11.
Article in English | MEDLINE | ID: mdl-31553299

ABSTRACT

Vesicular stomatitis (VS) is a notifiable disease of livestock affecting cattle, horses, pigs and humans. Vesicular stomatitis virus (VSV) serotypes Indiana and New Jersey are endemic to Central America; however, they also cause sporadic and scattered outbreaks in various countries in South and North America, including the USA. In order to develop an effective experimental challenge model for VSV, we compared the pathogenicity of three VSV serotype Indiana isolates in 36 4-5 week-old pigs. Two bovine isolates of Central American origin and one equine isolate from the USA were used for the experimental infections. Each pig was inoculated with a single isolate by both the intradermal and intranasal routes. Clinical signs of VSV infection were recorded daily for 10 days post-inoculation (days p.i.). Nasal and tonsillar swab samples and blood were collected to monitor immune responses, virus replication and shedding. Post-challenge, characteristic signs of VS were observed, including vesicles on the nasal planum and coronary bands, lameness, loss of hoof walls and pyrexia. Pigs inoculated with the Central American isolates showed consistently more severe clinical signs in comparison to the pigs infected with the USA isolate. Genomic RNA was isolated from the original challenge virus stocks, sequenced and compared to VSV genomes available in GenBank. Comparative genome analysis demonstrated significant differences between the VSV isolate from the USA and the two Central American isolates. Our results indicate that the Central American isolates of VSV serotype Indiana used in this study are more virulent in swine than the USA VSV serotype Indiana isolate and represent good candidate challenge strains for future VSV studies.


Subject(s)
Disease Models, Animal , Vesicular Stomatitis/pathology , Vesicular Stomatitis/virology , Vesiculovirus/growth & development , Vesiculovirus/pathogenicity , Animal Structures/pathology , Animal Structures/virology , Animals , Blood/virology , Serogroup , Swine , Vesiculovirus/classification , Virulence , Virus Replication , Virus Shedding
7.
Arch Virol ; 164(10): 2519-2523, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31270607

ABSTRACT

A newly identified atypical porcine pestivirus (APPV) associated with congenital tremors in newborn piglets has been shown to have a worldwide geographic distribution. In view of the function of Erns in pestivirus infection and replication, the viral load and histological distribution of APPV in different tissues of naturally infected piglets were analyzed by quantitative RT-PCR and immunohistochemical detection using Erns as the target. The results showed that the viral copy number was higher in the cerebellum, submandibular lymph nodes, and thymus than in other tissues, indicating that these are important target organs of APPV. The histological distribution of APPV was mainly in the matrix and nerve fiber in nervous tissues, endothelial cells in lymphoid tissues, and epithelial cells in other tissues, suggesting that these cells were target cells of APPV. The results will provide basic data for elucidating the pathogenesis and deepening the understanding of this newly discovered pathogen.


Subject(s)
Animal Structures/virology , Animals, Newborn , Pestivirus Infections/veterinary , Pestivirus/isolation & purification , Swine Diseases/virology , Swine , Viral Load , Animals , Immunohistochemistry , Pestivirus Infections/virology , Real-Time Polymerase Chain Reaction
8.
Viruses ; 11(6)2019 06 21.
Article in English | MEDLINE | ID: mdl-31234434

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus with worldwide distribution. PDCoV belongs to the Deltacoronavirus (DCoV) genus, which mainly includes avian coronaviruses (CoVs). PDCoV has the potential to infect human and chicken cells in vitro, and also has limited infectivity in calves. However, the origin of PDCoV in pigs, the host range, and cross-species infection of PDCoV still remain unclear. To determine whether PDCoV really has the ability to infect chickens in vivo, the three lines of chicken embryos and specific pathogen free (SPF) chickens were inoculated with PDCoV HNZK-02 strain to investigate PDCoV infection in the current study. Our results indicated that PDCoV can infect chicken embryos and could be continuously passaged on them. Furthermore, we observed that PDCoV-inoculated chickens showed mild diarrhea symptoms and low fecal viral RNA shedding. PDCoV RNA could also be detected in multiple organs (lung, kidney, jejunum, cecum, and rectum) and intestinal contents of PDCoV-inoculated chickens until 17 day post-inoculation by real-time quantitative PCR (qRT-PCR). A histology analysis indicated that PDCoV caused mild lesions in the lung, kidney, and intestinal tissues. These results prove the susceptibility of chickens to PDCoV infection, which might provide more insight about the cross-species transmission of PDCoV.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus/growth & development , Disease Susceptibility , Poultry Diseases/pathology , Poultry Diseases/virology , Animal Structures/pathology , Animal Structures/virology , Animals , Cattle , Chick Embryo , Coronavirus Infections/pathology , Coronavirus Infections/virology , Diarrhea/pathology , Diarrhea/virology , Disease Transmission, Infectious , Feces/virology , Virus Shedding
9.
PLoS Negl Trop Dis ; 13(6): e0007433, 2019 06.
Article in English | MEDLINE | ID: mdl-31188869

ABSTRACT

The importance of Zika virus (ZIKV) has increased noticeably since the outbreak in the Americas in 2015, when the illness was associated with congenital disorders. Although there is evidence of sexual transmission of the virus, the mosquito Aedes aegypti is believed to be the main vector for transmission to humans. This species of mosquito has not only been found naturally infected with ZIKV, but also has been the subject of study in many vector competence assays that employ different strains of ZIKV around the world. In Argentina, the first case was reported in February 2016 and a total of 278 autochthonous cases have since been confirmed, however, ZIKV virus has not been isolated from any mosquito species yet in Argentina. In order to elucidate if Argentinian Ae. aegypti populations could be a possible vector of ZIKV, we conducted vector competence studies that involved a local strain of ZIKV from Chaco province, and a Venezuelan strain obtained from an imported case. For this purpose, Ae. aegypti adults from the temperate area of Argentina (Buenos Aires province) were fed with infected blood. Body, legs and saliva were harvested and tested by plaque titration on plates of Vero cells for ZIKV at 7, 11 and 14 days post infection (DPI) in order to calculate infection, transmission, and dissemination rates, respectively. Both strains were able to infect mosquitoes at all DPIs, whereas dissemination and transmission were observed at all DPIs for the Argentinian strain but only at 14 DPI for the Venezuelan strain. This study proves the ability of Ae. aegypti mosquitoes from Argentina to become infected with two different strains of ZIKV, both belonging to the Asian lineage, and that the virus can disseminate to the legs and salivary glands.


Subject(s)
Aedes/virology , Mosquito Vectors/virology , Zika Virus/growth & development , Animal Structures/virology , Animals , Argentina , Female , Saliva/virology , Viral Load
10.
PLoS Negl Trop Dis ; 13(6): e0007462, 2019 06.
Article in English | MEDLINE | ID: mdl-31170144

ABSTRACT

Nipah virus (NiV) is a highly pathogenic re-emerging virus that causes outbreaks in South East Asia. Currently, no approved and licensed vaccine or antivirals exist. Here, we investigated the efficacy of ChAdOx1 NiVB, a simian adenovirus-based vaccine encoding NiV glycoprotein (G) Bangladesh, in Syrian hamsters. Prime-only as well as prime-boost vaccination resulted in uniform protection against a lethal challenge with NiV Bangladesh: all animals survived challenge and we were unable to find infectious virus either in oral swabs, lung or brain tissue. Furthermore, no pathological lung damage was observed. A single-dose of ChAdOx1 NiVB also prevented disease and lethality from heterologous challenge with NiV Malaysia. While we were unable to detect infectious virus in swabs or tissue of animals challenged with the heterologous strain, a very limited amount of viral RNA could be found in lung tissue by in situ hybridization. A single dose of ChAdOx1 NiVB also provided partial protection against Hendra virus and passive transfer of antibodies elicited by ChAdOx1 NiVB vaccination partially protected Syrian hamsters against NiV Bangladesh. From these data, we conclude that ChAdOx1 NiVB is a suitable candidate for further NiV vaccine pre-clinical development.


Subject(s)
Adenoviruses, Simian/genetics , Drug Carriers , Henipavirus Infections/prevention & control , Nipah Virus/immunology , Viral Vaccines/immunology , Animal Structures/virology , Animals , Disease Models, Animal , Female , Henipavirus Infections/immunology , Mesocricetus , Nipah Virus/genetics , Survival Analysis , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
11.
J Virol ; 93(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31092577

ABSTRACT

Diaphorina citri reovirus (DcRV) was previously identified based on metagenomics surveys for virus discovery. Here, we demonstrated that DcRV induces persistent infection in its psyllid host, Diaphorina citri DcRV was efficiently vertically passed to offspring in a biparental manner. Transmission electron microscopic and immunological analyses showed that the DcRV-encoded nonstructural protein P10 assembled into a virion-packaging tubular structure which is associated with the spread of DcRV throughout the bodies of D. citri insects. P10 tubules containing virions were associated with oocytes of female and sperm of male D. citri insects, suggesting a role in the highly efficient biparental transmission of DcRV. Knocking down P10 by RNA interference for males reduced the percentage of DcRV-infected progeny and for females reduced the viral accumulation in progeny. These results, for the first time, show that a nonstructural protein of a novel insect reovirus provides a safe and pivotal channel for virus spread and biparental transmission to progeny.IMPORTANCE The Asian citrus psyllid, Diaphorina citri Kuwayama, is an important pest in the worldwide citrus industry. It is the vector of "Candidatus Liberibacter asiaticus," the bacterial pathogen of Huanglongbing, which is currently considered the most destructive disease of citrus worldwide. DcRV was previously identified based on metagenomics surveys for virus discovery. Here, we found that this novel and persistent insect reovirus took advantage of a virus-encoded nonstructural protein, P10, for efficient vertical transmission from parents to progeny. P10 assembled into a virion-packaging tubular structure and was associated with oocytes of female D. citri and sperm of males. Consistent with this, knockdown of P10 for either male or female D. citri insects inhibited DcRV transmission to offspring. This tubular strategy for viral spread and biparental transmission might serve as a target for controlling viral vertical transmission and population expansion.


Subject(s)
Hemiptera/virology , Infectious Disease Transmission, Vertical , Protein Multimerization , Reoviridae Infections/veterinary , Reoviridae/isolation & purification , Viral Nonstructural Proteins/metabolism , Animal Structures/virology , Animals , Male , Oocytes/virology , Reoviridae Infections/transmission , Spermatozoa/virology
12.
J Virol ; 93(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31092580

ABSTRACT

Cytomegaloviruses (CMVs) colonize blood-borne myeloid cells. Murine CMV (MCMV) spreads from the lungs via infected CD11c+ cells, consistent with an important role for dendritic cells (DC). We show here that MCMV entering via the olfactory epithelium, a natural transmission portal, also spreads via infected DC. They reached lymph nodes, entered the blood via high endothelial venules, and then entered the salivary glands, driven by constitutive signaling of the viral M33 G protein-coupled receptor (GPCR). Intraperitoneal infection also delivered MCMV to the salivary glands via DC. However, it also seeded F4/80+ infected macrophages to the blood; they did not enter the salivary glands or require M33 for extravasation. Instead, they seeded infection to a range of other sites, including brown adipose tissue (BAT). Peritoneal cells infected ex vivo then adoptively transferred showed similar cell type-dependent differences in distribution, with abundant F4/80+ cells in BAT and CD11c+ cells in the salivary glands. BAT colonization by CMV-infected cells was insensitive to pertussis toxin inhibition of the GPCR signaling through Gi/o substrate, whereas salivary gland colonization was sensitive. Since salivary gland infection required both M33 and Gi/o-coupled signaling, whereas BAT infection required neither, these migrations were mechanistically distinct. MCMV spread from the lungs or nose depended on DC, controlled by M33. Infecting other monocyte populations resulted in unpredictable new infections.IMPORTANCE Cytomegaloviruses (CMVs) spread through the blood by infecting monocytes, and this can lead to disease. With murine CMV (MCMV) we can track infected myeloid cells and so understand how CMVs spread. Previous experiments have injected MCMV into the peritoneal cavity. MCMV normally enters mice via the olfactory epithelium. We show that olfactory infection spreads via dendritic cells, which MCMV directs to the salivary glands. Peritoneal infection similarly reached the salivary glands via dendritic cells. However, it also infected other monocyte types, and they spread infection to other tissues. Thus, infecting the "wrong" monocytes altered virus spread, with potential to cause disease. These results provide a basis for understanding how the monocyte types infected by human CMV might promote different infection outcomes.


Subject(s)
Cytomegalovirus Infections/virology , Dendritic Cells/virology , Muromegalovirus/growth & development , Myeloid Cells/virology , Animal Structures/virology , Animals , Body Fluids/virology , Disease Models, Animal , Disease Transmission, Infectious , Humans , Mice
13.
mBio ; 10(2)2019 04 02.
Article in English | MEDLINE | ID: mdl-30940697

ABSTRACT

Hepatitis D virus (HDV) forms the genus Deltavirus unassigned to any virus family. HDV is a satellite virus and needs hepatitis B virus (HBV) to make infectious particles. Deltaviruses are thought to have evolved in humans, since for a long time, they had not been identified elsewhere. Herein we report, prompted by the recent discovery of an HDV-like agent in birds, the identification of a deltavirus in snakes (Boa constrictor) designated snake HDV (sHDV). The circular 1,711-nt RNA genome of sHDV resembles human HDV (hHDV) in its coding strategy and size. We discovered sHDV during a metatranscriptomic study of brain samples of a Boa constrictor breeding pair with central nervous system signs. Applying next-generation sequencing (NGS) to brain, blood, and liver samples from both snakes, we did not find reads matching hepadnaviruses. Sequence comparison showed the snake delta antigen (sHDAg) to be 55% and 37% identical to its human and avian counterparts. Antiserum raised against recombinant sHDAg was used in immunohistology and demonstrated a broad viral target cell spectrum, including neurons, epithelial cells, and leukocytes. Using RT-PCR, we also detected sHDV RNA in two juvenile offspring and in a water python (Liasis macklotisavuensis) in the same snake colony, potentially indicating vertical and horizontal transmission. Screening of 20 randomly selected boas from another breeder by RT-PCR revealed sHDV infection in three additional snakes. The observed broad tissue tropism and the failure to detect accompanying hepadnavirus suggest that sHDV could be a satellite virus of a currently unknown enveloped virus.IMPORTANCE So far, the only known example of deltaviruses is the hepatitis delta virus (HDV). HDV is speculated to have evolved in humans, since deltaviruses were until very recently found only in humans. Using a metatranscriptomic sequencing approach, we found a circular RNA, which resembles that of HDV in size and coding strategy, in a snake. The identification of similar deltaviruses in distantly related species other than humans indicates that the previously suggested hypotheses on the origins of deltaviruses need to be updated. It is still possible that the ancestor of deltaviruses emerged from cellular RNAs; however, it likely would have happened much earlier in evolution than previously thought. These findings open up completely new avenues in evolution and pathogenesis studies of deltaviruses.


Subject(s)
Boidae/virology , Hepatitis D/veterinary , Hepatitis Delta Virus/classification , Hepatitis Delta Virus/isolation & purification , Animal Structures/virology , Animals , Brain/virology , Disease Transmission, Infectious , Gene Expression Profiling , Gene Order , Hepatitis D/transmission , Hepatitis D/virology , Hepatitis Delta Virus/genetics , High-Throughput Nucleotide Sequencing , Immunohistochemistry , Phylogeny , RNA/genetics , RNA, Circular , RNA, Viral/genetics , Sequence Homology , Viral Tropism
14.
Viruses ; 11(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30939801

ABSTRACT

Epizootic haematopoietic necrosis virus (EHNV) was originally detected in Victoria, Australia in 1984. It spread rapidly over two decades with epidemic mortality events in wild redfin perch (Perca fluviatilis) and mild disease in farmed rainbow trout (Oncorhynchus mykiss) being documented across southeastern Australia in New South Wales (NSW), the Australian Capital Territory (ACT), Victoria, and South Australia. We conducted a survey for EHNV between July 2007 and June 2011. The disease occurred in juvenile redfin perch in ACT in December 2008, and in NSW in December 2009 and December 2010. Based on testing 3622 tissue and 492 blood samples collected from fish across southeastern Australia, it was concluded that EHNV was most likely absent from redfin perch outside the endemic area in the upper Murrumbidgee River catchment in the Murray⁻Darling Basin (MDB), and it was not detected in other fish species. The frequency of outbreaks in redfin perch has diminished over time, and there have been no reports since 2012. As the disease is notifiable and a range of fish species are known to be susceptible to EHNV, existing policies to reduce the likelihood of spreading out of the endemic area are justified.


Subject(s)
DNA Virus Infections/veterinary , Disease Outbreaks , Fish Diseases/epidemiology , Fish Diseases/virology , Ranavirus/isolation & purification , Topography, Medical , Animal Structures/virology , Animals , Australia/epidemiology , Blood/virology , DNA Virus Infections/epidemiology , DNA Virus Infections/virology
15.
Microb Pathog ; 129: 213-223, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30771470

ABSTRACT

Limited deep studies are available in the field of early stages of pathogenesis of Newcastle disease virus (NDV) infection and tissue tropism of NDV. In this study, 24 specific pathogen free (SPF) chickens of white leghorn breed were infected with Newcastle disease (ND) by intranasal administration of 105 50% EID50/0.1 mL of velogenic NDV (vNDV). A second group of 15 chickens were kept as a control group. Chickens were monitored every day to record clinical signs. Infected chickens were euthanized by cervical dislocation at successive times, namely at hours (hrs) 2, 4, 6, 12, days 1, 2, 4, and 6 post-inoculation (pi). Whereas, control group chickens were euthanized on days 0, 1, 2, 4, and 6 pi. Tissues of brain, trachea, lung, caecal tonsil, liver, kidney, spleen, heart, proventriculus, intestine, and thymus were collected, fixed in 10% buffered formalin, embedded in paraffin, and sectioned. HS staining, immunoperoxidase staining (IPS) and in situ PCR were applied. It was concluded that at hr 2 pi, virus seemed to be inclined to trachea and respiratory tract. Meanwhile, it attacked caecal tonsils, intestine and bursa of Fabricus. While primary viraemia was ongoing, virus created footing in kidney and thymus. At hr 4 pi, proventriculus, liver, and spleen were attacked. However, at hr 6 pi, brain and heart were involved. Secondary viraemia probably started as early as hr 12 pi since all collected tissues were positive. Tissue tropism was determined in trachea, caecal tonsil, liver, bursa of Fabricius, intestine, proventriculus, lung, spleen, thymus, kidney, heart, and brain.


Subject(s)
Newcastle Disease/pathology , Newcastle Disease/virology , Newcastle disease virus/physiology , Poultry Diseases/pathology , Poultry Diseases/virology , Viral Tropism , Animal Structures/pathology , Animal Structures/virology , Animals , Blood/virology , Chickens , Histocytochemistry , Immunohistochemistry , Polymerase Chain Reaction , Time Factors
16.
Microb Pathog ; 129: 195-205, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30738178

ABSTRACT

Infectious bursal disease is one of an OIE list of notifiable diseases. Chicken is the only host that manifests clinical signs and its pathogenicity is correlated with the distribution of antigens in organs. This study was conducted to determine disease pathogenesis and virus tissue tropism by in situ PCR, immunoperoxidase staining (IPS), and HE staining. Twenty four chickens were infected with very virulent Infectious Bursal Disease Virus (vvIBDV). Fifteen chickens were kept as a control group. Infected chickens were sacrificed at hrs 2, 4, 6, 12, days 1, 2, 4, and 6 post-inoculation (pi). While, control chickens were euthanized on days 0, 1, 2, 4, and 6 pi. Different tissues were collected, fixed in 10% buffered formalin, and processed. At hr 2 pi, virus was detected in intestinal, junction of the proventriculus and gizzard, cecal tonsil, liver, kidney, and bursa of Fabricius. At hr 4 pi, virus reached spleen, and at hr 6 pi, it entered thymus. At hr 12 pi, virus concentration increased in positive tissues. The latest invaded tissue was muscle on day 1 pi. Secondary viraemia occurred during 12-24 h pi. In situ PCR was the most sensitive technique to highlight obscure points of infection in this study.


Subject(s)
Birnaviridae Infections/veterinary , Infectious bursal disease virus/physiology , Infectious bursal disease virus/pathogenicity , Poultry Diseases/pathology , Poultry Diseases/virology , Viral Tropism , Animal Structures/pathology , Animal Structures/virology , Animals , Birnaviridae Infections/pathology , Birnaviridae Infections/virology , Chickens , Histocytochemistry , Immunohistochemistry , Polymerase Chain Reaction , Time Factors
17.
Virus Res ; 263: 80-86, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30658073

ABSTRACT

Porcine circovirus 2 (PCV2) capsid protein (Cap) has a nuclear localization signal (NLS) and can enter the nucleus. In this study, ivermectin, a small-molecule nuclear import inhibitor of proteins was used to determine the role of nuclear localization of Cap on PCV2 replication. Observation by fluorescence microscopy of the intracellular localization of Cap and Cap NLS in cells cultured with ivermectin (50 µg/mL) determined that Cap and Cap NLS were located in the cytoplasm; in contrast, for cells cultured without ivermectin, they accumulated in the cell nucleus. Ivermectin treatment also reduced nuclear transport of Cap derived from PCV2 infection as well as PCV2 replication in PK-15 cells. In addition, lower levels of PCV2 in tissues and sera of piglets treated with ivermectin were detected by qPCR. These results established for the first time that ivermectin has potent antiviral activity towards PCV2 both in vitro and vivo.


Subject(s)
Antiviral Agents/administration & dosage , Circoviridae Infections/veterinary , Circovirus/drug effects , Ivermectin/administration & dosage , Swine Diseases/drug therapy , Virus Replication/drug effects , Animal Structures/virology , Animals , Animals, Newborn , Antiviral Agents/pharmacology , Capsid Proteins/analysis , Cell Line , Circoviridae Infections/drug therapy , Circoviridae Infections/virology , Circovirus/physiology , Cytoplasm/virology , Ivermectin/pharmacology , Microscopy, Fluorescence , Serum/virology , Swine , Swine Diseases/virology , Treatment Outcome , Viral Load
18.
Virus Res ; 263: 55-63, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30611822

ABSTRACT

Enterovirus A71 (EV-A71) is known for its manifestation as hand foot and mouth disease (HFMD), which has caused countless large-scale epidemic outbreaks throughout the world. However, the molecular pathogenesis of EV-A71 infection is still elusive. Previous studies found that the biological characteristics of a mild EV-A71 strain (SDLY1) and a severe EV-A71 strain (SDLY107) are significantly different, and sequence analysis showed that there are several differences in nucleotide sites of UTRs (88 nt, 123 nt, 143 nt, 154 nt, 187 nt, 241 nt, 243 nt, 253 nt, 291 nt, 438 nt, 440 nt, 571 nt, 579 nt, 602 nt, 658 nt, 664 nt, 690 nt, 696 nt, 7328 nt, 7335 nt, 7367 nt, and 7395 nt). The aim of this study was to determine whether these amino sites in UTRs are associated with the pathogenesis of EV-A71 and are responsible for different clinical manifestations. Based on the reverse genetics technology, we rescued two chimeric viruses SDLY107(1-5'UTR) and SDLY107(1-3'UTR) by replacing 5'UTR/3'UTR gene fragments of an infectious cDNA clone. Replication kinetics and cytotoxicity assays showed that the virulence of the two chimeric strains significantly changed in vitro. The viral loads of the two chimeric strains in infected ICR mice were reduced and pathological damage in the brains, lungs, intestinal tissues, and muscles were lightened. Our findings suggest that some nucleotide sites in UTRs may have a function in the pathogenicity and virulence of EV-A71.


Subject(s)
Enterovirus A, Human/growth & development , Enterovirus A, Human/pathogenicity , Hand, Foot and Mouth Disease/pathology , Hand, Foot and Mouth Disease/virology , RNA, Viral/genetics , Untranslated Regions , Virulence Factors , Animal Structures/pathology , Animal Structures/virology , Animals , Cell Line , Cell Survival , Disease Models, Animal , Enterovirus A, Human/genetics , Humans , Mice, Inbred ICR , Reverse Genetics , Viral Load , Virulence , Virus Replication
19.
Microb Pathog ; 127: 131-137, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30508624

ABSTRACT

Newcastle disease (ND), affecting over 250 bird species, is caused by the Newcastle disease virus (NDV). ND is one of the leading causes of morbidity and mortality in pigeons. Most studies investigating NDV in pigeons have focused on the epidemiology and pathogenicity of the virus. However, the host immune responses in pigeons infected with NDVs remains largely unclear. In this study, we investigated the host immune responses in pigeons infected with two NDV stains, a pigeon paramyxovirus type 1(PPMV-1) strain, GZH14, and a genotype II virus, KP08. Although no mortality was observed upon infection with either virus, obvious neurological effects were observed in the GZH14-infected pigeons but not in the KP08-infected pigeons. Both viruses could replicate in the examined tissues, namely brain, lung, spleen, trachea, kidney, and bursa of Fabricius. The expression level of RIG-I, IL-6, IL-1ß, CCL5, and IL-8 were up-regulated by both viruses in the brain, lung and spleen at 3 and 7 days post-infection. Notably, these proinflammatory cytokines and chemokines showed more intense expression in the brain, when induced by the GZH14 strain than with the KP08 strain. These results indicate that the intense inflammatory responses induced by PPMV-1 in the brain may be a critical determinant of neurological symptoms in pigeons infected with PPMV-1. Our study provides new insight into the pathogenicity of PPMV-1 in pigeons attributable to the host immune responses.


Subject(s)
Animal Structures/pathology , Columbidae , Cytokines/analysis , Newcastle Disease/immunology , Newcastle Disease/pathology , Newcastle disease virus/immunology , Animal Structures/virology , Animals , Gene Expression Profiling , Genotype , Newcastle disease virus/growth & development , Newcastle disease virus/isolation & purification
20.
J Gen Virol ; 100(2): 166-175, 2019 02.
Article in English | MEDLINE | ID: mdl-30461374

ABSTRACT

Interspecies transmission of viruses, where a pathogen crosses species barriers and jumps from its original host into a novel species, has been receiving increasing attention. Viral covert mortality disease, caused by covert mortality nodavirus (CMNV), is an emerging disease that has recently had a substantial impact on shrimp aquaculture in Southeast Asia and Latin America. While investigating the host range of CMNV, we found that this virus is also capable of infecting populations of the farmed Japanese flounder Paralichthys olivaceus, a vertebrate host. The infected fish were being raised in aquaculture facilities that were also producing marine shrimp. Through RT-nPCR, targeting the RNA-dependent RNA polymerase (RdRp) gene of CMNV, we found that 29 % of the fish sampled were positive. The amplicons were sequenced and aligned to the RdRp gene of shrimp CMNV and were found to have 98 % identity. Histopathological examination indicated that CMNV-positive fish showed vacuolation of nervous tissue in the eye and brain, as well as extensive necrosis of cardiac muscle. In situ hybridization showed positive reactions in tissues of the eye, brain, heart, liver, spleen and kidney of infected fish. Transmission electron microscopy showed the presence of CMNV-like particles in all of the above-mentioned tissues, except for brain. The novel finding of a shrimp alphanodavirus that can also infect farmed P. olivaceus indicates that this virus is capable of naturally crossing the species barrier and infecting another vertebrate. This finding will contribute to the development of efficient strategies for disease management in aquaculture.


Subject(s)
Fish Diseases/virology , Flounder/virology , Nodaviridae/isolation & purification , RNA Virus Infections/veterinary , Animal Structures/pathology , Animal Structures/virology , Animals , Aquaculture , Asia, Southeastern , Histocytochemistry , Host Specificity , Latin America , Nodaviridae/classification , Nodaviridae/genetics , Nodaviridae/growth & development , Penaeidae/virology , RNA Virus Infections/virology , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...