Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35163502

ABSTRACT

The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors-including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins-also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.


Subject(s)
Anoctamin-1/metabolism , Anoctamins/metabolism , Chloride Channels/metabolism , Animals , Anoctamins/physiology , Biological Transport/physiology , Cell Membrane/metabolism , Humans , Ion Transport/physiology , Phospholipid Transfer Proteins/metabolism
2.
Mol Neurobiol ; 58(11): 5772-5789, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34406600

ABSTRACT

Increasing evidence suggests that transmembrane protein 16A (TMEM16A) in nociceptive neurons is an important molecular component contributing to peripheral pain transduction. The present study aimed to evaluate the role and mechanism of TMEM16A in chronic nociceptive responses elicited by spared nerve injury (SNI). In this study, SNI was used to induce neuropathic pain. Drugs were administered intrathecally. The expression and cellular localization of TMEM16A, the ERK pathway, and NK-1 in the dorsal root ganglion (DRG) were detected by western blot and immunofluorescence. Behavioral tests were used to evaluate the role of TMEM16A and p-ERK in SNI-induced persistent pain and hypersensitivity. The role of TMEM16A in the hyperexcitability of primary nociceptor neurons was assessed by electrophysiological recording. The results show that TMEM16A, p-ERK, and NK-1 are predominantly expressed in small neurons associated with nociceptive sensation. TMEM16A is colocalized with p-ERK/NK-1 in DRG. TMEM16A, the MEK/ERK pathway, and NK-1 are activated in DRG after SNI. ERK inhibitor or TMEM16A antagonist prevents SNI-induced allodynia. ERK and NK-1 are downstream of TMEM16A activation. Electrophysiological recording showed that CaCC current increases and intrathecal application of T16Ainh-A01, a selective TMEM16A inhibitor, reverses the hyperexcitability of DRG neurons harvested from rats after SNI. We conclude that TMEM16A activation in DRG leads to a positive interaction of the ERK pathway with activation of NK-1 production and is involved in the development of neuropathic pain after SNI. Also, the blockade of TMEM16A or inhibition of the downstream ERK pathway or NK-1 upregulation may prevent the development of neuropathic pain.


Subject(s)
Anoctamins/physiology , Extracellular Signal-Regulated MAP Kinases/physiology , Ganglia, Spinal/pathology , Hyperalgesia/physiopathology , Neuralgia/physiopathology , Peroneal Nerve/injuries , Receptors, Neurokinin-1/physiology , Sensory Receptor Cells/physiology , Signal Transduction/physiology , Tibial Nerve/injuries , Animals , Anoctamins/antagonists & inhibitors , Butadienes/pharmacology , Chronic Pain/etiology , Chronic Pain/physiopathology , Hyperalgesia/etiology , Ligation , Male , Neuralgia/etiology , Nitriles/pharmacology , Nociception/physiology , Pyrimidines/pharmacology , Random Allocation , Rats , Rats, Sprague-Dawley , Thiazoles/pharmacology
3.
PLoS One ; 16(3): e0247801, 2021.
Article in English | MEDLINE | ID: mdl-33651839

ABSTRACT

Modulation of neuronal excitability is a prominent way of shaping the activity of neuronal networks. Recent studies highlight the role of calcium-activated chloride currents in this context, as they can both increase or decrease excitability. The calcium-activated chloride channel Anoctamin 2 (ANO2 alias TMEM16B) has been described in several regions of the mouse brain, including the olivo-cerebellar system. In inferior olivary neurons, ANO2 was proposed to increase excitability by facilitating the generation of high-threshold calcium spikes. An expression of ANO2 in cerebellar Purkinje cells was suggested, but its role in these neurons remains unclear. In the present study, we confirmed the expression of Ano2 mRNA in Purkinje cells and performed electrophysiological recordings to examine the influence of ANO2-chloride channels on the excitability of Purkinje cells by comparing wildtype mice to mice lacking ANO2. Recordings were performed in acute cerebellar slices of adult mice, which provided the possibility to study the role of ANO2 within the cerebellar cortex. Purkinje cells were uncoupled from climbing fiber input to assess specifically the effect of ANO2 channels on Purkinje cell activity. We identified an attenuating effect of ANO2-mediated chloride currents on the instantaneous simple spike activity both during strong current injections and during current injections close to the simple spike threshold. Moreover, we report a reduction of inhibitory currents from GABAergic interneurons upon depolarization, lasting for several seconds. Together with the role of ANO2-chloride channels in inferior olivary neurons, our data extend the evidence for a role of chloride-dependent modulation in the olivo-cerebellar system that might be important for proper cerebellum-dependent motor coordination and learning.


Subject(s)
Anoctamins/physiology , Calcium/metabolism , Membrane Potentials , Purkinje Cells/physiology , Animals , Anoctamins/genetics , Calcium/analysis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Purkinje Cells/chemistry
4.
Cell Mol Immunol ; 18(3): 686-697, 2021 03.
Article in English | MEDLINE | ID: mdl-33469162

ABSTRACT

One of the hallmarks of live cells is the asymmetric distribution of lipids across their plasma membrane. Changes in this asymmetry due to lipid "scrambling" result in phosphatidylserine exposure at the cell surface that is detected by annexin V staining. This alteration is observed during cell death processes such as apoptosis, and during physiological responses such as platelet degranulation and membrane repair. Previous studies have shown that activation of NK cells is accompanied by exposure of phosphatidylserine at the cell surface. While this response was thought to be indicative of ongoing NK cell death, it may also  reflect the regulation of NK cell activation in the absence of cell death. Herein, we found that NK cell activation was accompanied by rapid phosphatidylserine exposure to an extent proportional to the degree of NK cell activation. Through enforced expression of a lipid scramblase, we provided evidence that activation-induced lipid scrambling in NK cells is reversible and does not lead to cell death. In contrast, lipid scrambling attenuates NK cell activation. This response was accompanied by reduced cell surface expression of activating receptors such as 2B4, and by loss of binding of Src family protein tyrosine kinases Fyn and Lck to the inner leaflet of the plasma membrane. Hence, lipid scrambling during NK cell activation is, at least in part, a physiological response that reduces the NK cell activation level. This effect is due to the ability of lipid scrambling to alter the distribution of membrane-associated receptors and kinases required for NK cell activation.


Subject(s)
Anoctamins/physiology , Cell Membrane/metabolism , Killer Cells, Natural/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Phosphatidylserines/metabolism , Phospholipid Transfer Proteins/physiology , Proto-Oncogene Proteins c-fyn/metabolism , Animals , Cell Membrane/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
5.
EMBO J ; 38(12)2019 06 17.
Article in English | MEDLINE | ID: mdl-31061173

ABSTRACT

Communication and material transfer between membranes and organelles take place at membrane contact sites (MCSs). MCSs between the ER and PM, the ER/PM junctions, are the sites where the ER Ca2+ sensor STIM1 and the PM Ca2+ influx channel Orai1 cluster. MCSs are formed by tether proteins that bridge the opposing membranes, but the identity and role of these tethers in receptor-evoked Ca2+ signaling is not well understood. Here, we identified Anoctamin 8 (ANO8) as a key tether in the formation of the ER/PM junctions that is essential for STIM1-STIM1 interaction and STIM1-Orai1 interaction and channel activation at a ER/PM PI(4,5)P2-rich compartment. Moreover, ANO8 assembles all core Ca2+ signaling proteins: Orai1, PMCA, STIM1, IP3 receptors, and SERCA2 at the ER/PM junctions to mediate a novel form of Orai1 channel inactivation by markedly facilitating SERCA2-mediated Ca2+ influx into the ER. This controls the efficiency of receptor-stimulated Ca2+ signaling, Ca2+ oscillations, and duration of Orai1 activity to prevent Ca2+ toxicity. These findings reveal the central role of MCSs in determining efficiency and fidelity of cell signaling.


Subject(s)
Anoctamins/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Multiprotein Complexes/metabolism , Anoctamins/physiology , Calcium Channels/metabolism , HEK293 Cells , HeLa Cells , Humans , Neoplasm Proteins/metabolism , ORAI1 Protein/metabolism , Protein Binding , Protein Multimerization/physiology , Stromal Interaction Molecule 1/metabolism
6.
J Gen Physiol ; 150(11): 1498-1509, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30257928

ABSTRACT

Limb-girdle muscular dystrophy type 2L (LGMD2L) is a myopathy arising from mutations in ANO5; however, information about the contribution of ANO5 to muscle physiology is lacking. To explain the role of ANO5 in LGMD2L, we previously hypothesized that ANO5-mediated phospholipid scrambling facilitates cell-cell fusion of mononucleated muscle progenitor cells (MPCs), which is required for muscle repair. Here, we show that heterologous overexpression of ANO5 confers Ca2+-dependent phospholipid scrambling to HEK-293 cells and that scrambling is associated with the simultaneous development of a nonselective ionic current. MPCs isolated from adult Ano5 -/- mice exhibit defective cell fusion in culture and produce muscle fibers with significantly fewer nuclei compared with controls. This defective fusion is associated with a decrease of Ca2+-dependent phosphatidylserine exposure on the surface of Ano5 -/- MPCs and a decrease in the amplitude of Ca2+-dependent outwardly rectifying ionic currents. Viral introduction of ANO5 in Ano5 -/- MPCs restores MPC fusion competence, ANO5-dependent phospholipid scrambling, and Ca2+-dependent outwardly rectifying ionic currents. ANO5-rescued MPCs produce myotubes having numbers of nuclei similar to wild-type controls. These data suggest that ANO5-mediated phospholipid scrambling or ionic currents play an important role in muscle repair.


Subject(s)
Anoctamins/physiology , Myoblasts/physiology , Animals , Calcium/metabolism , HEK293 Cells , Humans , Mice , Phosphatidylserines , Phospholipid Transfer Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 115(21): 5570-5575, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29735665

ABSTRACT

In mammalian olfactory transduction, odorants activate a cAMP-mediated signaling pathway that leads to the opening of cyclic nucleotide-gated (CNG), nonselective cation channels and depolarization. The Ca2+ influx through open CNG channels triggers an inward current through Ca2+-activated Cl channels (ANO2), which is expected to produce signal amplification. However, a study on an Ano2-/- mouse line reported no elevation in the behavioral threshold of odorant detection compared with wild type (WT). Subsequent studies by others on the same Ano2-/- line, nonetheless, found subtle defects in olfactory behavior and some abnormal axonal projections from the olfactory receptor neurons (ORNs) to the olfactory bulb. As such, the question regarding signal amplification by the Cl current in WT mouse remains unsettled. Recently, with suction-pipette recording, we have successfully separated in frog ORNs the CNG and Cl currents during olfactory transduction and found the Cl current to predominate in the response down to the threshold of action-potential signaling to the brain. For better comparison with the mouse data by others, we have now carried out similar current-separation experiments on mouse ORNs. We found that the Cl current clearly also predominated in the mouse olfactory response at signaling threshold, accounting for ∼80% of the response. In the absence of the Cl current, we expect the threshold stimulus to increase by approximately sevenfold.


Subject(s)
Anoctamins/physiology , Brain/physiology , Calcium/pharmacology , Chlorides/metabolism , Cyclic Nucleotide-Gated Cation Channels/physiology , Olfactory Receptor Neurons/physiology , Animals , Brain/cytology , Cyclic AMP/pharmacology , Cyclic Nucleotide-Gated Cation Channels/drug effects , Membrane Potentials/drug effects , Mice , Mice, Knockout , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/drug effects , Patch-Clamp Techniques , Signal Transduction/drug effects , Smell/drug effects
8.
Physiol Rep ; 5(15)2017 Aug.
Article in English | MEDLINE | ID: mdl-28784854

ABSTRACT

Many animals follow odor trails to find food, nesting sites, or mates, and they require only faint olfactory cues to do so. The performance of a tracking dog, for instance, poses the question on how the animal is able to distinguish a target odor from the complex chemical background around the trail. Current concepts of odor perception suggest that animals memorize each odor as an olfactory object, a percept that enables fast recognition of the odor and the interpretation of its valence. An open question still is how this learning process operates efficiently at the low odor concentrations that typically prevail when animals inspect an odor trail. To understand olfactory processing under these conditions, we studied the role of an amplification mechanism that boosts signal transduction at low stimulus intensities, a process mediated by calcium-gated anoctamin 2 chloride channels. Genetically altered Ano2-/- mice, which lack these channels, display an impaired cue-tracking behavior at low odor concentrations when challenged with an unfamiliar, but not with a familiar, odor. Moreover, recordings from the olfactory epithelium revealed that odor coding lacks sensitivity and temporal resolution in anoctamin 2-deficient mice. Our results demonstrate that the detection of an unfamiliar, weak odor, as well as its memorization as an olfactory object, require signal amplification in olfactory receptor neurons. This process may contribute to the phenomenal tracking abilities of animals that follow odor trails.


Subject(s)
Anoctamins/physiology , Olfactory Receptor Neurons/physiology , Smell , Animals , Appetitive Behavior , Male , Mice, Inbred C57BL , Odorants , Olfactory Mucosa/physiology , Olfactory Perception/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...