Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Food Funct ; 15(16): 8300-8309, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39046367

ABSTRACT

The present study attempted for the first time to investigate the metabolic fate of (poly)phenolic compounds provided by a hull-less and purple grain barley genotype biofortified in anthocyanins. Balb/c mice were supplemented either with standard purified diet (SD) or whole-grain barley supplemented diet (WGB) for six weeks. Subsequently, (poly)phenolic metabolites were determined in urine samples by UPLC-MS/MS, and the principal metabolic pathways were elucidated. Thirty-nine (poly)phenolics compounds were identified in WGB which were distributed between the free (58%) and bound (42%) fractions, encompassing anthocyanins, phenolic acids, flavan-3-ols and flavones. Upon WGB intake, forty-two (poly)phenolic metabolites were identified, predominantly comprising phase-II sulphate, glucuronide, and/or methylated conjugates, along with colonic catabolites. Noteworthy metabolites included peonidin-3-O-glucuronide, peonidin-3-O-6''-O-malonylglucoside, and peonidin-3-O-glucoside among anthocyanins; hydroxyphenylpropanoic acid-O-sulphate among phenolic acids; and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone-O-sulphate among flavan-3-ols. Metabolites like phenylpropionic, phenylacetic, hydroxybenzoic, and hippuric acids were found in both WGB and SD groups, with higher levels after barley consumption, indicating both endogenous and polyphenolic metabolism origins. Overall, this study offers valuable insights into the metabolism of (poly)phenols in purple barley, setting the stage for future investigations into the health benefits linked to the consumption of purple grain barley.


Subject(s)
Hordeum , Mice, Inbred BALB C , Hordeum/chemistry , Hordeum/metabolism , Animals , Mice , Male , Anthocyanins/metabolism , Anthocyanins/urine , Tandem Mass Spectrometry , Polyphenols/metabolism , Polyphenols/urine , Hydroxybenzoates/metabolism , Hydroxybenzoates/urine , Flavonoids/metabolism , Flavonoids/urine
2.
Clin Nutr ; 41(1): 165-176, 2022 01.
Article in English | MEDLINE | ID: mdl-34883305

ABSTRACT

BACKGROUND & AIMS: Whilst the cardioprotective effects of blueberry intake have been shown in prospective studies and short-term randomized controlled trials (RCTs), it is unknown whether anthocyanin-rich blueberries can attenuate the postprandial, cardiometabolic dysfunction which follows energy-dense food intakes; especially in at-risk populations. We therefore examined whether adding blueberries to a high-fat/high-sugar meal affected the postprandial cardiometabolic response over 24 h. METHODS: A parallel, double-blind RCT (n = 45; age 63.4 ± 7.4 years; 64% male; BMI 31.4 ± 3.1 kg/m2) was conducted in participants with metabolic syndrome. After baseline assessments, an energy-dense drink (969 Kcals, 64.5 g fat, 84.5 g carbohydrate, 17.9 g protein) was consumed with either 26 g (freeze-dried) blueberries (equivalent to 1 cup/150 g fresh blueberries) or 26 g isocaloric matched placebo. Repeat blood samples (30, 60, 90, 120, 180, 360 min and 24 h), a 24 h urine collection and vascular measures (at 3, 6, and 24 h) were performed. Insulin and glucose, lipoprotein levels, endothelial function (flow mediated dilatation (FMD)), aortic and systemic arterial stiffness (pulse wave velocity (PWV), Augmentation Index (AIx) respectively), blood pressure (BP), and anthocyanin metabolism (serum and 24 h urine) were assessed. RESULTS: Blueberries favorably affected postprandial (0-24 h) concentrations of glucose (p < 0.001), insulin (p < 0.01), total cholesterol (p = 0.04), HDL-C, large HDL particles (L-HDL-P) (both p < 0.01), extra-large HDL particles (XL-HDL-P; p = 0.04) and Apo-A1 (p = 0.01), but not LDL-C, TG, or Apo-B. After a transient higher peak glucose concentration at 1 h after blueberry intake ([8.2 mmol/L, 95%CI: 7.7, 8.8] vs placebo [6.9 mmol/L, 95%CI: 6.4, 7.4]; p = 0.001), blueberries significantly attenuated 3 h glucose ([4.3 mmol/L, 95%CI: 3.8, 4.8] vs placebo [5.1 mmol/L, 95%CI: 4.6, 5.6]; p = 0.03) and insulin concentrations (blueberry: [23.4 pmol/L, 95%CI: 15.4, 31.3] vs placebo [52.9 pmol/L, 95%CI: 41.0, 64.8]; p = 0.0001). Blueberries also improved HDL-C ([1.12 mmol/L, 95%CI: 1.06, 1.19] vs placebo [1.08 mmol/L, 95%CI: 1.02, 1.14]; p = 0.04) at 90 min and XL-HDLP levels ([0.38 × 10-6, 95%CI: 0.35, 0.42] vs placebo [0.35 × 10-6, 95%CI: 0.32, 0.39]; p = 0.02) at 3 h. Likewise, significant improvements were observed 6 h after blueberries for HDL-C ([1.17 mmol/L, 95%CI: 1.11, 1.24] vs placebo [1.10 mmol/L, 95%CI: 1.03, 1.16]; p < 0.001), Apo-A1 ([1.37 mmol/L, 95%CI: 1.32, 1.41] vs placebo [1.31 mmol/L, 95%CI: 1.27, 1.35]; p = 0.003), L-HDLP ([0.70 × 10-6, 95%CI: 0.60, 0.81] vs placebo [0.59 × 10-6, 95%CI: 0.50, 0.68]; p = 0.003) and XL-HDLP ([0.44 × 10-6, 95%CI: 0.40, 0.48] vs placebo [0.40 × 10-6, 95%CI: 0.36, 0.44]; p < 0.001). Similarly, total cholesterol levels were significantly lower 24 h after blueberries ([4.9 mmol/L, 95%CI: 4.6, 5.1] vs placebo [5.0 mmol/L, 95%CI: 4.8, 5.3]; p = 0.04). Conversely, no effects were observed for FMD, PWV, AIx and BP. As anticipated, total anthocyanin-derived phenolic acid metabolite concentrations significantly increased in the 24 h after blueberry intake; especially hippuric acid (6-7-fold serum increase, 10-fold urinary increase). In exploratory analysis, a range of serum/urine metabolites were associated with favorable changes in total cholesterol, HDL-C, XL-HDLP and Apo-A1 (R = 0.43 to 0.50). CONCLUSIONS: For the first time, in an at-risk population, we show that single-exposure to the equivalent of 1 cup blueberries (provided as freeze-dried powder) attenuates the deleterious postprandial effects of consuming an energy-dense high-fat/high-sugar meal over 24 h; reducing insulinaemia and glucose levels, lowering cholesterol, and improving HDL-C, fractions of HDL-P and Apo-A1. Consequently, intake of anthocyanin-rich blueberries may reduce the acute cardiometabolic burden of energy-dense meals. CLINICAL TRIAL REGISTRY: NCT02035592 at www.clinicaltrials.gov.


Subject(s)
Anthocyanins/administration & dosage , Blueberry Plants , Energy Intake/drug effects , Meals/drug effects , Metabolic Syndrome/metabolism , Aged , Anthocyanins/blood , Anthocyanins/urine , Blood Glucose/metabolism , Blood Pressure/drug effects , Diet, Carbohydrate Loading/adverse effects , Diet, High-Fat/adverse effects , Double-Blind Method , Endothelium, Vascular/drug effects , Female , Humans , Insulin/blood , Lipoproteins/blood , Male , Middle Aged , Postprandial Period/drug effects , Pulse Wave Analysis , Vascular Stiffness/drug effects
3.
Molecules ; 26(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917913

ABSTRACT

The metabolism of anthocyanins in humans is still not fully understood, which is partly due to the lack of reference compounds. It is known that sulfation is one way of the complex phase II biotransformation mechanism. Therefore, cyanidin-3-O-glucoside and the cyanidin aglycone were chemically converted to their sulfates by reaction with sulfur trioxide-N-triethylamine complex in dimethylformamide. The reaction products were characterized by UHPLC coupled to linear ion trap and IMS-QTOF mass spectrometry. Based on MS data, retention times, and UV-Vis spectra, the compounds could tentatively be assigned to A-, C-, or B-ring sulfates. Analysis of urine samples from two volunteers after ingestion of commercial blackberry nectar demonstrated the presence of two sulfated derivatives of the cyanidin aglycone and one sulfated derivative of the cyanidin-3-O-glucoside. It was found that both the A ring and the B ring are sulfated by human enzymes. This study marks an important step toward a better understanding of anthocyanin metabolism.


Subject(s)
Anthocyanins/chemical synthesis , Metabolome , Sulfates/chemical synthesis , Anthocyanins/chemistry , Anthocyanins/urine , Humans , Pilot Projects , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet , Sulfates/chemistry , Sulfates/urine , Time Factors
4.
Nutrients ; 13(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499139

ABSTRACT

The intake of sugar-sweetened beverages has been associated with an augmented prevalence of metabolic diseases, namely, obesity, type II diabetes, and metabolic syndrome. On the other hand, nowadays, it is broadly accepted that foods and beverages rich in (poly)phenols could contribute to reducing the incidence of these pathologies. In this sense, the objective of the work was to revalue second quality citrus fruits for the development of new beverages, rich in anthocyanins and flavanones (maqui berry and second qualities citrus-based), and evaluate the influence of alternative sweeteners (sucralose, sucrose, or stevia), regarding the bioaccessibility and bioavailability of these bioactive compounds in the frame of a chronic (longitudinal) intervention. To fulfill this objective, a longitudinal study of the urinary excretion of anthocyanins and flavanones, after 2-months of ingestion of the developed maqui-citrus beverage, by 138 volunteers (n = 46 per beverage) and the analysis of the resulting phenolic metabolites by ultra-high performance liquid chromatography coupled to mass spectrometry (UHPLC-ESI-QqQ-MS/MS) was carried out. As major results, the bioavailable metabolites of caffeic acid (CA), catechol (CAT), 3,4-di-hydroxyphenylacetic acid (DHPAA), eriodictyol (E), homoeriodictyol (HE), hippuric acid (HA), naringenin (N), trans-ferulic acid (TFA), 2,4,6-tri-hydroxybenzaldehyde (THBA), trans-isoferulic acid (TIFA), and vanillic acid (VA) were detected. Accordingly, significantly different bioavailability was dependent on the sweetener used, allowing proposing stevia and, to a lower extent, sucralose, as valuable alternatives to sucrose.


Subject(s)
Anthocyanins/urine , Citrus/chemistry , Flavanones/urine , Fruit and Vegetable Juices/analysis , Overweight/urine , Adult , Anthocyanins/metabolism , Biological Availability , Chromatography, High Pressure Liquid , Cross-Over Studies , Double-Blind Method , Female , Flavanones/metabolism , Humans , Longitudinal Studies , Male , Middle Aged , Overweight/metabolism , Polyphenols/urine , Spain , Tandem Mass Spectrometry
5.
Nutr Res ; 82: 74-87, 2020 10.
Article in English | MEDLINE | ID: mdl-32977254

ABSTRACT

Queen Garnet plum (QGP), known for its high levels of anthocyanins, is a hybrid of the Japanese plum developed in Queensland, Australia. Anthocyanins provide the red, blue, and purple pigments in plants with demonstrated beneficial health effects. This study hypothesized that low-dose anthocyanin QGP intake will have a significant positive effect on cognition, blood pressure, and gut microbiota in healthy older adults. A randomized crossover trial was conducted to determine the effect and within subject variance on cognition and 24 hr. ambulatory blood pressure in older adults without cognitive impairment following daily consumption of 200 mL low-dose anthocyanin (5 mg/100 g) QGP nectar (intervention) or raspberry cordial (control). Secondary outcomes included inflammatory markers (C-reactive protein), nerve growth factor (BDNF), and gut microbiota (16S rRNA gene sequencing). Twenty-eight participants (55+ years) were recruited. Each randomized treatment arm lasted for 8 weeks with a 4-week washout period. Cognition, blood pressure, and urine samples were measured at each visit (5 total) while blood and fecal samples were collected at baseline, 8 weeks, and 20 weeks. Repeated-measures ANOVA was used to analyze the data. Across the treatments, no significant difference was observed for the different domains of cognition, blood pressure, or anti-inflammatory biomarkers. No intervention effect was found for genera or class of gut microbes. Low anthocyanin nectar derived from the QGP did not have any significant effects on cognition, blood pressure, or gut microbiota in healthy older adults.


Subject(s)
Anthocyanins/administration & dosage , Blood Pressure , Cognition , Dietary Supplements , Gastrointestinal Microbiome , Plant Nectar/chemistry , Prunus domestica , Aged , Anthocyanins/urine , Brain-Derived Neurotrophic Factor/blood , C-Reactive Protein/analysis , Cross-Over Studies , Diet , Female , Fruit , Humans , Male , Middle Aged , Plant Nectar/administration & dosage
6.
J Agric Food Chem ; 68(31): 8274-8285, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32640787

ABSTRACT

The study aim was to determine whether strongly bioactive hydrophilic red cabbage anthocyanins possess the ability to cross the blood-cerebrospinal fluid barrier (blood-CSF barrier) and whether there is a selectivity of this barrier toward these compounds. To fulfill objectives, red cabbage preparation, containing nonacylated and acylated anthocyanins, was administered to 16 sheep with implanted cannulas into the brain third ventricle, and next, within 10 h, blood, urine, and the cerebrospinal fluid (CSF) were collected and analyzed with HPLC-MS/MS. Though, in blood plasma and urine after red cabbage intake, both, acylated and nonacylated anthocyanins and their metabolites occurred, but only nonacylated derivatives were present in the CSF, and their changes in the profile and concentration in the CSF resulted from the fluctuation of these pigments' concentration and profile in blood, their different abilities to permeate via the blood-CSF barrier, and their transformations in this barrier. Results indicate that the blood-CSF barrier is selective for red cabbage anthocyanins.


Subject(s)
Anthocyanins/cerebrospinal fluid , Brassica/metabolism , Cerebrospinal Fluid/metabolism , Sheep/cerebrospinal fluid , Animal Feed/analysis , Animals , Anthocyanins/blood , Anthocyanins/urine , Blood-Brain Barrier/metabolism , Chromatography, High Pressure Liquid , Sheep/blood , Sheep/urine , Urine/chemistry
7.
Molecules ; 25(3)2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31991680

ABSTRACT

Recent in vitro and in vivo studies on anthocyanins confirmed numerous health-promoting effects in humans. Daily anthocyanin intake can be estimated via food databases, but the amount absorbed by the organism still remains uncertain because anthocyanin bioavailability is yet to be elucidated in its entirety. For this purpose, suitable and validated methods of sample preparation and analysis are required. Therefore, a sample preparation method for anthocyanin metabolite analysis in plasma was successfully established and validated. The validation yielded acceptable results for the anthocyanins in terms of recovery (54-108%) and precision (coefficient of variation (CV) < 15%). The UHPLC-MS method used in the consecutive reaction monitoring (CRM) mode was sufficiently sensitive, resulting in limits of detection <2.3 ng/mL and limits of quantification < 8.1 ng/mL with associated repeatability of the MS system with CVs of <5.1%. In addition, a method for the sum parameter determination of anthocyanidins in urine comprising solely the evaporation of acidified samples was developed, validated, and successfully applied to real samples. The results showed that this method is applicable for the methylated anthocyanidins, but not for the hydroxylated anthocyanidins, due to the chosen CRM modes required for optimum selectivity.


Subject(s)
Anthocyanins/blood , Anthocyanins/urine , Female , Humans , Male
8.
Molecules ; 25(2)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963236

ABSTRACT

Sugar intake abuse is directly related with the increase of metabolic diseases such as type 2 diabetes, obesity, and insulin resistance. Along this line, the development of new beverages using alternative sweeteners could help with combatting the pathophysiological disorders associated to the consumption of sugar. To provide evidence on this issue, in the present work, the bioavailability of anthocyanins was evaluated after the acute ingestion of a new maqui-citrus-based functional beverage rich in polyphenols, and supplemented with a range of sweeteners including sucrose (natural high caloric), stevia (natural non-caloric), and sucralose (artificial non-caloric), as an approach that would allow reducing the intake of sugars while providing bioactive phenolic compounds (anthocyanins). This approach allowed the evaluation of the maximum absorption and the diversity of metabolites excreted through urine. The beverages created were ingested by volunteers (n = 20) and the resulting anthocyanin metabolites in their urine were analyzed by UHPLC-ESI-MS/MS. A total of 29 degradation metabolites were detected: Caffeic acid, catechol, 3,4-dihidroxifenilacetic acid, hippuric acid, trans-ferulic acid, 2,4,6-trihydroxybenzaldehyde, trans-isoferulic acid, and vanillic acid derivatives, where peak concentrations were attained at 3.5 h after beverage intake. Sucralose was the sweetener that provided a higher bioavailability for most compounds, followed by stevia. Sucrose did not provide a remarkably higher bioavailability of any compounds in comparison with sucralose or stevia. The results propose two sweetener alternatives (sucralose and stevia) to sucrose, an overused high calorie sweetener that promotes some metabolic diseases.


Subject(s)
Anthocyanins/urine , Anthocyanins/metabolism , Chromatography, High Pressure Liquid , Diet , Humans , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
9.
Biochem Pharmacol ; 173: 113726, 2020 03.
Article in English | MEDLINE | ID: mdl-31778647

ABSTRACT

The aim of this work was to profile, by using an HPLC-MS/MS method, cranberry compounds and metabolites found in human urine after ingestion of a highly standardized cranberry extract (Anthocran®). Two different strategies were adopted for the data analysis: a targeted and an untargeted approach. These strategies allowed the identification of 42 analytes including cranberry components, known metabolites and metabolites hitherto unreported in the literature, including six valerolactones/valeric acid derivatives whose presence in urine after cranberry consumption has never been described before. Absolute concentrations of 26 over 42 metabolites were obtained by using pure available standards. Urine collected at different time points after the last dosage of Anthocran® were tested on the reference strain C. albicans SC5314, a biofilm-forming strain. Fractions collected after 12 h were found to significantly reduce the adhesion and biofilm formation compared to the control (p < 0.05). A similar effect was then obtained by using Anthocran™ Phytosome™, the lecithin formulation containing 1/3 of standardized cranberry extract and formulated to enhance the absorption of the cranberry components. The urinary profile of cranberry components and metabolites in the urine fractions collected at 1 h, 6 h and 12 h after the last capsule intake were then reproduced by using the pure standards at the concentration ranges found in the urine fraction, and tested on C. albicans. Only the mixture mimicking the urinary fraction collected at 12 h and containing as main components, quercetin and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone was found effective thus confirming the ex-vivo results.


Subject(s)
Biofilms/drug effects , Candida albicans/drug effects , Lactones/pharmacology , Pentanoic Acids/pharmacology , Plant Extracts/urine , Vaccinium macrocarpon/chemistry , Adult , Anthocyanins/urine , Biofilms/growth & development , Candida albicans/physiology , Chromatography, High Pressure Liquid/methods , Female , Flavonoids/urine , Humans , Hydroxybenzoates/urine , Lactones/chemistry , Lactones/urine , Mass Spectrometry/methods , Pentanoic Acids/chemistry , Pentanoic Acids/urine , Plant Extracts/administration & dosage , Plant Extracts/metabolism , Polyphenols/classification , Polyphenols/urine , Young Adult
10.
Nutr Rev ; 78(7): 597-610, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31858139

ABSTRACT

CONTEXT: Anthocyanins are phenolic compounds found in berries. They exhibit promising health benefits in humans, but no accurate biomarkers of berry intake have been identified thus far. OBJECTIVE: The aim of this systematic review is to propose a biomarker of anthocyanin-rich berry intake in human plasma and urine. DATA SOURCES: PubMed and Cochrane databases were searched from January 2008 to January 2019. STUDY SELECTION: Databases were searched for human intervention studies that assessed the presence of anthocyanins in human body fluids using high-throughput techniques. Non-English articles and studies publishing targeted analyses were excluded. DATA EXTRACTION: Ten clinical trials, in which 203 phenolic compounds were identified, were included and assessed qualitatively. The following criteria were used to identify biomarkers of berry intake: frequency, plausibility, dose-response, time response, robustness, reliability, stability, analytical performance, and reproducibility. Sensitivity and specificity of potential biomarkers were determined by the receiver operating characteristic curve. RESULTS: Of the 203 phenolic compounds identified in human samples, the anthocyanin cyanidin-3-glucoside was the molecule found most frequently in urine (58.06%) and plasma (69.49%). Cyanidin-3-glucoside fulfills the essential criterion of plausibility as well as the dose-response, time response, stability, and analytical performance criteria. Its positive predictive value is 74% (P = 0.210) in plasma, which is acceptable, and 61.7% (P = 0.402) in urine. CONCLUSIONS: Current evidence suggests that cyanidin-3-glucoside is a potential biomarker of anthocyanin-rich berry intake in plasma and urine of healthy humans. PROSPERO REGISTRATION NUMBER: CRD42018096796.


Subject(s)
Anthocyanins/blood , Anthocyanins/urine , Fruit , Glucosides/blood , Glucosides/urine , Biomarkers/blood , Biomarkers/urine , Clinical Trials as Topic , Eating , Humans
11.
J Agric Food Chem ; 67(24): 6792-6797, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31134806

ABSTRACT

The dominant anthocyanins in blackcurrant are delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside. Data on their absorption and distribution in the human body are limited. Therefore, we performed a human pilot study on five healthy male volunteers consuming a blackcurrant ( Ribes nigrum L.) extract. The rutinosides and their degradation products gallic acid and protocatechuic acid were determined in plasma and urine. The rutinosides' concentrations peaked in both plasma and urine samples within 2 h of extract ingestion. The recoveries of delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside from urine samples were 0.040 ± 0.011% and 0.048 ± 0.016%, respectively, over a 48 h period. Protocatechuic acid concentration increased significantly after ingestion of the blackcurrant extract. Our results show that after ingestion of a blackcurrant extract containing delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside, significant quantities of biologically active compounds circulated in the plasma and were excreted via urine. Furthermore, these results contribute to the understanding of anthocyanin metabolism in humans.


Subject(s)
Anthocyanins/blood , Anthocyanins/urine , Ribes/metabolism , Adult , Anthocyanins/chemistry , Chromatography, High Pressure Liquid , Humans , Male , Mass Spectrometry , Pilot Projects , Plant Extracts/blood , Plant Extracts/chemistry , Plant Extracts/urine , Ribes/chemistry , Young Adult
12.
Food Chem ; 290: 56-63, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31000056

ABSTRACT

Using simple solvent extraction and enzymatic hydrolysis, a rapid LC-MS/MS method for quantification of free and conjugated forms of anthocyanidins and anthocyanins in plasma and urine samples was developed and validated. A mixed enzymatic treatment containing ß-glucuronidase (100 U mL-1) and sulfatase (2.5 U mL-1) for 5 min (37 °C; pH 6) was optimal condition for deconjugation of anthocyanidins and anthocyanins in urine and plasma samples. The LC-MS/MS allowed quantifying thirteen different anthocyanidins and anthocyanins simultaneously. The developed LC-MS/MS method was precise and accurate over multiple days and nominal concentrations. The stability assessment study confirmed that the long-term storage and/or periodic use of plasma and urine samples might have a considerable impact on the stability of some anthocyanidins. The method was successfully applied to measure anthocyanidins and anthocyanins in plasma and urine samples following consumption of acute blueberry test meals.


Subject(s)
Anthocyanins/blood , Anthocyanins/urine , Blood Chemical Analysis/methods , Urinalysis/methods , Blueberry Plants/chemistry , Chromatography, Liquid , Humans , Tandem Mass Spectrometry , Time Factors
13.
J Nutr Biochem ; 62: 76-86, 2018 12.
Article in English | MEDLINE | ID: mdl-30269035

ABSTRACT

Cranberries have multiple health effects but their impact on gut microbiota has not been examined in randomized controlled feeding trials. We evaluated the relationship between the microbiota and cranberries in the context of an animal-based diet. In a randomized, double-blind, cross-over, controlled design trial, 11 healthy adults consumed for 5 days each a control diet (animal-based diet plus 30 g/day placebo powder) and a cranberry diet (animal-based diet plus 30 g/day freeze-dried whole cranberry powder). The animal-based diet included meats, dairy products, and simple sugars. Stool, urine, and blood samples were obtained before and after each intervention phase. As compared to the pre-control diet, control diet modified 46 taxonomic clades, including an increase in the abundance of Firmicutes and decrease in Bacteroidetes. Moreover, it increased bacteria-derived deoxycholic acid and decreased acetate and butyrate in stool. As compared to the post-intervention phase of control diet, the cranberry diet modified 9 taxonomic clades, including a decrease in the abundance of Firmicutes and increase in Bacteroidetes. Further, the cranberry diet attenuated control diet-induced increase in secondary bile acids and decrease in short-chain fatty acids (SCFA), and increased urinary anthocyanins and bacterially derived phenolic acids. No changes were found in fecal trimethylamine and plasma cytokines. In conclusion, an animal-based diet altered the microbiota composition to a less favorable profile, increased carcinogenic bile acids, and decreased beneficial SCFA. Cranberries attenuated the impact of the animal-based diet on microbiota composition, bile acids, and SCFA, evidencing their capacity to modulate the gut microbiota.


Subject(s)
Gastrointestinal Microbiome/physiology , Vaccinium macrocarpon , Adult , Animals , Anthocyanins/urine , Bile Acids and Salts/metabolism , Diet , Double-Blind Method , Fatty Acids, Volatile/metabolism , Feces/microbiology , Female , Flavonoids/urine , Humans , Hydroxybenzoates/urine , Male , Methylamines/metabolism , Middle Aged , Placebos
14.
Neurobiol Aging ; 64: 147-156, 2018 04.
Article in English | MEDLINE | ID: mdl-29458842

ABSTRACT

Given evidence that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and anthocyanin-rich blueberries provide neurocognitive benefit, we investigated long-term supplementation in older adults with cognitive complaints. In a 24-week randomized, double-blind, placebo-controlled trial, elderly men and women received daily fish oil (FO) or blueberry (BB) or both. Diet records confirmed that participants reduced background consumption of EPA, DHA, and anthocyanins as prescribed. Erythrocyte EPA + DHA composition increased in the FO groups (p = 0.0001). Total urinary anthocyanins did not differ between the groups after supplementation but glycoside and native (food) forms increased only in the BB-supplemented groups. The FO (p = 0.03) and BB (p = 0.05) groups reported fewer cognitive symptoms, and the BB group showed improved memory discrimination (p = 0.04), indicating that supplementation improved cognition. Cognitive benefit in the BB group was associated with the presence of urinary anthocyanins reflecting recent BB intake but not with anthocyanin metabolites. However, combined FO + BB treatment was not associated with cognitive enhancement as expected.


Subject(s)
Blueberry Plants , Cognition , Cognitive Dysfunction/diet therapy , Cognitive Dysfunction/psychology , Dietary Supplements , Fish Oils/administration & dosage , Aged , Anthocyanins/administration & dosage , Anthocyanins/urine , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/blood , Double-Blind Method , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/blood , Female , Glycosides/blood , Humans , Male , Memory , Middle Aged , Prospective Studies
15.
Biomed Chromatogr ; 32(5): e4177, 2018 May.
Article in English | MEDLINE | ID: mdl-29251356

ABSTRACT

A high-performance liquid chromatography tandem-mass spectrometry (HPLC-MS/MS) method has been developed to analyze anthocyanins in urine and plasma to further understand their absorption, distribution, metabolism and excretion. The method employed a Synergi RP-Max column (250 × 4.6 mm, 4 µm) and an API 4000 mass spectrometer. A gradient elution system consisted of mobile phase A (water-1% formic acid) and mobile phase B (acetonitrile) with a flow rate of 0.60 mL/min. The gradient was initiated at 5% B, increased to 21% B at 20 min, and then increased to 40% B at 35 min. The analysis of anthocyanins presents a challenge because of the poor stability of anthocyanins during sample preparation, especially during solvent evaporation. In this method, the degradation of anthocyanins was minimized using protein precipitation and dilute-and-shoot and sample preparation methods for plasma and urine, respectively. No interferences were observed from endogenous compounds. The method has been used to analyze anthocyanin concentrations in urine and plasma samples from volunteers administered saskatoon berries. Cyanidin-3-galactoside, cyanidin-3-glucoside, cyanidin-3-arabinoside, cyanidin-3-xyloside and quercetin-3-galactoside, the five major flavonoid components in saskatoon berries, were identified in plasma and urine samples.


Subject(s)
Anthocyanins , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Anthocyanins/blood , Anthocyanins/isolation & purification , Anthocyanins/urine , Chemical Precipitation , Humans , Linear Models , Reproducibility of Results , Sensitivity and Specificity
16.
Acta Diabetol ; 55(2): 149-153, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29151225

ABSTRACT

AIMS: Due to their different chemical structures and metabolism, polyphenol subclasses may have specific impact on cardiometabolic risk factors. Our aim was to evaluate whether the intake of different polyphenol subclasses is associated with clinical outcomes beneficially improved by polyphenols in a nutritional trial performed by our group (postprandial lipid response, glucose homeostasis, early insulin secretion and oxidative stress). METHODS: The present study is a secondary analysis of a nutritional intervention study with a diet naturally rich in polyphenols. The data are derived from 78 participants at high cardiovascular risk who completed the ETHERPATH trial. The associations between variations in polyphenol subclasses (phenolic acids, anthocyanidins, flavones, flavan-3-ols, flavonols and flavanones) and clinical outcomes beneficially influenced by polyphenols were firstly explored by Spearman's correlation. Thereafter, adjustment for gender, age and body mass index (BMI) was run. Linear regression analysis was used to assess the class of polyphenols that best predicted the outcome. RESULTS: Flavanone intake was inversely correlated with postprandial lipid response, whereas flavone intake was related to postchallenge glucose response. Anthocyanidins and flavan-3-ols associated positively with early insulin secretion. The decrease in urinary isoprostanes correlated with anthocyanidins, flavan-3-ols and flavonols. Correlations did not change after adjustment for gender, age, and BMI. Linear regression analysis showed an independent association between flavonols and urinary isoprostanes, whereas early insulin secretion was mainly associated with flavan-3-ols intake. CONCLUSIONS: The results of this study show that a polyphenol-rich diet may have a pleiotropic effect on cardiometabolic risk factors thanks to the specific action of different polyphenol subclasses.


Subject(s)
Cardiovascular Diseases/epidemiology , Diet , Eating/physiology , Metabolic Syndrome/epidemiology , Polyphenols/administration & dosage , Adult , Anthocyanins/administration & dosage , Anthocyanins/urine , Cardiovascular Diseases/etiology , Fatty Acids, Unsaturated/administration & dosage , Female , Flavanones/administration & dosage , Flavanones/urine , Flavones/administration & dosage , Flavones/urine , Flavonoids/administration & dosage , Flavonoids/urine , Flavonols/administration & dosage , Flavonols/urine , Humans , Hydroxybenzoates/administration & dosage , Hydroxybenzoates/urine , Male , Metabolic Syndrome/etiology , Middle Aged , Polyphenols/classification , Polyphenols/urine , Risk Factors
17.
Mol Nutr Food Res ; 61(10)2017 10.
Article in English | MEDLINE | ID: mdl-28568316

ABSTRACT

SCOPE: The effect of diabetes on the pharmacokinetics, bioavailability and brain distribution of grape polyphenols and select metabolites was studied in the Zucker diabetic fatty (ZDF) rat model. METHODS AND RESULTS: (ZDF) rats and their lean controls (LN) were dosed with a Standardized Grape Polyphenol (SGP) Mixture consisting of grape seed extract, Concord grape juice and resveratrol (RES) by oral gavage for 10 days. An 8-h pharmacokinetic study was performed. After 24 h, a second dose of SGP was administered and 1 h later animals were sacrificed and brain tissue was harvested. Plasma, urine, and brain tissue were analyzed for grape polyphenols. ZDF rats exhibited significantly diminished Cmax for all catechin, epicatechin, quercetin and resveratrol conjugated metabolites. Bioavailability was significantly lower in ZDF rats for methylated flavan-3-ol, RES, and quercetin metabolites. Significantly lower levels of metabolites of RES, quercetin, and flavan-3-ols were found in brains of ZDF rats. There was no significant difference between ZDF and LN in anthocyanins in plasma and no anthocyanins were detectable in brain extracts. ZDF rats showed significantly higher urinary excretion for all polyphenols. CONCLUSION: Diabetes may alter the overall bioavailability of some polyphenols in plasma and brain in part due to higher urinary clearance.


Subject(s)
Brain/drug effects , Diabetes Mellitus, Experimental/blood , Polyphenols/blood , Polyphenols/pharmacokinetics , Vitis/chemistry , Animals , Anthocyanins/blood , Anthocyanins/pharmacokinetics , Anthocyanins/urine , Biological Availability , Blood Glucose/metabolism , Brain/metabolism , Catechin/blood , Catechin/pharmacokinetics , Catechin/urine , Diabetes Mellitus, Type 2/blood , Flavonoids/blood , Flavonoids/pharmacokinetics , Flavonoids/urine , Grape Seed Extract/blood , Grape Seed Extract/pharmacokinetics , Grape Seed Extract/urine , Male , Polyphenols/urine , Quercetin/blood , Quercetin/pharmacokinetics , Quercetin/urine , Rats , Rats, Zucker , Resveratrol , Stilbenes/blood , Stilbenes/pharmacokinetics , Stilbenes/urine , Tandem Mass Spectrometry
18.
J Agric Food Chem ; 65(8): 1582-1591, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28150498

ABSTRACT

The human health benefits of anthocyanins (Anc) and other flavonoids are widely recognized. However, the flavonoid-based urinary metabolites arising in vivo after Anc intake are not well described. Human (n = 17) urine was collected while blueberry juice (BJ) was consumed daily for 28 days and once after a 7 day washout. MS/MS scanning of 664 urine samples for 18 parent Anc (PAnc) and 42 predicted Anc metabolites (AncM) yielded 371 products (i.e., MS/MS × retention time (RT)). Flavonoid-based AncM, which were likely underestimated, were almost 20 times more abundant than PAnc. Together, PAnc and AncM accounted for about 1% of the daily Anc dose. Aglycone forms were >94% of the total. Cluster analysis of the 371 Anc identified about 55 major Anc that contributed about 80% to the total Anc. The abundance of flavonoid-based Anc-derived products in the gastrointestinal tract could contribute to the health benefits of Anc-rich berries.


Subject(s)
Anthocyanins/metabolism , Blueberry Plants/metabolism , Flavonoids/metabolism , Fruit/metabolism , Adult , Anthocyanins/urine , Chromatography, High Pressure Liquid , Female , Flavonoids/urine , Humans , Male , Middle Aged , Tandem Mass Spectrometry , Young Adult
19.
Annu Rev Food Sci Technol ; 8: 155-180, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28125348

ABSTRACT

This review considers recent investigations on the bioavailability of anthocyanins and flavanones. Both flavonoids are significant dietary components and are considered to be poorly bioavailable, as only low levels of phase II metabolites appear in the circulatory system and are excreted in urine. However, when lower molecular weight phenolic and aromatic ring-fission catabolites, produced primarily by the action of the colonic microbiota, are taken into account, it is evident that anthocyanins and flavanones are much more bioavailable than previously envisaged. The metabolic events to which these flavonoids are subjected as they pass along the gastrointestinal tract and are absorbed into the circulatory system prior to their rapid elimination by renal excretion are highlighted. Studies on the impact of other food components and the probiotic intake on flavonoid bioavailability are summarized, as is the bioactivity of metabolites and catabolites assayed using a variety of in vitro model systems.


Subject(s)
Anthocyanins/pharmacokinetics , Flavanones/pharmacokinetics , Anthocyanins/urine , Biological Availability , Colon/metabolism , Colon/microbiology , Diet , Flavanones/urine , Fruit/metabolism , Gastrointestinal Microbiome , Humans , Kidney/metabolism , Phenols/pharmacokinetics , Vegetables/metabolism
20.
Br J Nutr ; 113(7): 1044-55, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25778541

ABSTRACT

The goal of eating five servings of fruits and vegetables a day has not yet been achieved. The intake of polyphenols such as anthocyanins (ACN) could be improved by consuming smoothies and juices that are increasingly popular, especially in children; however, bioavailability data concerning food matrix effects are scarce. Thus, we conducted a randomised, cross-over, bioavailability study (n 10) to determine the bioavailability of ACN and their metabolites from an ACN-rich grape/blueberry juice (841 mg ACN/litre) and smoothie (983 mg ACN/litre) in vivo, and the uptake of a corresponding grape/blueberry extract in vitro. After the intake of beverage (0·33 litres), plasma and fractionated urine samples were collected and analysed by ultra-performance liquid chromatography coupled to MS. The most abundant ACN found in plasma and urine were malvidin and peonidin as native ACN and as glucuronidated metabolites as well as 3,4-dihydroxybenzoic acid (3,4-DHB); minor ACN (delphinidin, cyanidin and petunidin) were only detected as native glycosides. Plasma pharmacokinetics and recoveries of urinary metabolites of ACN were not different for juice or smoothie intake; however, the phenolic acid 3,4-DHB was significantly better bioavailable from juice in comparison to smoothie. In vitro data with absorptive intestinal cells indicated that despite their weak chemical stability, ACN and 3,4-DHB could be detected at the basal side in their native forms. Whether smoothies as well as juices should be recommended to increase the intake of potentially health-promoting ACN and other polyphenols requires the consideration of other ingredients such as their relatively high sugar content.


Subject(s)
Anthocyanins/metabolism , Antioxidants/metabolism , Beverages , Food, Organic , Fruit/chemistry , Hydroxybenzoates/metabolism , Phenols/metabolism , Adult , Anthocyanins/blood , Anthocyanins/urine , Antioxidants/analysis , Blueberry Plants/chemistry , Caco-2 Cells , Cross-Over Studies , Double-Blind Method , Female , Germany , Glucuronides/blood , Glucuronides/urine , Humans , Hydroxybenzoates/blood , Hydroxybenzoates/urine , Hydroxylation , Intestinal Absorption , Male , Phenols/blood , Phenols/urine , Plant Extracts/metabolism , Vitis/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL