Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 354
Filter
1.
J Am Chem Soc ; 146(18): 12857-12863, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38676654

ABSTRACT

The ribosome brings 3'-aminoacyl-tRNA and 3'-peptidyl-tRNAs together to enable peptidyl transfer by binding them in two major ways. First, their anticodon loops are bound to mRNA, itself anchored at the ribosomal subunit interface, by contiguous anticodon:codon pairing augmented by interactions with the decoding center of the small ribosomal subunit. Second, their acceptor stems are bound by the peptidyl transferase center, which aligns the 3'-aminoacyl- and 3'-peptidyl-termini for optimal interaction of the nucleophilic amino group and electrophilic ester carbonyl group. Reasoning that intrinsic codon:anticodon binding might have been a major contributor to bringing tRNA 3'-termini into proximity at an early stage of ribosomal peptide synthesis, we wondered if primordial amino acids might have been assigned to those codons that bind the corresponding anticodon loops most tightly. By measuring the binding of anticodon stem loops to short oligonucleotides, we determined that family-box codon:anticodon pairings are typically tighter than split-box codon:anticodon pairings. Furthermore, we find that two family-box anticodon stem loops can tightly bind a pair of contiguous codons simultaneously, whereas two split-box anticodon stem loops cannot. The amino acids assigned to family boxes correspond to those accessible by what has been termed cyanosulfidic chemistry, supporting the contention that these limited amino acids might have been the first used in primordial coded peptide synthesis.


Subject(s)
Amino Acids , Anticodon , Codon , Anticodon/chemistry , Anticodon/genetics , Amino Acids/chemistry , Codon/chemistry , Codon/genetics , Ribosomes/metabolism , Ribosomes/chemistry , Binding Sites , Models, Molecular
2.
Nat Struct Mol Biol ; 31(5): 810-816, 2024 May.
Article in English | MEDLINE | ID: mdl-38538914

ABSTRACT

The frequency of errors upon decoding of messenger RNA by the bacterial ribosome is low, with one misreading event per 1 × 104 codons. In the universal genetic code, the AUN codon box specifies two amino acids, isoleucine and methionine. In bacteria and archaea, decoding specificity of the AUA and AUG codons relies on the wobble avoidance strategy that requires modification of C34 in the anticodon loop of isoleucine transfer RNAIleCAU (tRNAIleCAU). Bacterial tRNAIleCAU with 2-lysylcytidine (lysidine) at the wobble position deciphers AUA while avoiding AUG. Here we report cryo-electron microscopy structures of the Escherichia coli 70S ribosome complexed with elongation factor thermo unstable (EF-Tu) and isoleucine-tRNAIleLAU in the process of decoding AUA and AUG. Lysidine in tRNAIleLAU excludes AUG by promoting the formation of an unusual Hoogsteen purine-pyrimidine nucleobase geometry at the third position of the codon, weakening the interactions with the mRNA and destabilizing the EF-Tu ternary complex. Our findings elucidate the molecular mechanism by which tRNAIleLAU specifically decodes AUA over AUG.


Subject(s)
Cryoelectron Microscopy , Escherichia coli , Models, Molecular , Peptide Elongation Factor Tu , RNA, Transfer, Ile , Ribosomes , Peptide Elongation Factor Tu/metabolism , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Ribosomes/metabolism , Ribosomes/ultrastructure , Ribosomes/chemistry , RNA, Transfer, Ile/metabolism , RNA, Transfer, Ile/chemistry , RNA, Transfer, Ile/genetics , Codon/metabolism , Codon/genetics , Anticodon/chemistry , Anticodon/metabolism , Nucleic Acid Conformation , Isoleucine/metabolism , Isoleucine/chemistry , RNA, Messenger/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , Lysine/analogs & derivatives , Pyrimidine Nucleosides
3.
Nat Struct Mol Biol ; 31(5): 817-825, 2024 May.
Article in English | MEDLINE | ID: mdl-38538915

ABSTRACT

The anticodon modifications of transfer RNAs (tRNAs) finetune the codon recognition on the ribosome for accurate translation. Bacteria and archaea utilize the modified cytidines, lysidine (L) and agmatidine (agm2C), respectively, in the anticodon of tRNAIle to decipher AUA codon. L and agm2C contain long side chains with polar termini, but their functions remain elusive. Here we report the cryogenic electron microscopy structures of tRNAsIle recognizing the AUA codon on the ribosome. Both modifications interact with the third adenine of the codon via a unique C-A geometry. The side chains extend toward 3' direction of the mRNA, and the polar termini form hydrogen bonds with 2'-OH of the residue 3'-adjacent to the AUA codon. Biochemical analyses demonstrated that AUA decoding is facilitated by the additional interaction between the polar termini of the modified cytidines and 2'-OH of the fourth mRNA residue. We also visualized cyclic N6-threonylcarbamoyladenosine (ct6A), another tRNA modification, and revealed a molecular basis how ct6A contributes to efficient decoding.


Subject(s)
Anticodon , Cryoelectron Microscopy , RNA, Transfer, Ile , RNA, Transfer, Ile/chemistry , RNA, Transfer, Ile/metabolism , RNA, Transfer, Ile/genetics , Anticodon/chemistry , Anticodon/metabolism , Ribosomes/metabolism , Ribosomes/chemistry , Nucleic Acid Conformation , Models, Molecular , Codon/genetics , Lysine/metabolism , Lysine/chemistry , Lysine/analogs & derivatives , Cytidine/analogs & derivatives , Cytidine/chemistry , Cytidine/metabolism , RNA, Transfer/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Protein Biosynthesis , Pyrimidine Nucleosides
4.
J Biol Chem ; 299(4): 104608, 2023 04.
Article in English | MEDLINE | ID: mdl-36924943

ABSTRACT

Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein-coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and, from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.


Subject(s)
Anticodon , Codon , RNA, Ribosomal , Ribosomes , Anticodon/chemistry , Anticodon/genetics , Anticodon/metabolism , Codon/chemistry , Codon/genetics , Codon/metabolism , Nucleic Acid Conformation , Nucleotides/chemistry , Nucleotides/metabolism , Protein Biosynthesis , Ribosomes/chemistry , Ribosomes/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Base Pair Mismatch , Models, Molecular , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism
5.
Nature ; 613(7945): 751-758, 2023 01.
Article in English | MEDLINE | ID: mdl-36631608

ABSTRACT

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.


Subject(s)
Anticodon , Codon, Terminator , Eukaryotic Cells , Genetic Code , Mutation , Peptide Termination Factors , RNA, Transfer , Anticodon/chemistry , Anticodon/genetics , Anticodon/metabolism , Ciliophora/genetics , Codon, Terminator/genetics , Genetic Code/genetics , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer, Trp/genetics , Saccharomyces cerevisiae/genetics , RNA, Transfer, Glu/genetics , Trypanosoma brucei brucei/genetics
6.
Nat Commun ; 13(1): 209, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017528

ABSTRACT

Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.


Subject(s)
Anticodon/chemistry , Methyltransferases/genetics , Mitochondria/genetics , RNA, Mitochondrial/chemistry , RNA, Transfer, Ser/chemistry , RNA, Transfer, Thr/chemistry , Anticodon/metabolism , Base Pairing , Cytosine/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Methylation , Methyltransferases/metabolism , Mitochondria/metabolism , Nucleic Acid Conformation , Protein Binding , Protein Biosynthesis , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Transfer, Ser/genetics , RNA, Transfer, Ser/metabolism , RNA, Transfer, Thr/genetics , RNA, Transfer, Thr/metabolism , Signal Transduction
7.
Nat Struct Mol Biol ; 28(9): 713-723, 2021 09.
Article in English | MEDLINE | ID: mdl-34489609

ABSTRACT

Human mitochondrial transcripts contain messenger and ribosomal RNAs flanked by transfer RNAs (tRNAs), which are excised by mitochondrial RNase (mtRNase) P and Z to liberate all RNA species. In contrast to nuclear or bacterial RNase P, mtRNase P is not a ribozyme but comprises three protein subunits that carry out RNA cleavage and methylation by unknown mechanisms. Here, we present the cryo-EM structure of human mtRNase P bound to precursor tRNA, which reveals a unique mechanism of substrate recognition and processing. Subunits TRMT10C and SDR5C1 form a subcomplex that binds conserved mitochondrial tRNA elements, including the anticodon loop, and positions the tRNA for methylation. The endonuclease PRORP is recruited and activated through interactions with its PPR and nuclease domains to ensure precise pre-tRNA cleavage. The structure provides the molecular basis for the first step of RNA processing in human mitochondria.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/chemistry , Methyltransferases/chemistry , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , Ribonuclease P/chemistry , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Anticodon/chemistry , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Cryoelectron Microscopy , Humans , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Mitochondria/enzymology , Models, Molecular , Mutation, Missense , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Protein Interaction Mapping , RNA, Fungal/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Ribonuclease P/metabolism , Species Specificity , Structure-Activity Relationship , Substrate Specificity
8.
RNA ; 27(11): 1330-1338, 2021 11.
Article in English | MEDLINE | ID: mdl-34315814

ABSTRACT

During protein synthesis on ribosome, tRNA recognizes its cognate codon of mRNA through base-pairing with the anticodon. The 5'-end nucleotide of the anticodon is capable of wobble base-pairing, offering a molecular basis for codon degeneracy. The wobble nucleotide is often targeted for post-transcriptional modification, which affects the specificity and fidelity of the decoding process. Flipping-out of a wobble nucleotide in the anticodon loop has been proposed to be necessary for modifying enzymes to access the target nucleotide, which has been captured in selective structures of protein-bound complexes. Meanwhile, all other structures of free or ribosome-bound tRNA display anticodon bases arranged in stacked conformation. We report the X-ray crystal structure of unbound tRNAVal1 to a 2.04 Å resolution showing two different conformational states of wobble uridine in the anticodon loop, one stacked on the neighboring base and the other swiveled out toward solvent. In addition, the structure reveals a rare magnesium ion coordination to the nitrogen atom of a nucleobase, which has been sampled very rarely among known structures of nucleic acids.


Subject(s)
Anticodon/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Transfer, Val/metabolism , Ribosomes/metabolism , Anticodon/chemistry , Anticodon/genetics , Base Pairing , Escherichia coli/genetics , Escherichia coli/metabolism , Metals/metabolism , Models, Molecular , Nucleic Acid Conformation , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Transfer, Val/chemistry , RNA, Transfer, Val/genetics , Ribosomes/genetics
9.
PLoS Comput Biol ; 17(6): e1009068, 2021 06.
Article in English | MEDLINE | ID: mdl-34125830

ABSTRACT

Specific interaction between the start codon, 5'-AUG-3', and the anticodon, 5'-CAU-3', ensures accurate initiation of translation. Recent studies show that several near-cognate start codons (e.g. GUG and CUG) can play a role in initiating translation in eukaryotes. However, the mechanism allowing initiation through mismatched base-pairs at the ribosomal decoding site is still unclear at an atomic level. In this work, we propose an extended simulation-based method to evaluate free energy profiles, through computing the distance between each base-pair of the triplet interactions involved in recognition of start codons in eukaryotic translation pre-initiation complex. Our method provides not only the free energy penalty for mismatched start codons relative to the AUG start codon, but also the preferred pathways of transitions between bound and unbound states, which has not been described by previous studies. To verify the method, the binding dynamics of cognate (AUG) and near-cognate start codons (CUG and GUG) were simulated. Evaluated free energy profiles agree with experimentally observed changes in initiation frequencies from respective codons. This work proposes for the first time how a G:U mismatch at the first position of codon (GUG)-anticodon base-pairs destabilizes the accommodation in the initiating eukaryotic ribosome and how initiation at a CUG codon is nearly as strong as, or sometimes stronger than, that at a GUG codon. Our method is expected to be applied to study the affinity changes for various mismatched base-pairs.


Subject(s)
Codon, Initiator/genetics , Codon, Initiator/metabolism , Peptide Chain Initiation, Translational , Anticodon/chemistry , Anticodon/genetics , Anticodon/metabolism , Base Pairing , Base Sequence , Codon, Initiator/chemistry , Computational Biology , Eukaryotic Cells/metabolism , Models, Biological , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Thermodynamics
10.
J Mol Biol ; 433(15): 167073, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34058151

ABSTRACT

Biogenic polyamines are natural aliphatic polycations formed from amino acids by biochemical pathways that are highly conserved from bacteria to humans. Their cellular concentrations are carefully regulated and dysregulation causes severe cell growth defects. Polyamines have high affinity for nucleic acids and are known to interact with mRNA, tRNA and rRNA to stimulate the translational machinery, but the exact molecular mechanism(s) for this stimulus is still unknown. Here we exploit that Escherichia coli is viable in the absence of polyamines, including the universally conserved putrescine and spermidine. Using global macromolecule labelling approaches we find that ribosome efficiency is reduced by 50-70% in the absence of polyamines and this reduction is caused by slow translation elongation speed. The low efficiency causes rRNA and multiple tRNA species to be overproduced in the absence of polyamines, suggesting an impact on the feedback regulation of stable RNA transcription. Importantly, we find that polyamine deficiency affects both tRNA levels and tRNA modification patterns. Specifically, a large fraction of tRNAhis, tRNAtyr and tRNAasn lack the queuosine modification in the anticodon "wobble" base, which can be reversed by addition of polyamines to the growth medium. In conclusion, we demonstrate that polyamines are needed for modification of specific tRNA, possibly by facilitating the interaction with modification enzymes.


Subject(s)
Anticodon/chemistry , Escherichia coli/genetics , Polyamines/chemistry , Escherichia coli/metabolism , Feedback, Physiological , Nucleic Acid Conformation , Protein Biosynthesis , RNA, Bacterial/chemistry , RNA, Ribosomal/chemistry , RNA, Transfer/chemistry
11.
RNA ; 27(1): 27-39, 2021 01.
Article in English | MEDLINE | ID: mdl-33008837

ABSTRACT

Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3' termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLSVal) are an example that share some clear homology with canonical tRNAs but have several important structural differences. Although many examples of TLSVal have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLSVal We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLSVal substrates and tested their ability to be valylated, confirming previous observations of structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine, causing a loss of valylation activity; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.


Subject(s)
Genetic Variation , Insect Viruses/genetics , Phylogeny , Plant Viruses/genetics , RNA, Transfer, Val/chemistry , RNA, Viral/chemistry , Anticodon/chemistry , Anticodon/metabolism , Base Sequence , Binding Sites , Computational Biology , Insect Viruses/classification , Insect Viruses/metabolism , Models, Molecular , Molecular Mimicry , Plant Viruses/classification , Plant Viruses/metabolism , RNA Folding , RNA, Transfer, Val/genetics , RNA, Transfer, Val/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Sequence Homology, Nucleic Acid , Valine/metabolism
12.
RNA ; 27(1): 40-53, 2021 01.
Article in English | MEDLINE | ID: mdl-33008838

ABSTRACT

A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon-anticodon pairing and slippage of the reading frame by -1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon-anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased -1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon.


Subject(s)
Escherichia coli/genetics , Frameshifting, Ribosomal , Mutation , Peptide Chain Elongation, Translational , Peptide Elongation Factor G/genetics , Ribosomes/genetics , Anticodon/chemistry , Anticodon/metabolism , Binding Sites , Codon/chemistry , Codon/metabolism , Escherichia coli/metabolism , Histidine/genetics , Histidine/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Peptide Elongation Factor G/chemistry , Peptide Elongation Factor G/metabolism , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Protein Structure, Secondary , RNA, Messenger , RNA, Transfer , Reading Frames , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribosomes/metabolism
13.
RNA Biol ; 18(8): 1193-1205, 2021 08.
Article in English | MEDLINE | ID: mdl-33211605

ABSTRACT

Colicin D is a plasmid-encoded bacteriocin that specifically cleaves tRNAArg of sensitive Escherichia coli cells. E. coli has four isoaccepting tRNAArgs; the cleavage occurs at the 3' end of anticodon-loop, leading to translation impairment in the sensitive cells. tRNAs form a common L-shaped structure and have many conserved nucleotides that limit tRNA identity elements. How colicin D selects tRNAArgs from the tRNA pool of sensitive E. coli cells is therefore intriguing. Here, we reveal the recognition mechanism of colicin D via biochemical analyses as well as structural modelling. Colicin D recognizes tRNAArgICG, the most abundant species of E. coli tRNAArgs, at its anticodon-loop and D-arm, and selects it as the most preferred substrate by distinguishing its anticodon-loop sequence from that of others. It has been assumed that translation impairment is caused by a decrease in intact tRNA molecules due to cleavage. However, we found that intracellular levels of intact tRNAArgICG do not determine the viability of sensitive cells after such cleavage; rather, an accumulation of cleaved ones does. Cleaved tRNAArgICG dominant-negatively impairs translation in vitro. Moreover, we revealed that EF-Tu, which is required for the delivery of tRNAs, does not compete with colicin D for binding tRNAArgICG, which is consistent with our structural model. Finally, elevation of cleaved tRNAArgICG level decreases the viability of sensitive cells. These results suggest that cleaved tRNAArgICG transiently occupies ribosomal A-site in an EF-Tu-dependent manner, leading to translation impairment. The strategy should also be applicable to other tRNA-targeting RNases, as they, too, recognize anticodon-loops.Abbreviations: mnm5U: 5-methylaminomethyluridine; mcm5s2U: 5-methoxycarbonylmethyl-2-thiouridine.


Subject(s)
Bacteriocins/chemistry , Colicins/chemistry , Escherichia coli/metabolism , Protein Biosynthesis , RNA, Bacterial/chemistry , RNA, Transfer, Arg/chemistry , Ribosomes/metabolism , Anticodon/chemistry , Anticodon/genetics , Anticodon/metabolism , Bacteriocins/genetics , Bacteriocins/metabolism , Base Pairing , Binding Sites , Colicins/genetics , Colicins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Molecular Docking Simulation , Nucleic Acid Conformation , Peptide Elongation Factor Tu/genetics , Peptide Elongation Factor Tu/metabolism , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Transfer, Arg/genetics , RNA, Transfer, Arg/metabolism , Ribosomes/genetics , Substrate Specificity , Thiouridine/analogs & derivatives , Thiouridine/metabolism , Uridine/analogs & derivatives , Uridine/metabolism
14.
RNA ; 27(2): 202-220, 2021 02.
Article in English | MEDLINE | ID: mdl-33214333

ABSTRACT

Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i6A, t6A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m1G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.


Subject(s)
Adenosine/analogs & derivatives , Anticodon/chemistry , Escherichia coli/genetics , RNA Processing, Post-Transcriptional , RNA, Transfer, Lys/chemistry , RNA, Transfer, Phe/chemistry , Adenosine/metabolism , Anticodon/genetics , Anticodon/metabolism , Base Pairing , Base Sequence , Escherichia coli/metabolism , Isopentenyladenosine/chemistry , Isopentenyladenosine/metabolism , Molecular Dynamics Simulation , Nucleic Acid Conformation , Nucleosides/chemistry , Nucleosides/metabolism , RNA, Transfer, Lys/genetics , RNA, Transfer, Lys/metabolism , RNA, Transfer, Phe/genetics , RNA, Transfer, Phe/metabolism
15.
Nucleic Acids Res ; 48(21): 12004-12015, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33196821

ABSTRACT

Because ambient temperature affects biochemical reactions, organisms living in extreme temperature conditions adapt protein composition and structure to maintain biochemical functions. While it is not feasible to experimentally determine optimal growth temperature (OGT) for every known microbial species, organisms adapted to different temperatures have measurable differences in DNA, RNA and protein composition that allow OGT prediction from genome sequence alone. In this study, we built a 'tRNA thermometer' model using tRNA sequence to predict OGT. We used sequences from 100 archaea and 683 bacteria species as input to train two Convolutional Neural Network models. The first pairs individual tRNA sequences from different species to predict which comes from a more thermophilic organism, with accuracy ranging from 0.538 to 0.992. The second uses the complete set of tRNAs in a species to predict optimal growth temperature, achieving a maximum ${r^2}$ of 0.86; comparable with other prediction accuracies in the literature despite a significant reduction in the quantity of input data. This model improves on previous OGT prediction models by providing a model with minimum input data requirements, removing laborious feature extraction and data preprocessing steps and widening the scope of valid downstream analyses.


Subject(s)
Adaptation, Physiological/genetics , Archaea/genetics , Bacteria/genetics , Genome, Archaeal , Genome, Bacterial , RNA, Transfer/chemistry , Anticodon/chemistry , Anticodon/metabolism , Archaea/classification , Archaea/metabolism , Bacteria/classification , Bacteria/metabolism , Base Pairing , Base Sequence , Computer Simulation , Models, Genetic , Neural Networks, Computer , Nucleic Acid Conformation , Phylogeny , RNA Stability , RNA, Transfer/genetics , RNA, Transfer/metabolism , Temperature , Thermometers
16.
Proc Natl Acad Sci U S A ; 117(28): 16333-16338, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601241

ABSTRACT

Bacterial transfer RNAs (tRNAs) contain evolutionarily conserved sequences and modifications that ensure uniform binding to the ribosome and optimal translational accuracy despite differences in their aminoacyl attachments and anticodon nucleotide sequences. In the tRNA anticodon stem-loop, the anticodon sequence is correlated with a base pair in the anticodon loop (nucleotides 32 and 38) to tune the binding of each tRNA to the decoding center in the ribosome. Disruption of this correlation renders the ribosome unable to distinguish correct from incorrect tRNAs. The molecular basis for how these two tRNA features combine to ensure accurate decoding is unclear. Here, we solved structures of the bacterial ribosome containing either wild-type [Formula: see text] or [Formula: see text] containing a reversed 32-38 pair on cognate and near-cognate codons. Structures of wild-type [Formula: see text] bound to the ribosome reveal 23S ribosomal RNA (rRNA) nucleotide A1913 positional changes that are dependent on whether the codon-anticodon interaction is cognate or near cognate. Further, the 32-38 pair is destabilized in the context of a near-cognate codon-anticodon pair. Reversal of the pairing in [Formula: see text] ablates A1913 movement regardless of whether the interaction is cognate or near cognate. These results demonstrate that disrupting 32-38 and anticodon sequences alters interactions with the ribosome that directly contribute to misreading.


Subject(s)
Protein Biosynthesis/genetics , RNA, Transfer/chemistry , RNA, Transfer/genetics , Anticodon/chemistry , Anticodon/genetics , Anticodon/metabolism , Base Pairing , Codon/genetics , Codon/metabolism , Crystallography, X-Ray , Models, Molecular , Mutation , Nucleic Acid Conformation , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal, 23S/chemistry , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 23S/metabolism , RNA, Transfer/metabolism , Ribosomes/chemistry , Ribosomes/metabolism , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
17.
Nucleic Acids Res ; 48(14): 7899-7913, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32609816

ABSTRACT

In the Elongator-dependent modification pathway, chemical modifications are introduced at the wobble uridines at position 34 in transfer RNAs (tRNAs), which serve to optimize codon translation rates. Here, we show that this three-step modification pathway exists in Dictyostelium discoideum, model of the evolutionary superfamily Amoebozoa. Not only are previously established modifications observable by mass spectrometry in strains with the most conserved genes of each step deleted, but also additional modifications are detected, indicating a certain plasticity of the pathway in the amoeba. Unlike described for yeast, D. discoideum allows for an unconditional deletion of the single tQCUG gene, as long as the Elongator-dependent modification pathway is intact. In gene deletion strains of the modification pathway, protein amounts are significantly reduced as shown by flow cytometry and Western blotting, using strains expressing different glutamine leader constructs fused to GFP. Most dramatic are these effects, when the tQCUG gene is deleted, or Elp3, the catalytic component of the Elongator complex is missing. In addition, Elp3 is the most strongly conserved protein of the modification pathway, as our phylogenetic analysis reveals. The implications of this observation are discussed with respect to the evolutionary age of the components acting in the Elongator-dependent modification pathway.


Subject(s)
Dictyostelium/genetics , RNA, Transfer/metabolism , Anticodon/chemistry , Anticodon/metabolism , Codon , Dictyostelium/metabolism , Gene Deletion , Glutamine , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Mutation , Nucleosides/chemistry , Phylogeny , Protein Biosynthesis , Protozoan Proteins/classification , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Uridine/metabolism
18.
RNA ; 26(9): 1291-1298, 2020 09.
Article in English | MEDLINE | ID: mdl-32439717

ABSTRACT

Queuosine (Q) is a conserved tRNA modification in bacteria and eukaryotes. Eukaryotic Q-tRNA modification occurs through replacing the guanine base with the scavenged metabolite queuine at the wobble position of tRNAs with G34U35N36 anticodon (Tyr, His, Asn, Asp) by the QTRT1/QTRT2 heterodimeric enzyme encoded in the genome. In humans, Q-modification in tRNATyr and tRNAAsp are further glycosylated with galactose and mannose, respectively. Although galactosyl-Q (galQ) and mannosyl-Q (manQ) can be measured by LC/MS approaches, the difficulty of detecting and quantifying these modifications with low sample inputs has hindered their biological investigations. Here we describe a simple acid denaturing gel and nonradioactive northern blot method to detect and quantify the fraction of galQ/manQ-modified tRNA using just microgram amounts of total RNA. Our method relies on the secondary amine group of galQ/manQ becoming positively charged to slow their migration in acid denaturing gels commonly used for tRNA charging studies. We apply this method to determine the Q and galQ/manQ modification kinetics in three human cells lines. For Q-modification, tRNAAsp is modified the fastest, followed by tRNAHis, tRNATyr, and tRNAAsn Compared to Q-modification, glycosylation occurs at a much slower rate for tRNAAsp, but at a similar rate for tRNATyr Our method enables easy access to study the function of these enigmatic tRNA modifications.


Subject(s)
Gels/chemistry , Nucleoside Q/chemistry , RNA, Transfer/chemistry , RNA, Transfer/genetics , Anticodon/chemistry , Anticodon/genetics , Cell Line, Tumor , Glycosylation , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Nucleoside Q/genetics , Transfer RNA Aminoacylation/genetics
19.
Nucleic Acids Res ; 48(11): 6170-6183, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32266934

ABSTRACT

Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.


Subject(s)
Codon/genetics , Purines/chemistry , Purines/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Anticodon/chemistry , Anticodon/genetics , Anticodon/metabolism , Base Pair Mismatch , Base Pairing , Base Sequence , Codon/chemistry , Codon/metabolism , Eukaryotic Cells/metabolism , Gene Library , Guanine/chemistry , Guanine/metabolism , Internal Ribosome Entry Sites/genetics , Nucleotides/chemistry , Nucleotides/metabolism , Peptide Chain Elongation, Translational , RNA, Transfer/metabolism , Ribosomes/metabolism
20.
FEBS J ; 287(17): 3814-3826, 2020 09.
Article in English | MEDLINE | ID: mdl-32115907

ABSTRACT

Various pathogenic variants in both mitochondrial tRNAPhe and Phenylalanyl-tRNA synthetase mitochondrial protein coding gene (FARS2) gene encoding for the human mitochondrial PheRS have been identified and associated with neurological and/or muscle-related pathologies. An important Guanine-34 (G34)A anticodon mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) syndrome has been reported in hmit-tRNAPhe . The majority of G34 contacts in available aaRSs-tRNAs complexes specifically use that base as an important tRNA identity element. The network of intermolecular interactions providing its specific recognition also largely conserved. However, their conservation depends also on the invariance of the residues in the anticodon binding domain (ABD) of human mitochondrial Phenylalanyl-tRNA synthetase (hmit-PheRS). A defect in recognition of the anticodon of tRNAPhe may happen not only because of G34A mutation, but also due to mutations in the ABD. Indeed, a pathogenic mutation in FARS2 has been recently reported in a 9-year-old female patient harboring a p.Asp364Gly mutation. Asp364 is hydrogen bonded (HB) to G34 in WT hmit-PheRS. Thus, there are two pathogenic variants disrupting HB between G34 and Asp364: one is associated with G34A mutation, and the other with Asp364Gly mutation. We have measured the rates of tRNAPhe aminoacylation catalyzed by WT hmit-PheRS and mutant enzymes. These data ranked the residues making a HB with G34 according to their contribution to activity and the signal transduction pathway in the hmit-PheRS-tRNAPhe complex. Furthermore, we carried out extensive MD simulations to reveal the interdomain contact topology on the dynamic trajectories of the complex, and gaining insight into the structural and dynamic integrity effects of hmit-PheRS complexed with tRNAPhe . DATABASE: Structural data are available in PDB database under the accession number(s): 3CMQ, 3TUP, 5MGH, 5MGV.


Subject(s)
Genetic Pleiotropy , Mitochondrial Proteins/chemistry , Paraparesis, Spastic/genetics , Phenylalanine-tRNA Ligase/chemistry , RNA, Transfer, Phe/chemistry , Amino Acid Substitution , Anticodon/chemistry , Anticodon/metabolism , Aspartic Acid/chemistry , Child , Consanguinity , DNA, Mitochondrial/genetics , Disease Progression , Female , Guanine/chemistry , Humans , Hydrogen Bonding , MERRF Syndrome/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Molecular , Molecular Dynamics Simulation , Motion , Mutation, Missense , Phenotype , Phenylalanine-tRNA Ligase/genetics , Phenylalanine-tRNA Ligase/metabolism , Point Mutation , Protein Conformation , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...