Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.489
Filter
1.
Signal Transduct Target Ther ; 9(1): 218, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39174522

ABSTRACT

Obesity is a global issue that warrants the identification of more effective therapeutic targets and a better understanding of the pivotal molecular pathogenesis. Annexin A1 (ANXA1) is known to inhibit phospholipase A2, exhibiting anti-inflammatory activity. However, the specific effects of ANXA1 in obesity and the underlying mechanisms of action remain unclear. Our study reveals that ANXA1 levels are elevated in the adipose tissue of individuals with obesity. Whole-body or adipocyte-specific ANXA1 deletion aggravates obesity and metabolic disorders. ANXA1 levels are higher in stromal vascular fractions (SVFs) than in mature adipocytes. Further investigation into the role of ANXA1 in SVFs reveals that ANXA1 overexpression induces lower numbers of mature adipocytes, while ANXA1-knockout SVFs exhibit the opposite effect. This suggests that ANXA1 plays an important role in adipogenesis. Mechanistically, ANXA1 competes with MYC binding protein 2 (MYCBP2) for interaction with PDZ and LIM domain 7 (PDLIM7). This exposes the MYCBP2-binding site, allowing it to bind more readily to the SMAD family member 4 (SMAD4) and promoting its ubiquitination and degradation. SMAD4 degradation downregulates peroxisome proliferator-activated receptor gamma (PPARγ) transcription and reduces adipogenesis. Treatment with Ac2-26, an active peptide derived from ANXA1, inhibits both adipogenesis and obesity through the mechanism. In conclusion, the molecular mechanism of ANXA1 inhibiting adipogenesis was first uncovered in our study, which is a potential target for obesity prevention and treatment.


Subject(s)
Adipocytes , Adipogenesis , Annexin A1 , Obesity , PPAR gamma , Annexin A1/genetics , Annexin A1/metabolism , Adipogenesis/genetics , Animals , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Humans , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Smad4 Protein/genetics , Smad4 Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , 3T3-L1 Cells , Peptides
2.
Rev Soc Bras Med Trop ; 57: e00412, 2024.
Article in English | MEDLINE | ID: mdl-39082522

ABSTRACT

BACKGROUND: Leishmania braziliensis, a protozoan prevalent in Brazil, is the known causative agent of cutaneous leishmaniasis (CL). The activation of M1 macrophages is a pivotal factor in the host's ability to eliminate the parasite, whereas M2 macrophages may facilitate parasite proliferation. This study analyzed the clinical outcomes of CL and the patients' immunological profiles, focusing on the prevalence of M1 and M2 macrophages, cytokine production, and annexin-A1 (ANXA1) expression in the lesion. METHODS: Data were obtained by polymerase chain reaction (PCR) and histopathological, immunofluorescence, and cytokine analyses. RESULTS: Patients with exudative and cellular reaction-type (ECR)-type lesions that healed within 90 days showed a significant increase in M1. Conversely, patients with ECR and exudative and granulomatous reaction (EGR)types, who healed within 180 days, showed an elevated number of M2. Cytokines interferon (IFN)-γ and tumor necrosis factor (TNF)-α were higher in ECR lesions that resolved within 90 days (P<0.05). In contrast, IL-9 and IL-10 levels significantly increased in both ECR and EGR lesions that healed after 180 days (P<0.001). The production of IL-21, IL-23 and TGF-ß was increased in patients with ECR or EGR lesions that healed after 180 days (P<0.05). The expression of ANXA1 was higher in M2 within ECR-type lesions in patients who healed after 180 days (P<0.05). CONCLUSIONS: These findings suggest that the infectious microenvironment induced by L. braziliensis affects the differentiation of M1 and M2 macrophages, cytokine release, and ANXA1 expression, thereby influencing the healing capacity of patients. Therefore, histopathological and immunological investigations may improve the selection of CL therapy.


Subject(s)
Annexin A1 , Cytokines , Leishmania braziliensis , Leishmaniasis, Cutaneous , Macrophages , Humans , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/pathology , Male , Leishmania braziliensis/immunology , Female , Adult , Macrophages/immunology , Middle Aged , Polymerase Chain Reaction , Young Adult , Adolescent
3.
Sci Rep ; 14(1): 15304, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961188

ABSTRACT

Inflammation, corticosteroids, and loading all affect tendon healing, with an interaction between them. However, underlying mechanisms behind the effect of corticosteroids and the interaction with loading remain unclear. The aim of this study was to investigate the role of dexamethasone during tendon healing, including specific effects on tendon cells. Rats (n = 36) were randomized to heavy loading or mild loading, the Achilles tendon was transected, and animals were treated with dexamethasone or saline. Gene and protein analyses of the healing tendon were performed for extracellular matrix-, inflammation-, and tendon cell markers. We further tested specific effects of dexamethasone on tendon cells in vitro. Dexamethasone increased mRNA levels of S100A4 and decreased levels of ACTA2/α-SMA, irrespective of load level. Heavy loading + dexamethasone reduced mRNA levels of FN1 and TenC (p < 0.05), while resolution-related genes were unaltered (p > 0.05). In contrast, mild loading + dexamethasone increased mRNA levels of resolution-related genes ANXA1, MRC1, PDPN, and PTGES (p < 0.03). Altered protein levels were confirmed in tendons with mild loading. Dexamethasone treatment in vitro prevented tendon construct formation, increased mRNA levels of S100A4 and decreased levels of SCX and collagens. Dexamethasone during tendon healing appears to act through immunomodulation by promoting resolution, but also through an effect on tendon cells.


Subject(s)
Achilles Tendon , Dexamethasone , Tendon Injuries , Wound Healing , Dexamethasone/pharmacology , Animals , Rats , Wound Healing/drug effects , Tendon Injuries/drug therapy , Tendon Injuries/metabolism , Achilles Tendon/drug effects , Achilles Tendon/metabolism , Achilles Tendon/injuries , Achilles Tendon/pathology , S100 Calcium-Binding Protein A4/metabolism , S100 Calcium-Binding Protein A4/genetics , Male , Annexin A1/metabolism , Annexin A1/genetics , Actins/metabolism , Actins/genetics , Collagen/metabolism , Rats, Sprague-Dawley , Tendons/drug effects , Tendons/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics , Basic Helix-Loop-Helix Transcription Factors
4.
J Biochem Mol Toxicol ; 38(7): e23759, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39003567

ABSTRACT

Fetal growth restriction (FGR) severely affects the health outcome of newborns and represents a major cause of perinatal morbidity. The precise involvement of circCULT1 in the progression of FGR remains unclear. We performed next-generation sequencing and RT-qPCR to identify differentially expressed circRNAs in placental tissues affected by FGR by comparing them with unaffected counterparts. Edu, flow cytometry, and transwell assay were conducted to detect HTR8/SVneo cell's function in regard to cell proliferation, migration, and invasion. The interaction between circCUL1 and hsa-miR-30e-3p was assessed through dual-luciferase reporter assays, validation of the interaction between circCUL1 and ANXA1 was performed using RNA pulldown and immunoprecipitation assays. Western blot analysis was performed to evaluate protein levels of autophagy markers and components of the PI3K/AKT signaling pathway. A knockout (KO) mouse model was established for homologous mmu-circ-0001469 to assess fetal mouse growth and development indicators. Our findings revealed an upregulation of circCUL1 expression in placental tissues from patients with FGR. We found that suppression of circCUL1 increased the trophoblast cell proliferation, migration, and invasion, circCUL1 could interact with hsa-miR-30e-3p. Further, circCUL1 stimulated autophagy, modulating trophoblast cell autophagy via the ANXA1/PI3K/AKT pathway, and a notable disparity was observed, with KO mice displaying accelerated embryo development and exhibiting heavier placentas in comparison to wild-type C57BL/6 mice. By modulating the ANXA1/PI3K/AKT signaling pathway through the interaction with hsa-miR-30e-3p, circCUL1 promotes autophagy while concurrently suppressing trophoblast cell proliferation, migration, and invasion. These findings offer novel insights into potential diagnostic markers and therapeutic targets for FGR research.


Subject(s)
Autophagy , Cell Movement , Fetal Growth Retardation , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Trophoblasts , Animals , Female , Humans , Mice , Pregnancy , Annexin A1 , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Mice, Knockout , MicroRNAs/metabolism , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction , Trophoblasts/metabolism , Trophoblasts/pathology
5.
J Tradit Chin Med ; 44(4): 753-761, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39066536

ABSTRACT

OBJECTIVE: To determine whether moxibustion had an anti-inflammatory effect on rheumatoid arthritis (RA) by regulating Annexin 1 expression and interfering with the phospholipaseA2 signaling pathway. METHODS: Thirty male Sprague-Dawley rats were randomly categorized into five groups (six rats per group): blank control (CON) group, RA model (RA) group, moxibustion (MOX) group, Annexin 1 lentiviral intervention (RNAi-Anxa1) group, and Annexin 1 lentiviral intervention + moxibustion (RNAi-Anxa1 + MOX) group. The rats in the RNAi-Anxa1 and the RNAi-Anxa1 + MOX groups were injected with the lentiviral vector-mediated RNAi-Anxa1 into the rat foot pad. An experimental RA rat model was established by injecting Freund's complete adjuvant (FCA) into the RA, MOX, RNAi-Anxa1, and RNAi-Anxa1 + MOX groups. Rats in the MOX and RNAi-Anxa1 + MOX groups received moxibustion treatment. After modeling, using moxibustion "Shenshu (BL23)" and "Zusanli (ST36)", each point is 5 times, bilateral alternating, once a day, 6 times for a course of treatment, between the courses of rest for a one day. A total of three treatment courses were conducted. Both bilateral pad thicknesses were measured using Vernier calipers on experimental days 1, 7, 14, 21, and 28. The expression of cPLA2α signaling in the synovium of diseased joints was observed using Western blot. The pathology of the rat ankle synovium was observed using hematoxylin-eosin (HE) staining. Interleukin (IL)-1ß, IL-10, prostaglandin E2 (PGE2), and leukotriene B4 (LTB4) were detected using enzyme-linked immunosorbent assay. RESULTS: Moxibustion increased the levels of Annexin 1 and decreased the inflammatory response in rats with RA. After increasing the expression of Annexin 1, the phosphorylated expression of cPLA2α was inhibited, the serum levels of IL-1ß, PGE2, and LTB4 decreased, and the level of IL-10 increased. In moxibustion treated RA rats after the Annexin 1 lentiviral intervention, the serum levels of IL-1ß, PGE2, LTB4, and IL-10 were almost unchanged. CONCLUSION: Moxibustion enhanced the negative regulation of the cPLA2α signaling pathway, increased the synovial Annexin 1 expression, inhibited the cPLA2α signaling pathway, indirectly inhibited the expression of downstream inflammatory factors, and played a role in reducing inflammation.


Subject(s)
Annexin A1 , Arthritis, Rheumatoid , Moxibustion , Signal Transduction , Animals , Humans , Male , Rats , Annexin A1/genetics , Annexin A1/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/immunology , Dinoprostone/metabolism , Phospholipase A2 Inhibitors , Phospholipases A2/metabolism , Phospholipases A2/genetics , Rats, Sprague-Dawley
6.
Front Immunol ; 15: 1436151, 2024.
Article in English | MEDLINE | ID: mdl-39076982

ABSTRACT

Introduction: Exosomes produced by the protozoan parasite Leishmania (LeishEXO) are well-established drivers of virulence, though mechanisms underlying their exacerbation of experimental leishmaniasis remain elusive. Expression of Annexin A1 (ANXA1), a protein implicated in exosome-mediated pathologies and viral internalization, has been shown to correlate with cutaneous leishmaniasis severity. Given ANXA1's regulation of myeloid cells - the canonical hosts for Leishmania - we studied the potential role of ANXA1 and its receptors FPR1/2 in exerting LeishEXO's effects. Methods: Murine and in vitro ANXA1-/- models were used to study the generation of protective TH1 responses during experimental L. major infection with and without LeishEXO. Recruitment of inflammatory cells was assessed using a peritoneal cell recruitment assay and immunophenotyping, and production of inflammatory mediators was measured using a cytokine and chemokine array. Treatment of experimental models with FPR2 antagonist WRW4 and FPR1/2 agonist WKYMVm was used to delineate the role of the FPR/ANXA1 axis in LeishEXO-mediated hyperpathogenesis. Results: We established that ANXA1 deficiency prohibits LeishEXO-mediated pathogenesis and myeloid cell infection, with minimal alterations to adaptive and innate immune phenotypes. FPR2 blockade with WRW4 similarly inhibited leishmanial hyperpathogenesis, while direct activation of FPRs with WKYMVm enhanced infection and recapitulated the LeishEXO-mediated phenotype. This research describes LeishEXO's utilization of the ANXA1/FPR axis to facilitate parasitic internalization and pathogenesis, which may be leveraged in the development of therapeutics for leishmaniasis.


Subject(s)
Annexin A1 , Exosomes , Leishmania major , Leishmaniasis, Cutaneous , Mice, Knockout , Receptors, Formyl Peptide , Annexin A1/metabolism , Annexin A1/genetics , Animals , Exosomes/metabolism , Exosomes/immunology , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/metabolism , Mice , Receptors, Formyl Peptide/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Skin/parasitology , Skin/immunology , Skin/pathology , Skin/metabolism , Th1 Cells/immunology , Female
7.
Acta Physiol (Oxf) ; 240(8): e14184, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38822624

ABSTRACT

AIM: Sepsis-induced myocardial injury (SIMI) may be associated with insufficient mitophagy in cardiomyocytes, but the exact mechanism involved remains unknown. Sirtuin 3 (Sirt3) is mainly found in the mitochondrial matrix and is involved in repairing mitochondrial function through means such as the activation of autophagy. Previously, we demonstrated that the annexin-A1 small peptide (ANXA1sp) can promote Sirt3 expression in mitochondria. In this study, we hypothesized that the activation of Sirt3 by ANXA1sp induces mitophagy, thereby providing a protective effect against SIMI in mice. METHODS: A mouse model of SIMI was established via cecal ligation and puncture. Intraperitoneal injections of ANXA1sp, 3TYP, and 3MA were administered prior to modeling. After successful modeling, IL-6, TNF-α, CK-MB, and CTn-I levels were measured; cardiac function was assessed using echocardiography; myocardial mitochondrial membrane potential, ROS, and ATP production were determined; myocardial mitochondrial ultrastructure was observed using transmission electron microscopy; and the expression levels of Sirt3 and autophagy-related proteins were detected using western blotting. RESULTS: ANXA1sp significantly reduced serum IL-6, TNF-α, CK-MB, and CTn-I levels; decreased myocardial ROS production; increased mitochondrial membrane potential and ATP synthesis; and improved myocardial mitochondrial ultrastructure in septic mice. Furthermore, ANXA1sp promoted Sirt3 expression and activated the AMPK-mTOR pathway to induce myocardial mitophagy. These protective effects of ANXA1sp were reversed upon treatment with the Sirt3 blocker, 3-TYP. CONCLUSION: ANXA1sp can reverse SIMI, and the underlying mechanism may be related to the activation of the AMPK-mTOR pathway following upregulation of Sirt3 by ANXA1sp, which, in turn, induces autophagy.


Subject(s)
Annexin A1 , Mitophagy , Sepsis , Sirtuin 3 , Animals , Sepsis/complications , Sepsis/metabolism , Mitophagy/drug effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Mice , Annexin A1/metabolism , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Disease Models, Animal , Autophagy , Peptides
8.
Biochem Biophys Res Commun ; 725: 150202, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38885563

ABSTRACT

The annexin superfamily protein, Annexin A1, initially recognized for its glucocorticoid-induced phospholipase A2-inhibitory activities, has emerged as a crucial player in diverse cellular processes, including cancer. This review explores the multifaceted roles of Anx-A1 in cancer chemoresistance, an area largely unexplored. Anx-A1's involvement in anti-inflammatory processes, its complex phosphorylation patterns, and its context-dependent switch from anti-to pro-inflammatory in cancer highlights its intricate regulatory mechanisms. Recent studies highlight Anx-A1's paradoxical roles in different cancers, exhibiting both up- and down-regulation in a tissue-specific manner, impacting different hallmark features of cancer. Mechanistically, Anx-A1 modulates drug efflux transporters, influences cancer stem cell populations, DNA damages and participates in epithelial-mesenchymal transition. This review aims to explore Anx-A1's role in chemoresistance-associated pathways across various cancers, elucidating its impact on survival signaling cascades including PI3K/AKT, MAPK/ERK, PKC/JNK/P-gp pathways and NFκ-B signalling. This review also reveals the clinical implications of Anx-A1 dysregulation in treatment response, its potential as a prognostic biomarker, and therapeutic targeting strategies, including the promising Anx-A1 N-terminal mimetic peptide Ac2-26. Understanding Anx-A1's intricate involvement in chemoresistance offers exciting prospects for refining cancer therapies and improving treatment outcomes.


Subject(s)
Annexin A1 , Drug Resistance, Neoplasm , Neoplasms , Humans , Annexin A1/metabolism , Annexin A1/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Epithelial-Mesenchymal Transition
9.
Arch Dermatol Res ; 316(7): 385, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874830

ABSTRACT

Ultraviolet-B (UV-B) radiation overexposure causes function impairment of epidermal stem cells (ESCs). We explored the mechanism of Annexin A1 (ANXA1) ameliorating UV-B-induced ESC mitochondrial dysfunction/cell injury. ESCs were cultured in vitro and irradiated with different doses of UV-B. Cell viability/ANXA1 protein level were assessed. After oe-ANXA1 transfection, ESCs were treated with oe-ANXA1/UV-B irradiation/CCCP/CCG-1423/3-methyladenine for 12 h. Cell viability/death, and adenosine triphosphate (ATP)/reactive oxygen species (ROS) levels were determined. Mitochondrial membrane potential (MMP) changes/DNA (mtDNA) content/oxygen consumption and RhoA activation were assessed. ROCK1/p-MYPT1/MYPT1/(LC3BII/I)/Beclin-1/p62 protein levels were determined. Mitochondrial morphology was observed. Mito-Tracker Green (MTG) and LC3B levels were determined. UV-B irradiation decreased cell viability/ANXA1 expression in a dose-dependent manner. UV-B-treated ESCs exhibited reduced cell viability/ATP content/MMP level/mitochondrial respiratory control ratio/mtDNA number/RhoA activity/MYPT1 phosphorylation/MTG+LC3B+ cells/(LC3BII/I) and Beclin-1 proteins, increased cell death/ROS/p62/IL-1ß/IL-6/TNF-α expression, contracted mitochondrial, disappeared mitochondrial cristae, and increased vacuolar mitochondria, which were averted by ANXA1 overexpression, suggesting that UV-B induced ESC mitochondrial dysfunction/cell injury/inflammation by repressing mitophagy, but ANXA1 promoted mitophagy by activating the RhoA/ROCK1 pathway, thus repressing UV-B's effects. Mitophagy activation ameliorated UV-B-caused ESC mitochondrial dysfunction/cell injury/inflammation. Mitophagy inhibition partly diminished ANXA1-ameliorated UV-B's effects. Conjointly, ANXA1 promoted mitophagy by activating the RhoA/ROCK1 pathway, thereby improving UV-B-induced ESC mitochondrial dysfunction/cell injury.


Subject(s)
Annexin A1 , Cell Survival , Membrane Potential, Mitochondrial , Mitochondria , Stem Cells , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Mitochondria/metabolism , Mitochondria/radiation effects , Annexin A1/metabolism , Cell Survival/radiation effects , Stem Cells/metabolism , Stem Cells/radiation effects , Humans , Membrane Potential, Mitochondrial/radiation effects , Reactive Oxygen Species/metabolism , Epidermal Cells/metabolism , Epidermal Cells/radiation effects , Cells, Cultured
10.
Crit Rev Eukaryot Gene Expr ; 34(5): 69-79, 2024.
Article in English | MEDLINE | ID: mdl-38842205

ABSTRACT

Gastric cancer is a most malignancy in digestive tract worldwide. This study aimed to investigate the roles of protein arginine methyltransferase 6 (PRMT6) in gastric cancer. Immunohistochemistry was performed to detect PRMT6 expression in gastric tumors. Real-time transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to detected mRNA levels. Protein expression was determined using western blot. Gastric cancer cells were co-cultured with CD8+ T cells. Colony formation assay was performed to detect cell proliferation. Flow cytometry was performed to determine CD8+ T cell function and tumor cell apoptosis. PRMT6 was overexpressed in gastric tumors. High level of PRMT6 predicted poor outcomes of gastric cancer patients and inhibition of CD8+ T cell infiltration. PRMT6 promoted proliferation of CD8+ T cells and enhanced its tumor killing ability. Moreover, PRMT6 upregulated annexin A1 (ANXA1) and promoted ANXA1 protein stability. ANXA1 overexpression suppressed the proliferation of CD8+ T cells and promoted tumor cell survival. PRMT6 functions as an oncogene in gastric cancer. PRMT6-mediated protein stability inhibits the infiltration of CD8+ T cells, resulting in immune evasion of gastric cancer. The PRMT6-ANXA1 may be a promising strategy for gastric cancer.


Subject(s)
Annexin A1 , CD8-Positive T-Lymphocytes , Cell Proliferation , Gene Expression Regulation, Neoplastic , Protein-Arginine N-Methyltransferases , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Humans , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Annexin A1/genetics , Annexin A1/metabolism , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Up-Regulation , Apoptosis , Tumor Escape/genetics , Male , Immune Evasion , Female , Nuclear Proteins
11.
J Neuroimmune Pharmacol ; 19(1): 17, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717643

ABSTRACT

In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.


Subject(s)
Annexin A1 , Ischemic Stroke , Microglia , Neuroinflammatory Diseases , Sirtuins , Animals , Male , Mice , Annexin A1/drug effects , Annexin A1/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Sirtuins/antagonists & inhibitors , Sirtuins/metabolism , Up-Regulation/drug effects
12.
Commun Biol ; 7(1): 514, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710749

ABSTRACT

Acute lung injury (ALI) is characterized by respiratory failure resulting from the disruption of the epithelial and endothelial barriers as well as immune system. In this study, we evaluated the therapeutic potential of airway epithelial cell-derived extracellular vesicles (EVs) in maintaining lung homeostasis. We isolated human bronchial epithelial cell-derived EVs (HBEC-EVs), which endogenously express various immune-related surface markers and investigated their immunomodulatory potential in ALI. In ALI cellular models, HBEC-EVs demonstrated immunosuppressive effects by reducing the secretion of proinflammatory cytokines in both THP-1 macrophages and HBECs. Mechanistically, these effects were partially ascribed to nine of the top 10 miRNAs enriched in HBEC-EVs, governing toll-like receptor-NF-κB signaling pathways. Proteomic analysis revealed the presence of proteins in HBEC-EVs involved in WNT and NF-κB signaling pathways, pivotal in inflammation regulation. ANXA1, a constituent of HBEC-EVs, interacts with formyl peptide receptor (FPR)2, eliciting anti-inflammatory responses by suppressing NF-κB signaling in inflamed epithelium, including type II alveolar epithelial cells. In a mouse model of ALI, intratracheal administration of HBEC-EVs reduced lung injury, inflammatory cell infiltration, and cytokine levels. Collectively, these findings suggest the therapeutic potential of HBEC-EVs, through their miRNAs and ANXA1 cargo, in mitigating lung injury and inflammation in ALI patients.


Subject(s)
Acute Lung Injury , Annexin A1 , Epithelial Cells , Extracellular Vesicles , Receptors, Formyl Peptide , Receptors, Lipoxin , Signal Transduction , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Annexin A1/metabolism , Annexin A1/genetics , Animals , Mice , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Epithelial Cells/metabolism , Bronchi/metabolism , Bronchi/cytology , Male , Mice, Inbred C57BL , MicroRNAs/metabolism , MicroRNAs/genetics , NF-kappa B/metabolism , Cytokines/metabolism , THP-1 Cells
13.
ACS Biomater Sci Eng ; 10(5): 3232-3241, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38556725

ABSTRACT

Myocardial infarction (MI) is associated with inflammatory reaction, which is a pivotal component in MI pathogenesis. Moreover, excessive inflammation post-MI can lead to cardiac dysfunction and adverse remodeling, emphasizing the critical need for an effective inflammation-regulating treatment for cardiac repair. Macrophage polarization is crucial in the inflammation process, indicating its potential as an adjunct therapy for MI. In this study, we developed an injectable alginate hydrogel loaded with annexin A1 (AnxA1, an endogenous anti-inflammatory and pro-resolving mediator) for MI treatment. In vitro results showed that the composite hydrogel had good biocompatibility and consistently released AnxA1 for several days. Additionally, this hydrogel led to a reduced number of pro-inflammatory macrophages and an increased proportion of pro-healing macrophages via the adenosine monophosphate (AMP)-activated protein kinase (AMPK)-mammalian target of the rapamycin (mTOR) axis. Furthermore, the intramyocardial injection of this composite hydrogel into a mouse MI model effectively modulated macrophage transition to pro-healing phenotypes. This transition mitigated early inflammatory responses and cardiac fibrosis, promoted angiogenesis, and improved cardiac function. Therefore, our study findings suggest that combining biomaterials and endogenous proteins for MI treatment is a promising approach for limiting adverse cardiac remodeling, preventing cardiac damage, and preserving the function of infarcted hearts.


Subject(s)
Alginates , Annexin A1 , Hydrogels , Macrophages , Myocardial Infarction , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Alginates/chemistry , Alginates/pharmacology , Annexin A1/metabolism , Annexin A1/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Male , Phenotype , RAW 264.7 Cells , AMP-Activated Protein Kinases/metabolism
14.
Front Biosci (Landmark Ed) ; 29(4): 158, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38682206

ABSTRACT

BACKGROUND: Immunogenic cell death (ICD) is a crucial mechanism for triggering the adaptive immune response in cancer patients. Damage-associated molecular patterns (DAMPs) are critical factors in the detection of ICD. Chemotherapeutic drugs can cause ICD and the release of DAMPs. The aim of this study was to assess the potential for paclitaxel and platinum-based chemotherapy regimens to induce ICD in squamous cell carcinoma (SCC) cell lines. In addition, we examined the immunostimulatory effects of clinically relevant chemotherapeutic regimens utilized in the treatment of SCC. METHODS: We screened for differentially expressed ICD markers in the supernatants of three SCC cell lines following treatment with various chemotherapeutic agents. The ICD markers included Adenosine Triphosphate (ATP), Calreticulin (CRT), Annexin A1 (ANXA 1), High Mobility Group Protein B1 (HMGB1), and Heat Shock Protein 70 (HSP70). A vaccination assay was also employed in C57BL/6J mice to validate our in vitro findings. Lastly, the levels of CRT and HMGB1 were evaluated in Serum samples from SCC patients. RESULTS: Addition of the chemotherapy drugs cisplatin (DDP), carboplatin (CBP), nedaplatin (NDP), oxaliplatin (OXA) and docetaxel (DOC) increased the release of ICD markers in two of the SCC cell lines. Furthermore, mice that received vaccinations with cervical cancer cells treated with DDP, CBP, NDP, OXA, or DOC remained tumor-free. Although CBP induced the release of ICD-associated molecules in vitro, it did not prevent tumor growth at the vaccination site in 40% of mice. In addition, both in vitro and in vivo results showed that paclitaxel (TAX) and LBP did not induce ICD in SCC cells. CONCLUSION: The present findings suggest that chemotherapeutic agents can induce an adjuvant effect leading to the extracellular release of DAMPs. Of the agents tested here, DDP, CBP, NDP, OXA and DOC had the ability to act as inducers of ICD.


Subject(s)
Antineoplastic Agents , Calreticulin , Carcinoma, Squamous Cell , Cisplatin , HMGB1 Protein , Immunogenic Cell Death , Mice, Inbred C57BL , Organoplatinum Compounds , Paclitaxel , Animals , Immunogenic Cell Death/drug effects , Humans , Cell Line, Tumor , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , HMGB1 Protein/metabolism , Calreticulin/metabolism , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Organoplatinum Compounds/pharmacology , Oxaliplatin/pharmacology , Mice , Carboplatin/pharmacology , Docetaxel/pharmacology , Docetaxel/therapeutic use , Female , Adenosine Triphosphate/metabolism , HSP70 Heat-Shock Proteins/metabolism , Annexin A1/metabolism
15.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1266-1274, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621974

ABSTRACT

This paper investigates the intervention effect and mechanism of Banxia Xiexin Decoction(BXD) on colitis-associated colorectal cancer(CAC) infected with Fusobacterium nucleatum(Fn). C57BL/6 mice were randomly divided into a control group, Fn group, CAC group [azoxymethane(AOM)/dextran sulfate sodium salt(DSS)](AOM/DSS), model group, and BXD group. Except for the control and AOM/DSS groups, the mice in the other groups were orally administered with Fn suspension twice a week. The AOM/DSS group, model group, and BXD group were also injected with a single dose of 10 mg·kg~(-1) AOM combined with three cycles of 2.5% DSS taken intragastrically. The BXD group received oral administration of BXD starting from the second cycle until the end of the experiment. The general condition and weight changes of the mice were monitored during the experiment, and the disease activity index(DAI) was calculated. At the end of the experiment, the colon length and weight of the mice in each group were compared. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the colon tissue. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin(IL)-2, IL-4, and IL-6 inflammatory factors in the serum. Immunohistochemistry(IHC) was used to detect the expression of Ki67, E-cadherin, and ß-catenin in the colon tissue. Western blot was used to detect the protein content of Wnt3a, ß-catenin, E-cadherin, annexin A1, cyclin D1, and glycogen synthase kinase-3ß(GSK-3ß) in the colon tissue. The results showed that compared with the control group, the Fn group had no significant lesions. The mice in the AOM/DSS group and model group had decreased body weight, increased DAI scores, significantly increased colon weight, and significantly shortened colon length, with more significant lesions in the model group. At the same time, the colon histology of the model group showed more severe adenomas, inflammatory infiltration, and cellular dysplasia. The levels of IL-4 and IL-6 in the serum were significantly increased, while the IL-2 content was significantly decreased. The IHC results showed low expression of E-cadherin and high expression of Ki67 and ß-catenin in the model group, with a decreased protein content of E-cadherin and GSK-3ß and an increased protein content of Wnt3a, ß-catenin, annexin A1, and cyclin D1. After intervention with BXD, the body weight of the mice increased; the DAI score decreased; the colon length increased, and the tumor decreased. The histopathology showed reduced tumor proliferation and reduced inflammatory infiltration. The levels of IL-6 and IL-4 in the serum were significantly decreased, while the IL-2 content was increased. Meanwhile, the expression of E-cadherin was upregulated, and that of Ki67 and ß-catenin was downregulated. The protein content of E-cadherin and GSK-3ß increased, while that of Wnt3a, ß-catenin, annexin A1, and cyclin D1 decreased. In conclusion, BXD can inhibit CAC infected with Fn, and its potential mechanism may be related to the inhibition of Fn binding to E-cadherin, the decrease in annexin A1 protein level, and the regulation of the Wnt/ß-catenin pathway.


Subject(s)
Annexin A1 , Colitis-Associated Neoplasms , Colitis , Drugs, Chinese Herbal , Mice , Animals , Colitis/complications , Colitis/drug therapy , Colitis/genetics , beta Catenin/genetics , beta Catenin/metabolism , Cyclin D1/metabolism , Fusobacterium nucleatum/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Ki-67 Antigen/metabolism , Interleukin-2/metabolism , Interleukin-4/metabolism , Mice, Inbred C57BL , Cadherins/metabolism , Body Weight , Dextran Sulfate/adverse effects , Disease Models, Animal , Azoxymethane
16.
Stem Cell Rev Rep ; 20(5): 1299-1310, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38498294

ABSTRACT

OBJECTIVE AND DESIGN: Annexin A1 (ANXA1) plays a role in maintaining intestinal hemostasis, especially following mucosal inflammation. The published data about ANXA1 was derived from experimental animal models where there is an overlapping between epithelial and immune cells. There is no in vitro gut epithelial model that can assess the direct effect of ANXA1 on the gut epithelium. METHODS: We developed high-throughput stem-cell-based murine epithelial cells and bacterial lipopolysaccharides (LPS) were used to induce inflammation. The impact of ANXA1 and its functional part (Ac2-26) was evaluated in the inflamed model. Intestinal integrity was assessed by the transepithelial electrical resistance (TEER), and FITC-Dextran permeability. Epithelial junction proteins were assessed using confocal microscopy and RT-qPCR. Inflammatory cytokines were evaluated by RT-qPCR and ELISA. RESULTS: LPS challenge mediated a damage in the epithelial cells as shown by a drop in the TEER and an increase in FITC-dextran permeability; reduced the expression of epithelial junctional proteins (Occludin, ZO-1, and Cadherin) and increased the expression of the gut leaky protein, Claudin - 2. ANXA1 and Ac2-26 treatment reduced the previous damaging effects. In addition, ANXA1 and Ac2-26 inhibited the inflammatory responses mediated by the LPS and increased the transcription of the anti-inflammatory cytokine, IL-10. CONCLUSION: ANXA1 and Ac2-26 directly protect the epithelial integrity by affecting the expression of epithelial junction and inflammatory markers. The inflamed gut model is a reliable tool to study intestinal inflammatory diseases, and to evaluate the efficacy of potential anti-inflammatory drugs and the screening of new drugs that could be candidates for inflammatory bowel disease.


Subject(s)
Annexin A1 , Inflammation , Intestinal Mucosa , Lipopolysaccharides , Annexin A1/metabolism , Annexin A1/genetics , Animals , Lipopolysaccharides/pharmacology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Mice , Inflammation/metabolism , Inflammation/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Stem Cells/metabolism , Stem Cells/drug effects , Stem Cells/cytology , Cytokines/metabolism , Permeability , Peptides
17.
Neuroreport ; 35(7): 466-475, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38526918

ABSTRACT

Diffuse axonal injury (DAI) is a critical pathological facet of traumatic brain injury (TBI). Oxidative stress plays a significant role in the progress of DAI. Annexin A1 (AnxA1) has been demonstrated to benefit from recovery of neurofunctional outcomes after TBI. However, whether AnxA1 exhibits neuronal protective function by modulating oxidative stress in DAI remains unknown. Expression of AnxA1 was evaluated via real-time PCR and western blotting in rat brainstem after DAI. The neurological effect of AnxA1 following DAI through quantification of modified neurologic severity score (mNSS) was compared between wild-type and AnxA1-knockout rats. Brain edema and neuronal apoptosis, as well as expression of oxidative factors and inflammatory cytokines, were analyzed between wild-type and AnxA1 deficiency rats after DAI. Furthermore, mNSS, oxidative and inflammatory cytokines were assayed after timely administration of recombinant AnxA1 for DAI rats. In the brainstem of DAI, the expression of AnxA1 remarkably increased. Ablation of AnxA1 increased the mNSS score and brain water content of rats after DAI. Neuron apoptosis in the brainstem after DAI was exaggerated by AnxA1 deficiency. In addition, AnxA1 deficiency significantly upregulated the level of oxidative and inflammatory factors in the brainstem of DAI rats. Moreover, mNSS decreased by AnxA1 treatment in rats following DAI. Expression of oxidative and inflammatory molecules in rat brainstem subjected to DAI inhibited by AnxA1 administration. AnxA1 exhibited neuronal protective function in the progression of DAI mainly dependent on suppressing oxidative stress and inflammation.


Subject(s)
Annexin A1 , Brain Injuries, Traumatic , Diffuse Axonal Injury , Animals , Rats , Annexin A1/genetics , Annexin A1/metabolism , Brain/metabolism , Brain Injuries, Traumatic/metabolism , Cytokines/metabolism , Diffuse Axonal Injury/pathology , Inflammation/metabolism
18.
Int Immunopharmacol ; 131: 111854, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38479155

ABSTRACT

Annexin A1 (ANXA1) is widely expressed in a variety of body tissues and cells and is also involved in tumor development through multiple pathways. The invasion, metastasis, and immune escape of tumor cells depend on the interaction between tumor cells and their surrounding environment. Research shows that ANXA1 can act on a variety of cells in the tumor microenvironment (TME), and subsequently affect the proliferation, invasion and metastasis of tumors. This article describes the role of ANXA1 in the various components of the tumor microenvironment and its mechanism of action, as well as the existing clinical treatment measures related to ANXA1. These findings provide insight for the further design of strategies targeting ANXA1 for the diagnosis and treatment of malignant tumors.


Subject(s)
Annexin A1 , Tumor Microenvironment , Annexin A1/genetics , Annexin A1/metabolism , Cell Line, Tumor , Humans , Animals
19.
Int J Oncol ; 64(5)2024 May.
Article in English | MEDLINE | ID: mdl-38516766

ABSTRACT

Although annexin A1 (ANXA1), a 37 kDa phospholipid­binding anti­inflammatory protein expressed in various tissues and cell types, has been investigated extensively for its regulatory role in cancer biology, studies have mainly focused on its intracellular role. However, cancer cells and stromal cells expressing ANXA1 have the ability to transmit signals within the tumor microenvironment (TME) through autocrine, juxtacrine, or paracrine signaling. This bidirectional crosstalk between cancer cells and their environment is also crucial for cancer progression, contributing to uncontrolled tumor proliferation, invasion, metastasis and resistance to therapy. The present review explored the important role of ANXA1 in regulating the cell­specific crosstalk between various compartments of the TME and analyzed the guiding significance of the crosstalk effects in promotion or suppressing cancer progression in the development of cancer treatments. The literature shows that ANXA1 is critical for the regulation of the TME, indicating that ANXA1 signaling between cancer cells and the TME is a potential therapeutic target for the development of novel therapeutic approaches for impeding cancer development.


Subject(s)
Annexin A1 , Tumor Microenvironment , Humans , Annexin A1/genetics , Annexin A1/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Signal Transduction , Tumor Microenvironment/genetics
20.
Biotechnol Appl Biochem ; 71(4): 701-711, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38409880

ABSTRACT

Sepsis-associated encephalopathy (SAE) is characterized by high incidence and mortality rates, with limited treatment options available. The underlying mechanisms and pathogenesis of SAE remain unclear. Annexin A1 (ANXA1), a membrane-associated protein, is involved in various in vivo pathophysiological processes. This study aimed to explore the neuroprotective effects and mechanisms of a novel bioactive ANXA1 tripeptide (ANXA1sp) in SAE. Forty Sprague-Dawley rats were randomly divided into four groups (n = 10 each): control, SAE (intraperitoneal injection of lipopolysaccharide), vehicle (SAE + normal saline), and ANXA1sp (SAE + ANXA1sp) groups. Changes in serum inflammatory factors (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), hippocampal reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) levels were measured. The Morris water maze and Y maze tests were used to assess learning and memory capabilities in the rats. Further, changes in peroxisome proliferator-activated receptor-gamma (PPAR-γ) and apoptosis-related protein expression were detected using western blot. The IL-6, TNF-α, and ROS levels were significantly increased in the SAE group compared with the levels in the control group. Intraperitoneal administration of ANXA1sp led to a significant decrease in the IL-6, TNF-α, and ROS levels (p < 0.05). Compared with the SAE group, the ANXA1sp group exhibited reduced escape latency on day 5, a significant increase in the number of platform crossings and the percent spontaneous alternation, and significantly higher hippocampal MMP and ATP levels (p < 0.05). Meanwhile, the expression level of PPAR-γ protein in the ANXA1sp group was significantly increased compared with that in the other groups (p < 0.05). The expressions of apoptosis-related proteins (nuclear factor-kappa B [NF-κB], Bax, and Caspase-3) in the SAE and vehicle groups were significantly increased, with a noticeable decrease in Bcl-2 expression, compared with that noted in the control group. Moreover, the expressions of NF-κB, Bax, and Caspase-3 were significantly decreased in the ANXA1sp group, and the expression of Bcl-2 was markedly increased (p < 0.05). ANXA1sp can effectively reverse cognitive impairment in rats with SAE. The neuroprotective effect of ANXA1sp may be attributed to the activation of the PPAR-γ pathway, resulting in reduced neuroinflammatory response and inhibition of apoptosis.


Subject(s)
Annexin A1 , Neuroprotective Agents , Rats, Sprague-Dawley , Sepsis-Associated Encephalopathy , Animals , Annexin A1/metabolism , Annexin A1/pharmacology , Rats , Neuroprotective Agents/pharmacology , Male , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/pathology , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , PPAR gamma/metabolism , Membrane Potential, Mitochondrial/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL