Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.468
Filter
1.
Org Biomol Chem ; 22(19): 3979-3985, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691112

ABSTRACT

Two new sesterterpenoids, sesterchaetins A and B (1 and 2), and two new diepoxide polyketides, chaetoketoics A and B (3 and 4), were characterized from the culture extract of Chaetomium globosum SD-347, a fungal strain derived from deep sea-sediment. Their structures and absolute configurations were unambiguously determined by detailed NMR, mass spectra, and X-ray crystallographic analysis. Compounds 1 and 2 contained a distinctive 5/8/6/5 tetracyclic carbon-ring-system, which represented a rarely occurring natural product framework. The new isolates 1-4 exhibited selective antimicrobial activities against human and aquatic pathogenic bacteria and plant-pathogenic fungi.


Subject(s)
Chaetomium , Microbial Sensitivity Tests , Polyketides , Sesterterpenes , Chaetomium/chemistry , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Sesterterpenes/chemistry , Sesterterpenes/pharmacology , Sesterterpenes/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Geologic Sediments/microbiology , Models, Molecular , Humans , Molecular Structure , Crystallography, X-Ray , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification
2.
Molecules ; 29(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731531

ABSTRACT

Actinomycetes have long been recognized as an important source of antibacterial natural products. In recent years, actinomycetes in extreme environments have become one of the main research directions. Streptomyces sp. KN37 was isolated from the cold region of Kanas in Xinjiang. It demonstrated potent antimicrobial activity, but the primary active compounds remained unclear. Therefore, we aimed to combine genomics with traditional isolation methods to obtain bioactive compounds from the strain KN37. Whole-genome sequencing and KEGG enrichment analysis indicated that KN37 possesses the potential for synthesizing secondary metabolites, and 41 biosynthetic gene clusters were predicted, some of which showed high similarity to known gene clusters responsible for the biosynthesis of antimicrobial antibiotics. The traditional isolation methods and activity-guided fractionation were employed to isolate and purify seven compounds with strong bioactivity from the fermentation broth of the strain KN37. These compounds were identified as 4-(Diethylamino)salicylaldehyde (1), 4-Nitrosodiphenylamine (2), N-(2,4-Dimethylphenyl)formamide (3), 4-Nitrocatechol (4), Methylsuccinic acid (5), Phenyllactic acid (6) and 5,6-Dimethylbenzimidazole (7). Moreover, 4-(Diethylamino)salicylaldehyde exhibited the most potent inhibitory effect against Rhizoctonia solani, with an EC50 value of 14.487 mg/L, while 4-Nitrosodiphenylamine showed great antibacterial activity against Erwinia amylovora, with an EC50 value of 5.715 mg/L. This study successfully isolated several highly active antimicrobial compounds from the metabolites of the strain KN37, which could contribute as scaffolds for subsequent chemical synthesis. On the other hand, the newly predicted antibiotic-like substances have not yet been isolated, but they still hold significant research value. They are instructive in the study of active natural product biosynthetic pathways, activation of silent gene clusters, and engineering bacteria construction.


Subject(s)
Genomics , Multigene Family , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/chemistry , Genomics/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/biosynthesis , Microbial Sensitivity Tests , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Agriculture/methods , Whole Genome Sequencing
3.
Mar Drugs ; 22(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667789

ABSTRACT

Sea anemones are valuable for therapeutic research as a diversified source of bioactive molecules, due to their diverse bioactive molecules linked to predation and defence mechanisms involving toxins and antimicrobial peptides. Acid extracts from Actinia equina tentacles and body were examined for antibacterial activity against Gram-positive, Gram-negative bacteria, and fungi. The peptide fractions showed interesting minimum inhibitory concentration (MIC) values (up to 0.125 µg/mL) against the tested pathogens. Further investigation and characterization of tentacle acid extracts with significant antimicrobial activity led to the purification of peptides through reverse phase chromatography on solid phase and HPLC. Broad-spectrum antimicrobial peptide activity was found in 40% acetonitrile fractions. The resulting peptides had a molecular mass of 2612.91 and 3934.827 Da and MIC ranging from 0.06 to 0.20 mg/mL. Sequencing revealed similarities to AMPs found in amphibians, fish, and Cnidaria, with anti-Gram+, Gram-, antifungal, candidacidal, anti-methicillin-resistant Staphylococcus aureus, carbapenemase-producing, vancomycin-resistant bacteria, and multi-drug resistant activity. Peptides 6.2 and 7.3, named Equinin A and B, respectively, were synthesized and evaluated in vitro towards the above-mentioned bacterial pathogens. Equinin B exerted interesting antibacterial activity (MIC and bactericidal concentrations of 1 mg/mL and 0.25 mg/mL, respectively) and gene organization supporting its potential in applied research.


Subject(s)
Microbial Sensitivity Tests , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/isolation & purification , Antimicrobial Peptides/chemistry , Sea Anemones/chemistry , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/chemistry , Fungi/drug effects
4.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675548

ABSTRACT

The fungus Xylaria sp. Z184, harvested from the leaves of Fallopia convolvulus (L.) Á. Löve, has been isolated for the first time. Chemical investigation on the methanol extract of the culture broth of the titles strain led to the discovery of three new pyranone derivatives, called fallopiaxylaresters A-C (1-3), and a new bisabolane-type sesquiterpenoid, named fallopiaxylarol A (4), along with the first complete set of spectroscopic data for the previously reported pestalotiopyrone M (5). Known pyranone derivatives (6-11), sesquiterpenoids (12-14), isocoumarin derivatives (15-17), and an aromatic allenic ether (18) were also co-isolated in this study. All new structures were elucidated by the interpretation of HRESIMS, 1D, 2D NMR spectroscopy, and quantum chemical computation approach. The in vitro antimicrobial, anti-inflammatory, and α-glucosidase-inhibitory activities of the selected compounds and the crude extract were evaluated. The extract was shown to inhibit nitric oxide (NO) production induced by lipopolysaccharide (LPS) in murine RAW264.7 macrophage cells, with an inhibition rate of 77.28 ± 0.82% at a concentration of 50 µg/mL. The compounds 5, 7, and 8 displayed weak antibacterial activity against Staphylococcus areus subsp. aureus at a concentration of 100 µM.


Subject(s)
Sesquiterpenes , Xylariales , Mice , Animals , RAW 264.7 Cells , Xylariales/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Lipopolysaccharides , Microbial Sensitivity Tests , Macrophages/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification
5.
Phytochemistry ; 222: 114078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574958

ABSTRACT

Six undescribed infrequent eremophilane derivatives including diaportheremopholins A - F and its previously undescribed side chain (E)-2-methyloct-2-enoic acid, together with three known compounds (testacein, xestodecalactones B and C), were isolated from the endophytic fungus Diaporthe sp. BCC69512. The chemical structures were determined based on NMR spectroscopic information in conjunction with the evidence from NOESY spectrum, Mosher's application, and chemical reactions for corroborating the absolute configurations. The isolated compounds were evaluated for biological properties such as antimalarial, anti-TB, anti-phytopathogenic fungal, antibacterial activities and for cytotoxicity against malignant (MCF-7 and NCI-H187) and non-malignant (Vero) cells. Diaportheremopholins B (2) and E (5) possessed broad antimicrobial activity against Mycobacterium tuberculosis, Bacillus cereus, Alternaria brassicicola and Colletotrichum acutatum with MICs in a range of 25.0-50.0 µg/mL. Testacein (7) exhibited strong anti-A. brassicicola and anti-C. acutatum activities with equal MIC values of 3.13 µg/mL. Moreover, diaportheremopholin F (6) and compound 8 displayed antitubercular activity with equal MIC values of 50.0 µg/mL. All tested compounds were non-cytotoxic against MCF-7, NCI-H187, and Vero cells, except those compounds 2 and 5-7 exhibited weak cytotoxicity against both malignant and non-malignant cells with IC50 values in a range of 15.5-115.5 µM.


Subject(s)
Alternaria , Ascomycota , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Humans , Ascomycota/chemistry , Chlorocebus aethiops , Alternaria/chemistry , Vero Cells , Mycobacterium tuberculosis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Bacillus cereus/drug effects , Animals , Molecular Structure , Drug Screening Assays, Antitumor , Colletotrichum/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/isolation & purification , Structure-Activity Relationship , MCF-7 Cells , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Dose-Response Relationship, Drug
6.
Chem Biodivers ; 21(5): e202302112, 2024 May.
Article in English | MEDLINE | ID: mdl-38531073

ABSTRACT

The essential oils of Senecio plants have been used to treat a wide range of ailments. The current study aimed to extract the essential oil of Senecio glaucus obtained from Egypt's Nile delta and determine its chemical profile using GC-MS and NMR analysis. Then, the antimicrobial activity of the oil has been investigated against different fungal and bacterial strains. In addition, its activity as radical scavenger has been evaluated using DPPH, ABTS, and metal chelating techniques. The results revealed the identification of 50 compounds representing 98.80 % of the oil total mass. Sesquiterpenes, including dehydrofukinone (27.15 %) and 4,5-di-epi-aristolochene (10.27 %), as well as monoterpenes, including p-cymene (4.77 %), represented the most predominant constituents. The dehydrofukinone has been isolated and structurally confirmed using 1D and 2D NMR techniques. The oil has showed remarkable antifungal activity against Candida glabrata and C. albicans where the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were 3.13 µg/mL and 1.50 µg/mL and 12.50 µg/mL and 6.30 µg/mL, respectively that could be attributed to the sesquiterpene ketones present in the aerial tissues of the plant. Also, this oil inhibited the growth of the tested bacteria with MIC ranging from 12.50-100.00 µg/mL. In comparison to ascorbic acid and Trolox, the EO had remarkable scavenging activity of DPPH, ABTS and metal chelating with IC50 values of 313.17±13.4, 493.83±20.1, and 409.13±16.7 µg/mL. The docking studies of the identified compounds of the oil to different microbial targets, including Gyrase B and α-sterol demethylase, showed that the phytol possessed the best binding affinities toward the active sites of both enzymes with ΔG=-7.42 and -7.78 kcal/mol, respectively. In addition, the phytol revealed the highest binding affinity to tyrosine kinase Hck with ΔG=-7.44 kcal/mol.


Subject(s)
Antioxidants , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Senecio , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Senecio/chemistry , Bacteria/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Fungi/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Picrates/antagonists & inhibitors , Odorants/analysis , Biphenyl Compounds/antagonists & inhibitors
7.
Chem Biodivers ; 21(5): e202301822, 2024 May.
Article in English | MEDLINE | ID: mdl-38426739

ABSTRACT

Borago officinalis L., an annual herb belonging to the Boraginaceae family, is used in the traditional medical practices of various countries and for multiple treatments, including respiratory disorders, colds, influenza, diarrhea, cramps, inflammation, palpitation, hypertension menopause, and post-menopausal symptoms. Its pharmacological properties and biological activities - among them antioxidant, antimicrobial, anticancer, anti-inflammatory, insecticidal, antigenotoxic, and anti-obesity activity - were demonstrated in vitro and in vivo and are related to its rich content of bioactive compounds (mainly phenolic acids, flavonoids, anthocyanins, alkaloids, and terpenes) extracted from various parts of B. officinalis including leaves, flowers, seeds, and roots. This review summarizes all updated information on applied extraction processes, phytochemistry, pharmacology, and toxicity of B. officinalis.


Subject(s)
Borago , Phytochemicals , Plant Extracts , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Borago/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification
8.
Chem Biodivers ; 21(4): e202400026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372467

ABSTRACT

Ruta chalepensis L. is a versatile herb used in culinary arts and traditional medicine. The study aimed to determine the chemical composition of an ethanolic extract from R. chalepensis and the total phenolic and flavonoid content. Additionally, the extracts' antimicrobial and antioxidant activities were tested. The disc diffusion method and minimum inhibitory concentration (MIC) were used to test the antibacterial properties on four types of bacteria: Escherichia coli, Proteus penneri, Bacillus cereus, and Staphylococcus aureus. A colorimetric assay was used to evaluate the total phenolic and flavonoid content, and the DPPH method was used to assess the antioxidant activity. The phytochemical constituents were determined using LC-MS/MS. The results indicated that R. chalepensis ethanolic extract had 34 compounds, and the predominant compounds were quercetin (9.2 %), myricetin (8.8 %), and camphene (8.0 %). Moreover, the extract had a good level of polyphenols and flavonoids, as demonstrated by inhibiting free radicals (DPPH) (IC50 was 41.2±0.1). Also, the extract exhibited robust antimicrobial activity against P. penneri and S. aureus with an MIC of 12.5 and 25.0 µg/mL, respectively. In conclusion, the results suggest that the R. chalepensis ethanolic extract has good antioxidant and antibacterial properties that could be utilized to develop new antibacterial agents.


Subject(s)
Anti-Infective Agents , Ruta , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Chromatography, Liquid , Ethanol , Flavonoids/chemistry , Flavonoids/pharmacology , Phenols/pharmacology , Phenols/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ruta/chemistry , Staphylococcus aureus , Tandem Mass Spectrometry , Polyphenols/chemistry , Polyphenols/pharmacology , Quercetin/chemistry , Quercetin/isolation & purification , Quercetin/pharmacology
9.
J Nat Prod ; 85(9): 2159-2167, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36040034

ABSTRACT

Cultures of a termite-associated and a free-living member of the fungal genus Podaxis, revived from spores maintained in century-old herbarium collections, were analyzed for their insecticidal and antimicrobial effects. Their secondary metabolomes were explored to uncover possible adaptive mechanisms of termite association, and dereplication of LC-HRMS/MS data sets led to the isolation of podaxisterols A-D (1-4), modified ergosterol derivatives that result from a Diels-Alder reaction with endogenous nitrosyl cyanide. Chemical structures were determined based on HRMS/MS and NMR analyses as well as X-ray crystallography. The putative origin of the endogenous fungal nitrosyl cyanide and ergosterol derivatives is discussed based on results obtained from stable isotope experiments and in silico analysis. Our "omics"-driven analysis of this underexplored yet worldwide distributed fungal genus builds a foundation for studies on a potential metabolic adaptations to diverse lifestyles.


Subject(s)
Agaricales , Anti-Infective Agents , Ergosterol , Insecticides , Isoptera , Agaricales/chemistry , Agaricales/metabolism , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Ergosterol/analogs & derivatives , Ergosterol/isolation & purification , Ergosterol/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Insecticides/pharmacology , Isoptera/microbiology , Metabolomics , Nitrogen Oxides/chemistry
10.
Mar Drugs ; 20(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35323468

ABSTRACT

Volatile compounds from the marine cyanolichen Lichina pygmaea, collected from the Moroccan Atlantic coast, were extracted by hydrodistillation and their putative chemical composition was investigated by gas chromatography coupled to mass spectrometry (GC/MS). Based on the obtained results, Lichina pygmaea volatile compounds (LPVCs) were mainly dominated by sesquiterpenes compounds, where γ-himachalene, ß-himachalene, (2E,4E)-2,4 decadienal and α-himachalene were assumed to be the most abundant constituents, with percentage of 37.51%, 11.71%, 8.59% and 7.62%, respectively. LPVCs depicted significant antimicrobial activity against all tested strains (Staphylococcus aureus CCMM B3, Pseudomonas aeruginosa DSM 50090, Escherichia coli ATCC 8739 and Candida albicans CCMM-L4) with minimum inhibitory concentration (MIC) values within the range of 1.69-13.5 mg/mL. Moreover, this LPVC showed interesting scavenging effects on the 2,2-diphenyl-1-picrylhydrazyl radical with an IC50 of 0.21 mg/mL. LPVCs could be an approving resource with moderate antimicrobial potential and interesting antioxidant activity for cosmetics and pharmaceutical applications.


Subject(s)
Anti-Infective Agents , Antioxidants , Ascomycota/chemistry , Sesquiterpenes , Volatile Organic Compounds , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Biphenyl Compounds/chemistry , Candida albicans/drug effects , Candida albicans/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Picrates/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Sesquiterpenes/analysis , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Volatile Organic Compounds/pharmacology
11.
Mar Drugs ; 20(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323476

ABSTRACT

An unusual sesquiterpene glycoside trichoacorside A (1) and two novel sorbicillinoid glycosides sorbicillisides A (2) and B (3), together with a known compound sorbicillin (4), were isolated and identified from the culture extract of an endophytic fungus Trichoderma longibrachiatum EN-586, obtained from the marine red alga Laurencia obtusa. Trichoacorside A (1) is the first representative of a glucosamine-coupled acorane-type sesquiterpenoid. Their structures were elucidated based on detailed interpretation of NMR and mass spectroscopic data. The absolute configurations were determined by X-ray crystallographic analysis, chemical derivatization, and DP4+ probability analysis. The antimicrobial activities of compounds 1-4 against several human, aquatic, and plant pathogens were evaluated.


Subject(s)
Anti-Infective Agents , Endophytes/chemistry , Glycosides , Hypocreales/chemistry , Laurencia/microbiology , Polyketides , Resorcinols , Sesquiterpenes , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , Mitosporic Fungi/drug effects , Mitosporic Fungi/growth & development , Molecular Structure , Polyketides/chemistry , Polyketides/isolation & purification , Polyketides/pharmacology , Resorcinols/chemistry , Resorcinols/isolation & purification , Resorcinols/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology
12.
Mar Drugs ; 20(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35323513

ABSTRACT

Two new cyclized thiolopyrrolone derivatives, namely, thiolopyrrolone A (1) and 2,2-dioxidothiolutin (2), together with the kn own compound, thiolutin (3) were identified from a marine-derived Streptomyces sp. BTBU20218885, which was isolated from a mud sample collected from the coastal region of Xiamen, China. Their chemical structures were determined using spectroscopic data, including HRESIMS, 1D and 2D NMR techniques. 1 possessed a unique unsymmetrical sulfur-containing thiolopyrrolone structure. All the compounds were tested for bioactivities against Staphylococcus aureus, Escherichia coli, Bacille Calmette-Guérin (BCG), Mycobacterium tuberculosis, and Candida albicans. 1 displayed antibacterial activities against BCG, M. tuberculosis, and S. aureus with minimum inhibitory concentration (MIC) values of 10, 10, and 100 µg/mL, respectively. Thiolutin (3) showed antibacterial activities against E. coli, BCG, M. tuberculosis, and S. aureus with MIC values of 6.25, 0.3125, 0.625, and 3.125 µg/mL, respectively.


Subject(s)
Anti-Infective Agents , Aquatic Organisms/chemistry , Biological Products , Pyrroles , Streptomyces/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Aquatic Organisms/genetics , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Candida albicans/drug effects , Candida albicans/growth & development , Cyclization , Microbial Sensitivity Tests , Pyrroles/chemistry , Pyrroles/isolation & purification , Pyrroles/pharmacology , Streptomyces/genetics
13.
Molecules ; 27(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35209008

ABSTRACT

A South African traditional formulation, PHELA®, is consumed by the traditional people for severe chest problems with coughing, diarrhea, oral ulcers etc. The present study focused on establishing the anti-infective properties of a safe and standardized poly-herbal formulation through a series of criteria and specifications.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Medicine, African Traditional , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Infective Agents/isolation & purification , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Humans , Mass Spectrometry , Microbial Sensitivity Tests , Plant Extracts/isolation & purification
14.
Molecules ; 27(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35209036

ABSTRACT

Marine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, Nitzschia sp. S5, Nanofrustulum shiloi D1, Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the cyanobacterium Euhalothece sp. C1 were isolated from the Adriatic Sea and characterized regarding their growth kinetics, biomass composition and specific products content (fatty acids, pigments, antioxidants, neutral and polar lipids). The strain Picochlorum sp. D3, showing the highest specific growth rate (0.009 h-1), had biomass productivity of 33.98 ± 0.02 mg L-1 day-1. Proteins were the most abundant macromolecule in the biomass (32.83-57.94%, g g-1). Nanofrustulum shiloi D1 contained significant amounts of neutral lipids (68.36%), while the biomass of Picochlorum sp. D3, Tetraselmis sp. Z3, Tetraselmis sp. C6 and Euhalothece sp. C1 was rich in glycolipids and phospholipids (75%). The lipids of all studied microalgae predominantly contained unsaturated fatty acids. Carotenoids were the most abundant pigments with the highest content of lutein and neoxanthin in representatives of Chlorophyta and fucoxanthin in strains belonging to the Bacillariophyta. All microalgal extracts showed antioxidant activity and antimicrobial activity against Gram-negative E. coli and S. typhimurium and Gram-positive S. aureus.


Subject(s)
Anti-Infective Agents , Antioxidants , Aspergillus niger/growth & development , Bacteria/growth & development , Biomass , Candida/growth & development , Chlorophyta , Fatty Acids, Unsaturated/chemistry , Microalgae , Pigments, Biological , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Chlorophyta/chemistry , Chlorophyta/growth & development , Fatty Acids, Unsaturated/isolation & purification , Fatty Acids, Unsaturated/pharmacology , Microalgae/chemistry , Microalgae/growth & development , Oceans and Seas , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification , Pigments, Biological/pharmacology
15.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35209125

ABSTRACT

The acute inflammation process is explained by numerous hypotheses, including oxidative stress, enzyme stimulation, and the generation of pro-inflammatory cytokines. The anti-inflammatory activity of Yucca gigantea methanol extract (YGME) against carrageenan-induced acute inflammation and possible underlying mechanisms was investigated. The phytochemical profile, cytotoxic, and antimicrobial activities were also explored. LC-MS/MS was utilized to investigate the chemical composition of YGME, and 29 compounds were tentatively identified. In addition, the isolation of luteolin-7-O-ß-d-glucoside, apigenin-7-O-ß-d-glucoside, and kaempferol-3-O-α-l-rhamnoside was performed for the first time from the studied plant. Inflammation was induced by subcutaneous injection of 100 µL of 1% carrageenan sodium. Rats were treated orally with YGME 100, 200 mg/kg, celecoxib (50 mg/kg), and saline, respectively, one hour before carrageenan injection. The average volume of paws edema and weight were measured at several time intervals. Levels of NO, GSH, TNF-α, PGE-2, serum IL-1ß, IL-6 were measured. In additionally, COX-2 immunostaining and histopathological examination of paw tissue were performed. YGME displayed a potent anti-inflammatory influence by reducing paws edema, PGE-2, TNF-α, NO production, serum IL-6, IL-1ß, and COX-2 immunostaining. Furthermore, it replenished the diminished paw GSH contents and improved the histopathological findings. The best cytotoxic effect of YGME was against human melanoma cell line (A365) and osteosarcoma cell line (MG-63). Moreover, the antimicrobial potential of the extract was evaluated against bacterial and fungal isolates. It showed potent activity against Gram-negative, Gram-positive, and fungal Candida albicans isolates. The promoting multiple effects of YGME could be beneficial in the treatment of different ailments based on its anti-inflammatory, antimicrobial, and cytotoxic effects.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Yucca/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Biomarkers , Cell Line , Cell Survival/drug effects , Chromatography, Liquid , Disease Models, Animal , Edema/drug therapy , Edema/etiology , Edema/pathology , Humans , Male , Microbial Sensitivity Tests , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Rats , Spectrum Analysis , Tandem Mass Spectrometry , Yucca/metabolism
16.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35209132

ABSTRACT

Recently, the demand for food proteins in the market has increased due to a rise in degenerative illnesses that are associated with the excessive production of free radicals and the unwanted side effects of various drugs, for which researchers have suggested diets rich in bioactive compounds. Some of the functional compounds present in foods are antioxidant and antimicrobial peptides, which are used to produce foods that promote health and to reduce the consumption of antibiotics. These peptides have been obtained from various sources of proteins, such as foods and agri-food by-products, via enzymatic hydrolysis and microbial fermentation. Peptides with antioxidant properties exert effective metal ion (Fe2+/Cu2+) chelating activity and lipid peroxidation inhibition, which may lead to notably beneficial effects in promoting human health and food processing. Antimicrobial peptides are small oligo-peptides generally containing from 10 to 100 amino acids, with a net positive charge and an amphipathic structure; they are the most important components of the antibacterial defense of organisms at almost all levels of life-bacteria, fungi, plants, amphibians, insects, birds and mammals-and have been suggested as natural compounds that neutralize the toxicity of reactive oxygen species generated by antibiotics and the stress generated by various exogenous sources. This review discusses what antioxidant and antimicrobial peptides are, their source, production, some bioinformatics tools used for their obtainment, emerging technologies, and health benefits.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Dietary Proteins/chemistry , Peptides/pharmacology , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Chemical Fractionation , Fermentation , Health Impact Assessment , Humans , Hydrolysis , Meat Proteins , Peptides/chemistry , Plant Proteins
17.
Molecules ; 27(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35209195

ABSTRACT

With antimicrobial resistance rising globally, the exploration of alternative sources of candidate molecules is critical to safeguard effective chemotherapeutics worldwide. Plant natural products are accessible, structurally diverse compounds with antimicrobial potential. The pharmacological applications of plants in medicine can be guided by the attestation of traditional use, as demonstrated in this study. In Irish ethnomedical literature, Inula helenium L. (elecampane) is often indicated for respiratory and dermal ailments. This is the first assessment of antimicrobial sesquiterpene lactones from the roots of elecampane, naturalised in Ireland. Traditional hydro-ethanolic extracts were prepared from multi-origin elecampane roots. A novel clean-up strategy facilitated the bioactivity-guided fractionation of a subset of anti-staphylococcal fractions (the compositions of which were investigated using HPLC-DAD, supported by 1H NMR). The natural products attributing to the antimicrobial activity, observed in vitro, were identified as alantolactone (1), isoalantolactone (2), igalan (3), and an unseparated mixture of dugesialactone (4) and alloalantolactone (5), as major compounds. The findings suggest that the geographical origin of the plant does not influence the anti-bacterial potency nor the chemical composition of traditional elecampane root. Considering the prevalence of staphylococci-associated infections and associated broad spectrum resistance in Irish hospitals, currently, further research is warranted into the usage of the identified compounds as potential candidates in the control of staphylococcal carriage and infection.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Inula/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Infective Agents/isolation & purification , Chemical Fractionation , Ireland , Molecular Structure , Plant Extracts/isolation & purification , Plant Roots/chemistry
18.
Mar Drugs ; 20(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35200609

ABSTRACT

Seven new compounds, namely talaromanloid A (1), talaromydene (2), 10-hydroxy-8-demethyltalaromydine and 11-hydroxy-8-demethyltalaromydine (3 and 4), talaromylectone (5), and ditalaromylectones A and B (6 and 7), together with seven known compounds were identified from a marine-derived fungus, Talaromyces mangshanicus BTBU20211089, which was isolated from a sediment sample collected from the South China Sea. Their chemical structures were determined using spectroscopic data, including HRESIMS, 1D, and 2D NMR techniques. The absolute configurations of 1 and 2 were elucidated by comparing experimental and calculated ECD spectra. Compounds 1, 2, 6, and 7 are new compounds possessing a novel carbon skeleton. Compound 6 is a dimeric molecule of 3 and 9. Compound 7 shared a unique structure of the cyclized dimer of 3 and 4. All the compounds were tested for their bioactivities against Staphylococcus aureus, Escherichia coli, and Candida albicans.


Subject(s)
Anti-Infective Agents/pharmacology , Geologic Sediments/microbiology , Talaromyces/metabolism , Anti-Infective Agents/isolation & purification , Candida albicans/drug effects , China , Escherichia coli/drug effects , Oceans and Seas , Secondary Metabolism , Staphylococcus aureus/drug effects
19.
Mar Drugs ; 20(2)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35200657

ABSTRACT

Epibiotic bacteria associated with the filamentous marine cyanobacterium Moorea producens were explored as a novel source of antibiotics and to establish whether they can produce cyclodepsipeptides on their own. Here, we report the isolation of micrococcin P1 (1) (C48H49N13O9S6; obs. m/z 1144.21930/572.60381) and micrococcin P2 (2) (C48H47N13O9S6; obs. m/z 1142.20446/571.60370) from a strain of Bacillus marisflavi isolated from M. producens' filaments. Interestingly, most bacteria isolated from M. producens' filaments were found to be human pathogens. Stalked diatoms on the filaments suggested a possible terrestrial origin of some epibionts. CuSO4·5H2O assisted differential genomic DNA isolation and phylogenetic analysis showed that a Kenyan strain of M. producens differed from L. majuscula strain CCAP 1446/4 and L. majuscula clones. Organic extracts of the epibiotic bacteria Pseudoalteromonas carrageenovora and Ochrobactrum anthropi did not produce cyclodepsipeptides. Further characterization of 24 Firmicutes strains from M. producens identified extracts of B. marisflavi as most active. Our results showed that the genetic basis for synthesizing micrococcin P1 (1), discovered in Bacillus cereus ATCC 14579, is species/strain-dependent and this reinforces the need for molecular identification of M. producens species worldwide and their epibionts. These findings indicate that M. producens-associated bacteria are an overlooked source of antimicrobial compounds.


Subject(s)
Bacillus/metabolism , Bacteriocins/isolation & purification , Cyanobacteria/metabolism , Anti-Infective Agents/isolation & purification , Depsipeptides/metabolism , Kenya , Phylogeny , Species Specificity
20.
Mar Drugs ; 20(2)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35200666

ABSTRACT

Five new sesquiterpenoids, citreobenzofuran D-F (1-3) and phomenone A-B (4-5), along with one known compound, xylarenone A (6), were isolated from the culture of the mangrove-derived fungus Penicillium sp. HDN13-494. Their structures were deduced from extensive spectroscopic data, high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. Furthermore, the absolute structures of 1 were determined by single-crystal X-ray diffraction analysis. Citreobenzofuran E-F (2-3) are eremophilane-type sesquiterpenoids with rare benzofuran frameworks, while phomenone A (4) contains a rare thiomethyl group, which is the first report of this kind of sesquiterpene with sulfur elements in the skeleton. All the compounds were tested for their antimicrobial and antitumor activity, and phomenone B (5) showed moderate activity against Bacillus subtilis, with an MIC value of 6.25 µM.


Subject(s)
Benzofurans/pharmacology , Naphthols/pharmacology , Penicillium/metabolism , Sesquiterpenes/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Bacillus subtilis/drug effects , Benzofurans/chemistry , Benzofurans/isolation & purification , Cell Line, Tumor , Humans , Microbial Sensitivity Tests , Naphthols/chemistry , Naphthols/isolation & purification , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...