Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 728
Filter
1.
Nat Commun ; 15(1): 3367, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719808

ABSTRACT

Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.


Subject(s)
Anthelmintics , Caenorhabditis elegans , Electron Transport Complex I , Ubiquinone/analogs & derivatives , Animals , Anthelmintics/pharmacology , Anthelmintics/chemistry , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Caenorhabditis elegans/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Species Specificity , Quinones/chemistry , Quinones/pharmacology , Quinones/metabolism , Biological Products/pharmacology , Biological Products/chemistry
2.
BMC Vet Res ; 20(1): 214, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769544

ABSTRACT

As an orally effective benzimidazole anthelmintic agent, fenbendazole was not only widely used in agriculture and animal husbandry to prevent and treat parasites, but also shows anti-cancer effects against several types of cancer, exhibits anti-cancer effects in paclitaxel and doxorubicin-resistant cancer cells. However, fenbendazole's poor in water solubility (0.3 µg/mL), limits its clinical applications. Even great efforts were made toward increasing its water solubility, the results were not significant to reach anti-cancer drug delivery requirement (5-10 mg/mL). Through single factor and orthogonal strategy, many complex conditions were designed and used to prepare the complexes, the inclusion complex with methyl-ß-cyclodextrin with 29.2 % of inclusion rate and 89.5% of inclusion yield can increase drug's water solubility to 20.21 mg/mL, which is the best result so far. Its structure was confirmed by differential scanning calorimetry, scanning electron microscopic image, 1D and 2D NMR spectra in D2O. In its in vitro pharmacokinetic study, fenbendazole was 75% released in 15 min., in its in vivo pharmacokinetic study, the bio-availabilities of fenbendazole, its major metabolic anthelmintic agent oxfendazole and its minor metabolic anthelmintic agent oxfendazole were increased to 138%, 149% and 169% respectively, which would allow for fewer drug doses to achieve the same therapeutic effect and suggest that the complex can be used as a potential anticancer agent.


Subject(s)
Fenbendazole , Solubility , beta-Cyclodextrins , Fenbendazole/pharmacokinetics , Fenbendazole/therapeutic use , Fenbendazole/chemistry , Animals , beta-Cyclodextrins/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Male , Anthelmintics/pharmacokinetics , Anthelmintics/chemistry , Anthelmintics/administration & dosage
3.
ACS Infect Dis ; 10(5): 1664-1678, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38686397

ABSTRACT

In this study, we have identified and optimized two lead structures from an in-house screening, with promising results against the parasitic flatworm Schistosoma mansoni and its target protease S. mansoni cathepsin B1 (SmCB1). Our correlation analysis highlighted the significance of physicochemical properties for the compounds' in vitro activities, resulting in a dual approach to optimize the lead structures, regarding both phenotypic effects in S. mansoni newly transformed schistosomula (NTS), adult worms, and SmCB1 inhibition. The optimized compounds from both approaches ("phenotypic" vs "SmCB1" approach) demonstrated improved efficacy against S. mansoni NTS and adult worms, with 2h from the "SmCB1" approach emerging as the most potent compound. 2h displayed nanomolar inhibition of SmCB1 (Ki = 0.050 µM) while maintaining selectivity toward human off-target cathepsins. Additionally, the greatly improved efficacy of compound 2h toward S. mansoni adults (86% dead worms at 10 µM, 68% at 1 µM, 35% at 0.1 µM) demonstrates its potential as a new therapeutic agent for schistosomiasis, underlined by its improved permeability.


Subject(s)
Cathepsin B , Schistosoma mansoni , Schistosoma mansoni/drug effects , Schistosoma mansoni/enzymology , Schistosoma mansoni/genetics , Animals , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Schistosomiasis mansoni/drug therapy , Drug Design , Humans , Phenotype , Structure-Activity Relationship , Anthelmintics/pharmacology , Anthelmintics/chemistry , Helminth Proteins/antagonists & inhibitors
4.
Vet Parasitol ; 328: 110184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643645

ABSTRACT

This study applied the in vitro rumen exsheathment test (IVRET) to evaluate the exsheathment kinetics of Haemonchus contortus infective larvae (L3) incubated in ruminal liquor (RL) containing acetone:water extracts of Acacia pennatula (AP), Gymnopodium floribundum (GF), Havardia albicans (HA) or Lysiloma latisiliquum (LL). The role of polyphenols in the biological activity of the evaluated extracts was also determined. Larvae were incubated in RL either alone or added with a different plant extract (AP, GF, HA, or LL) at 1200 µg/mL. Polyethylene glycol (PEG) was added to block polyphenols in each treatment (RL+PEG, AP+PEG, GF+PEG, HA+PEG, and LL+PEG). After incubation times of 0, 1, 3, 6, 9, and 24 h, the exsheathment process was stopped to count the number of ensheathed and exsheathed L3. A Log-Logistic model was used to determine the L3 exsheathment kinetics in the different RL treatments. The inflection point of the respective kinetic curves, which indicates the time to reach 50 % exsheathed L3 (T50), was the only parameter that differed when comparing the exsheathment models (99 % probability of difference). The T50 values obtained for GF, HA, and LL treatments (T50 = 7.11 - 7.58 h) were higher in comparison to the T50 of RL (5.72 h) (≥ 70 % probability of difference). The L3 incubated in RL added with GF, HA, and LL extracts delayed their exsheathment at 3 and 6 h of incubation (28.71 - 48.06 % exsheathment reduction) compared to the RL treatment. The T50 value for AP, AP+PEG, GF+PEG, HA+PEG, and LL+PEG were similar to RL and RL+PEG (T50 = 5.34 - 6.97 h). In conclusion, the IVRET can be used to identify plants with the potential to delay the exsheathment of H. contortus L3 in the ruminal liquor. The acetone:water extracts of G. floribundum, H. albicans, and L. latisiliquum delayed the T50 of H. contortus exsheathment, which was evident at 3 and 6 h of incubation in ruminal liquor. The observed exsheathment delay was attributed to the polyphenol content of the extracts.


Subject(s)
Haemonchus , Larva , Plant Extracts , Rumen , Animals , Haemonchus/drug effects , Rumen/parasitology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Larva/drug effects , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Anthelmintics/pharmacology , Anthelmintics/chemistry
5.
Exp Parasitol ; 261: 108768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679124

ABSTRACT

This study describes the anthelmintic efficacy of an organic fraction (EtOAc-F) from Guazuma ulmifolia leaves and the evaluation of its reactive oxidative stress on Haemonchus contortus. The first step was to assess the anthelmintic effect of EtOAc-F at 0.0, 3.5, 7.0 and 14 mg kg of body weight (BW) in gerbil's (Meriones unguiculatus) artificially infected with H. contortus infective larvae (L3). The second step was to evaluate the preliminary toxicity after oral administration of the EtOAc-F in gerbils. Finally, the third step was to determine the relative expression of biomarkers such as glutathione (GPx), catalase (CAT), and superoxide dismutase (SOD) against H. contortus L3 post-exposition to EtOAc-F. Additionally, the less-polar compounds of EtOAc-F were identified by gas mass spectrophotometry (GC-MS). The highest anthelmintic efficacy (97.34%) of the organic fraction was found in the gerbils treated with the 14 mg/kg of BW. Histopathological analysis did not reveal changes in tissues. The relative expression reflects overexpression of GPx (p<0.05, fold change: 14.35) and over expression of SOD (p≤0.05, fold change: 0.18) in H. contortus L3 exposed to 97.44 mg/mL of EtOAc-F compared with negative control. The GC-MS analysis revealed the presence of 4-hydroxybenzaldehyde (1), leucoanthocyanidin derivative (2), coniferyl alcohol (3), ferulic acid methyl ester acetate (4), 2,3,4-trimethoxycinnamic acid (5) and epiyangambin (6) as major compounds. According to these results, the EtOAc-F from G. ulmifolia leaves exhibit anthelmintic effect and increased the stress biomarkers on H. contortus.


Subject(s)
Anthelmintics , Catalase , Gerbillinae , Glutathione , Haemonchiasis , Haemonchus , Oxidative Stress , Plant Extracts , Plant Leaves , Superoxide Dismutase , Animals , Haemonchus/drug effects , Plant Leaves/chemistry , Oxidative Stress/drug effects , Haemonchiasis/veterinary , Haemonchiasis/drug therapy , Haemonchiasis/parasitology , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Anthelmintics/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Superoxide Dismutase/metabolism , Catalase/metabolism , Catalase/analysis , Glutathione/metabolism , Glutathione/analysis , Gas Chromatography-Mass Spectrometry , Male , Parasite Egg Count/veterinary , Biomarkers , Glutathione Peroxidase/metabolism , Female
6.
Curr Top Med Chem ; 24(5): 437-485, 2024.
Article in English | MEDLINE | ID: mdl-38311918

ABSTRACT

Heterocyclic molecules have fascinated a massive interest in medicinal chemistry. They are heterocyclic compounds that have gained significance due to their diverse variety of pharmacological activities. Benzimidazole is a heterocyclic compound consisting of benzene and imidazole rings. The ease of synthesis and the structural versatility of benzimidazole make it a promising scaffold for drug development. Many biological actions of benzimidazole derivatives have been well documented, including antibacterial, antiviral, anticancer, anti-inflammatory, antitubercular, and anthelmintic properties. The mechanism of action of benzimidazole derivatives varies with their chemical structure and target enzyme. This review has explored numerous methods for producing benzimidazole derivatives as well as a broad range of pharmacological activities. SAR investigations are also discussed in this review as they provide crucial details regarding the essential structural qualities that benzimidazole derivatives must have in order to be biologically active, which could aid in the rational design of new drug candidates. Benzimidazole scaffold is an exclusive structure in drug design and discovery. Many new pharmaceutical drugs containing benzimidazole are anticipated to be available within the next ten years as a result of the extensive therapeutic applications of benzimidazole and its derivatives. This review inspired many researchers to develop more biologically active compounds bearing benzimidazole, expanding the scope of finding a remedy for other diseases. From this study, we concluded that 2-substituted benzimidazole was considered more extensively by researchers.


Subject(s)
Benzimidazoles , Drug Development , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis , Humans , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Animals , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anthelmintics/pharmacology , Anthelmintics/chemistry , Anthelmintics/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
7.
Bioorg Med Chem ; 98: 117540, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38134663

ABSTRACT

Global challenges with treatment failures and/or widespread resistance in parasitic worms against commercially available anthelmintics lend impetus to the development of new anthelmintics with novel mechanism(s) of action. The free-living nematode Caenorhabditis elegans is an important model organism used for drug discovery, including the screening and structure-activity investigation of new compounds, and target deconvolution. Previously, we conducted a whole-organism phenotypic screen of the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) and identified a hit compound, called ABX464, with activity against C. elegans and a related, parasitic nematode, Haemonchus contortus. Here, we tested a series of 44 synthesized analogues to explore the pharmacophore of activity on C. elegans and revealed five compounds whose potency was similar or greater than that of ABX464, but which were not toxic to human hepatoma (HepG2) cells. Subsequently, we employed thermal proteome profiling (TPP), protein structure prediction and an in silico-docking algorithm to predict ABX464-target candidates. Taken together, the findings from this study contribute significantly to the early-stage drug discovery of a new nematocide based on ABX464. Future work is aimed at validating the ABX464-protein interactions identified here, and at assessing ABX464 and associated analogues against a panel of parasitic nematodes, towards developing a new anthelmintic with a mechanism of action that is distinct from any of the compounds currently-available commercially.


Subject(s)
Anthelmintics , Nematoda , Quinolines , Animals , Humans , Caenorhabditis elegans , Anthelmintics/pharmacology , Anthelmintics/chemistry , Structure-Activity Relationship
8.
Nat Prod Rep ; 40(11): 1754-1808, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37555325

ABSTRACT

Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.


Subject(s)
Anthelmintics , Biological Products , Cat Diseases , Dog Diseases , Helminths , Nematoda , Animals , Cattle , Sheep , Horses , Dogs , Cats , Swine , Biological Products/pharmacology , Biological Products/therapeutic use , Cat Diseases/drug therapy , Dog Diseases/drug therapy , Dog Diseases/parasitology , Anthelmintics/pharmacology , Anthelmintics/chemistry , Anthelmintics/therapeutic use
9.
Int J Pharm ; 644: 123315, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37579827

ABSTRACT

In this paper we report a successful example of combining drugs through cocrystallization. Specifically, the novel solid is formed by two anthelminthic drugs, namely praziquantel (PZQ) and niclosamide (NCM) in a 1:3 molar ratio, and it can be obtained through a sustainable one-step mechanochemical process in the presence of micromolar amounts of methanol. The novel solid phase crystallizes in the monoclinic space group of P21/c, showing one PZQ and three NCM molecules linked through homo- and heteromolecular hydrogen bonds in the asymmetric unit, as also attested by SSNMR and FT-IR results. A plate-like habitus is evident from scanning electron microscopy analysis with a melting point of 202.89 °C, which is intermediate to those of the parent compounds. The supramolecular interactions confer favorable properties to the cocrystal, preventing NCM transformation into the insoluble monohydrate both in the solid state and in aqueous solution. Remarkably, the PZQ - NCM cocrystal exhibits higher anthelmintic activity against in vitro S. mansoni models than corresponding physical mixture of the APIs. Finally, due to in vitro promising results, in vivo preliminary tests on mice were also performed through the administration of minicapsules size M.


Subject(s)
Anthelmintics , Praziquantel , Animals , Mice , Praziquantel/pharmacology , Praziquantel/chemistry , Niclosamide/pharmacology , Antiparasitic Agents , Pharmaceutical Preparations , Spectroscopy, Fourier Transform Infrared , Anthelmintics/pharmacology , Anthelmintics/chemistry , Schistosoma mansoni
10.
Molecules ; 28(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446937

ABSTRACT

Plant tannins are known for their anthelmintic and antiparasitic activities and have been increasingly studied to battle the ever-growing problem of anthelmintic resistance. While tannins have been shown to exhibit these activities on their own, one approach would be to use them as complementary nutrients alongside commercial anthelmintics. So far, research on the interactions between tannins and anthelmintics is limited, and few studies have reported both synergistic and antagonistic effects depending on the type of tannin and the method used. These interactions could either strengthen or weaken the efficacy of commercial anthelmintics, especially if tannin-rich diets are combined with anthelmintics used as oral drenches. To study these interactions, a series of hydrolysable tannins (HTs) was selected, and their direct interactions with thiabendazole (TBZ) were evaluated by isothermal titration calorimetry (ITC), which allowed the detection of the exothermic interaction but also the roles and significances of different structural features of HTs in these interactions. Our results show that HTs can have a direct interaction with the benzimidazole anthelmintic TBZ and that the interaction is strengthened by increasing the number of free galloyl groups and the overall molecular flexibility of HTs.


Subject(s)
Anthelmintics , Tannins , Tannins/pharmacology , Tannins/chemistry , Anthelmintics/chemistry , Plant Extracts/chemistry , Hydrolyzable Tannins , Thiabendazole , Calorimetry/methods
11.
Vet Parasitol ; 320: 109971, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331171

ABSTRACT

Acacia bilimekii is a plant with a high content of protein, fibre, and condensed tannins, making it an excellent feed for small ruminants with anthelmintic potential. This study aimed to evaluate the ovicidal activity of a hydroalcoholic extract (Ab-HA) and fractions from A. bilimekii aerial parts on Haemonchus contortus. The ovicidal activity of the Ab-HA extract and its fractions obtained by chromatographic fractionation were evaluated through the egg hatching inhibition (EHI) test. The results showed that the Ab-HA extract had 91% EHI at 20,000 µg/mL with a mean effective concentration (EC50) of 9260 µg/mL. After liquid-liquid fractionation of Ab-HA extract, the aqueous fraction (Ab-Aq) did not show ovicidal activity, whereas the organic fraction (Ab-EtOAc) showed a better EHI than the Ab-HA extract (98.9% at 2500 µg/mL). Then, the chemical fractionation of Ab-EtOAc allowed obtaining six bioactive fractions (AbR12-17) with an EHI greater than 90% at 1500 µg/mL. The best treatment was AbR15 (98.7% EHI at 750 µg/mL). Chemical analysis by HPLC-PDA of AbR15 indicated the presence of p-coumaric acid and the flavone luteolin as major compounds. Additionally, the commercial p-coumaric acid standard was evaluated in the EHI assay and showed an EHI of 97% at 62.5 µg/mL. Meanwhile, the confocal laser scanning microscopy analysis demonstrated a colocalization effect between p-coumaric acid and the H. contortus embryonated eggs. These results indicate that due to their major chemical compounds (including p-coumaric acid), the aerial parts of the plant A. bilimekii, could be considered as natural potential tool for controlling haemonchosis in small ruminants.


Subject(s)
Acacia , Anthelmintics , Haemonchus , Animals , Acacia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ovum , Anthelmintics/pharmacology , Anthelmintics/chemistry , Larva , Plant Components, Aerial
12.
J Ethnopharmacol ; 312: 116453, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37019160

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gastrointestinal nematodes (GIN) control in small ruminants has relied on the systematic use of synthetic anthelmintics (AH), their effectiveness has been progressively decreasing due to the rise and diffusion of anthelmintic resistances. The most prevalent genera affecting small ruminants were Haemonchus spp., and Trichostrongylus spp. The investigation of new anthelmintics in plants is a highly studied option, especially when it is linked to ethnobotanical knowledge and phenolic compounds. THE AIMS OF OUR STUDY: Four medicinal plants mentioned in traditional medicine were selected to evaluate their anthelmintic proprieties at different stages of the life cycle of GIN, namely: Kyllinga odorata Valh., Cassia occidentalis L., Artemisia absinthium L, and Verbena litoralis Kunth and to explore the role of polyphenols in the AH activity. MATERIALS AND METHODS: To evaluate the anthelmintic activity in this study, two models of GIN species, namely Haemonchus contortus (Hc) and Trichostrongylus colubriformis (Tc) were selected and tested on two in vitro assays: 1) Larval Exsheathment Inhibition Assay (LEIA) and, 2) Egg Hatch Assay (EHA). To explore the role of tannins and polyphenols in AH activity by comparing the effects of LEIA and EHA with or without polyvinylpolypyrrolidone (PVPP) and to characterize the phytochemical composition of the most active plants using ultra-high performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS). RESULTS: C. occidentalis exhibited the highest activity on LEIA (EC50 = 250.42-41.80 µg/mL) and A. absinthium on egg hatching processes (EC50 = 121.70-137.34 µg/mL) in both species of GIN. The inhibition in the development of eggs was from 67.70% to 96.36% on H. contortus, and from 78.87% to 99.65% on T. colubriformis. At the maximal dose, Additionally, it was observed that the AH on eggs varies according to the GIN species: on H. contortus the extracts tested blocked the formation of larvae Ovicidal Effect (% higher OE) and on T. colubriformis they blocked the appearance of L1 larvae, Larvae Failing Eclosion (% higher LFE). After PVPP, a reduction in AH activity on LEIA and EHA was noted, especially with C. occidentalis (87.20-67.00% of larvae exsheathment, (p < 0.05) and 40.51-24.96% of egg hatching, (p > 0.05) of both parasite species. Nine putative features were identified using HRMS and MS/MS after addition of PVPP. CONCLUSIONS: The present study demonstrated that C. occidentalis, A. absinthium, and K. odorata, which parts have been traditionally used as medicinal plants are a valuable source of active compounds with anthelmintic activity. The medicinal use of these plants against GIN parasites was proven by in vitro analysis. Therefore exploration of the secondary metabolites of these plant extracts and testing of isolated fractions of active compounds under in vivo experiments are planned and represent a specific challenge for alternative drug research. Regarding the PVPP, in this study we hypotheses about the standard doses it was not able to completely absorb the polyphenols of extracts of K. odorata, C. occidentalis, and A. absinthium, which would lead to more studies to evaluate the role of this product in the absorption of phenolic compounds.


Subject(s)
Anthelmintics , Haemonchus , Plants, Medicinal , Animals , Polyphenols/pharmacology , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anthelmintics/pharmacology , Anthelmintics/chemistry , Phenols/pharmacology , Ruminants/parasitology , Larva
13.
Mol Pharm ; 20(4): 2009-2016, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36884008

ABSTRACT

Praziquantel (PZQ) is a chiral class-II drug, and it is used as a racemate for the treatment of schistosomiasis. The knowledge of several cocrystals with dicarboxylic acids has prompted the realization of solid solutions of PZQ with both enantiomers of malic acid and tartaric acid. Here, the solid form landscape of such a six-component system has been investigated. In the process, two new cocrystals were structural-characterized and three non-stoichiometric, mixed crystal forms identified and isolated. Thermal and solubility analysis indicates a fourfold solubility advantage for the newly prepared solid solutions over the pure drug. In addition, a pharmacokinetic study was conducted in rats, which involved innovative mini-capsules for the oral administration of the solid samples. The available data indicate that the faster dissolution rate of the solid solutions translates in faster absorption of the drug and helps maintain a constant steady-state concentration.


Subject(s)
Anthelmintics , Praziquantel , Animals , Rats , Praziquantel/chemistry , Anthelmintics/chemistry , Solubility
14.
Int J Mol Sci ; 23(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36555386

ABSTRACT

Parasitic helminths continue to pose problems in human and veterinary medicine, as well as in agriculture. Semen pharbitidis, the seeds of Pharbitis nil (Linn.) Choisy (Convolvulaceae), is a well-known traditional Chinese medicinal botanical preparation widely used for treating intestinal parasites in China owing to its desirable efficacy. However, the anthelmintic compounds in Semen pharbitidis and their mechanism of action have not been investigated yet. This study aimed to identify the compounds active against helminths from Semen pharbitidis, and to establish the mechanism of action of these active compounds. Bioassay-guided fractionation was used to identify the anthelmintic compounds from Semen pharbitidis. The anthelmintic assay was performed by monitoring Caenorhabditis elegans (C. elegans) motility with a WMicrotracker instrument. Active compounds were identified by high-resolution mass spectrometry. Several (analogues of) fragments of the anthelmintic compounds were purchased and tested to explore the structure-activity relationship, and to find more potent compounds. A panel of C. elegans mutant strains resistant to major currently used anthelmintic drugs was used to explore the mechanism of action of the active compounds. The bioassay-guided isolation from an ethanol extract of Semen pharbitidis led to a group of glycosides, namely pharbitin (IC50: 41.0 ± 9.4 µg/mL). Hit expansion for pharbitin fragments yielded two potent analogues: 2-bromohexadecanoic acid (IC50: 1.6 ± 0.7 µM) and myristoleic acid (IC50: 35.2 ± 7.6 µM). One drug-resistant mutant ZZ37 unc-63 (x37) demonstrated a ~17-fold increased resistance to pharbitin compared with wild-type worms. Collectively, we provide further experimental scientific evidence to support the traditional use of Semen pharbitidis for the treatment of intestinal parasites. The anthelmintic activity of Semen pharbitidis is due to pharbitin, whose target could be UNC-63 in C. elegans.


Subject(s)
Anthelmintics , Plant Extracts , Animals , Humans , Plant Extracts/chemistry , Caenorhabditis elegans , Seeds , Anthelmintics/pharmacology , Anthelmintics/chemistry , Glycosides/pharmacology , Biological Assay/methods
15.
Sci Rep ; 12(1): 18850, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344622

ABSTRACT

Tannins and tanniferous plant extracts have been discussed as sustainable means for helminth control in the past two decades in response to a dramatic increase of resistances towards standard anthelmintics. While their bioactivities have been broadly investigated in vitro and in vivo, less is known about their mode of action in nematodes, apart from their protein binding properties. In the current study we therefore investigated the impact of a phytochemically well characterized plant extract from Combretum mucronatum, known to contain procyanidins as the active compounds, on the model organism Caenorhabditis elegans. By different microscopic techniques, the cuticle was identified as the main binding site for tannins, whereas underlying tissues did not seem to be affected. In addition to disruptions of the cuticle structure, molting defects occurred at all larval stages. Finally, an increased rigidity of the nematodes' cuticle due to binding of tannins was confirmed by force spectroscopic measurements. This could be a key finding to explain several anthelmintic activities reported for tannins, especially impairment of molting or exsheathment as well as locomotion.


Subject(s)
Anthelmintics , Proanthocyanidins , Animals , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Anthelmintics/pharmacology , Anthelmintics/chemistry , Tannins/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Caenorhabditis elegans , Larva
16.
Vet Parasitol ; 312: 109835, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36306627

ABSTRACT

Small ruminant production in tropical and temperate countries faced substantial anthelmintic resistance due to the intensive use of commercial anthelmintic drugs. Therefore, alternative treatments including natural bioactive compounds with anthelmintic potential have been investigated looking for its successfully use in the parasite control. In the present study, we describe the chemical profile of Laurus nobilis essential oil (EO), the in vitro anthelmintic activity of L. nobilis EO against Haemonchus contortus and its in vivo anthelmintic effect against the murine helminth parasite model Heligmosomoides polygyrus. Chromatographic profile of L. nobilis (EO) extracted from the leaves of L. nobilis have shown the presence of monterpens 1,8-cineol (Eucalyptol) (29.47%), D-Limonène (18.51%) and Linalool (10.84%) in high fractions. The in vitro anthelmintic potential was expressed by an ovicidal effect against H. contortus egg hatching with inhibition value of 1.72 mg/mL and 87.5% of immobility of adult worms after 8 h of exposure to 4 mg/mL of L. nobilis EO. Regarding, the in vivo anthelmintic potential, L. nobilis (EO) at 2400 mg/kg bw completely eliminated the egg output of H. polygyrus after 7 days of oral treatment, together with a 79.2% of reduction in total worm counts. Based on the obtained results, L. nobilis EO showed promising in vitro and in vivo anthelmintic capacities against gastrointestinal parasites.


Subject(s)
Anthelmintics , Haemonchiasis , Haemonchus , Laurus , Nematospiroides dubius , Oils, Volatile , Rodent Diseases , Sheep , Animals , Mice , Oils, Volatile/chemistry , Haemonchiasis/drug therapy , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Plant Extracts/chemistry , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Anthelmintics/chemistry , Phytochemicals/pharmacology , Sheep, Domestic , Rodent Diseases/drug therapy
17.
Acta Parasitol ; 67(4): 1603-1611, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36066696

ABSTRACT

PURPOSE: In the present study, the nematicidal activity of the chemical fractionation of the spent substrate of the edible mushroom Pleurotus ostreatus against eggs and L3 larvae of Haemonchus contortus was evaluated. METHODS: The hydroalcoholic extract of the spent substrate was subjected to a bipartition with ethyl acetate giving two fractions: one aqueous (F. Ac) and one organic (F. AcOET). Both fractions were evaluated against eggs and L3 larvae at different concentrations (5, 2.5, 1.25, 0.625 and 0.3125 mg/mL) and 2% methanol, PBS and thiabendazole (5 mg/mL) as controls. Chemical fractionation of F. AcOET was performed in open column chromatography where 76 fractions were obtained and when analyzed by thin layer chromatography (TLC) were grouped into 11 mixtures (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11). These mixtures were evaluated at 10 mg/mL against eggs and L3 larvae. The data obtained were analyzed by ANOVA and a Tukey test in the SAS V9 program. RESULTS: The results showed that, in the evaluation of F. AcOET and F. Ac, for the inhibition of egg hatching, the highest percentages were 78.80 and 76.89% at 5 mg/mL, respectively. As for the percentage of larval mortality, F. AcOET obtained 60.91 and F. Ac 29.77% at 5 mg/mL. The results of the evaluations of the mixtures showed that mixtures R4, R5 obtained 100 and 95.41% larval mortality and mixtures R6 and R7 presented 100% inhibitory activity of egg hatching, so these were analyzed by gas chromatography mass spectrometry finding compounds such as vanillin, ß-sitosterol, ρ-methyl ρ-hydroxycinnamate and ρ-hydroxybenzaldehyde. CONCLUSION: The results of the present study demonstrate that the spent substrate of P. ostreatus has potential anthelmintic activity against H. contortus. Moreover, by reusing and taking advantage of this substrate, its environmental pollution effects can be reduced.


Subject(s)
Anthelmintics , Haemonchus , Pleurotus , Animals , Plant Extracts/pharmacology , Antinematodal Agents/pharmacology , Anthelmintics/pharmacology , Anthelmintics/chemistry , Larva
18.
J Biol Chem ; 298(10): 102375, 2022 10.
Article in English | MEDLINE | ID: mdl-35970392

ABSTRACT

Parasitic diseases cause significant global morbidity and mortality particularly in the poorest regions of the world. Schistosomiasis, one of the most widespread neglected tropical diseases, affects more than 200 million people worldwide. Histone deacetylase (HDAC) inhibitors are prominent epigenetic drugs that are being investigated in the treatment of several diseases, including cancers and parasitic diseases. Schistosoma mansoni HDAC8 (SmHDAC8) is highly expressed in all life cycle stages of the parasite, and selective inhibition is required in order to avoid undesirable off-target effects in the host. Herein, by X-ray crystal structures of SmHDAC8-inhibitor complexes, biochemical and phenotypic studies, we found two schistosomicidal spiroindoline derivatives binding a novel site, next to Trp198, on the enzyme surface. We determined that by acting on this site, either by mutation of the Trp198 or by compound binding, a decrease in the activity of the enzyme is achieved. Remarkably, this allosteric site differs from the human counterpart; rather, it is conserved in all Schistosoma species, as well as Rhabidoptera and Trematoda classes, thus paving the way for the design of HDAC8-selective allosteric inhibitors with improved properties.


Subject(s)
Anthelmintics , Helminth Proteins , Histone Deacetylase Inhibitors , Histone Deacetylases , Schistosoma mansoni , Animals , Humans , Binding Sites , Helminth Proteins/chemistry , Helminth Proteins/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Histone Deacetylases/genetics , Schistosoma mansoni/enzymology , Schistosoma mansoni/genetics , Anthelmintics/chemistry , Anthelmintics/pharmacology , Crystallography, X-Ray
19.
Molecules ; 27(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35566007

ABSTRACT

A recent screen of 67,012 compounds identified a new family of compounds with excellent nematicidal activity: the ortho-substituted benzamide families Wact-11 and Wact-12. These compounds are active against Caenorhabditis elegans and parasitic nematodes by selectively inhibiting nematode complex II, and they display low toxicity in mammalian cells and vertebrate organisms. Although a big number of benzamides were tested against C. elegans in high-throughput screens, bioisosteres of the amide moiety were not represented in the chemical space examined. We thus identified an opportunity for the design, synthesis and evaluation of novel compounds, using bioisosteric replacements of the amide group present in benzamides. The compound Wact-11 was used as the reference scaffold to prepare a set of bioisosteres to be evaluated against C. elegans. Eight types of amide replacement were selected, including ester, thioamide, selenoamide, sulfonamide, alkyl thio- and oxo-amides, urea and triazole. The results allowed us to perform a structure-activity relationship, highlighting the relevance of the amide group for nematicide activity. Experimental evidence was complemented with in silico structural studies over a C. elegans complex II model as a molecular target of benzamides. Importantly, compound Wact-11 was active against the flatworm Echinococcus granulosus, suggesting a previously unreported pan-anthelmintic potential for benzamides.


Subject(s)
Anthelmintics , Caenorhabditis elegans , Amides , Animals , Anthelmintics/chemistry , Anthelmintics/pharmacology , Antinematodal Agents/pharmacology , Benzamides/pharmacology , Mammals
20.
Molecules ; 27(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35408557

ABSTRACT

The treatment of parasitic infections requires the application of chemotherapy. In view of increasing resistance to currently in-use drugs, there is a constant need to search for new compounds with anthelmintic activity. A series of 16 cinnamylidene derivatives of rhodanine, including newly synthesized methoxy derivatives (1-11) and previously obtained chloro, nitro, and diethylamine derivatives (12-16), was investigated towards anthelmintic activity. Compounds (1-16) were evaluated against free-living nematodes of the genus Rhabditis sp. In the tested group of rhodanine derivatives, only compound 2 shows very high biological activity (LC50 = 0.93 µg/µL), which is higher than the reference drug albendazole (LC50 = 19.24 µg/µL). Crystal structures of two compounds, active 2 and inactive 4, were determined by the X-ray diffraction method to compare molecular geometry and search for differences responsible for observed biological activity/inactivity. Molecular modelling and selected physicochemical properties prediction were performed to assess the potential mechanism of action and applied in the search for an explanation as to why amongst all similar compounds only one is active. We can conclude that the tested compound 2 can be further investigated as a potential anthelmintic drug.


Subject(s)
Anthelmintics , Nematoda , Rhabditoidea , Rhodanine , Animals , Anthelmintics/chemistry , Anthelmintics/pharmacology , Models, Molecular , Rhodanine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...