Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.406
Filter
1.
Front Immunol ; 15: 1392316, 2024.
Article in English | MEDLINE | ID: mdl-38711516

ABSTRACT

Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.


Subject(s)
Adaptive Immunity , Bacterial Proteins , Cytokines , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/immunology , Cytokines/metabolism , Bacterial Proteins/immunology , Lipoproteins/immunology , Lipoproteins/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Pneumococcal Vaccines/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Macrophages/immunology , Macrophages/metabolism , Cells, Cultured
2.
J Cell Sci ; 137(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38682259

ABSTRACT

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Subject(s)
Histocompatibility Antigens Class II , Histone Deacetylase 2 , Nuclear Proteins , Promoter Regions, Genetic , SARS-CoV-2 , Trans-Activators , Humans , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Promoter Regions, Genetic/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/genetics , COVID-19/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/immunology , HEK293 Cells , Down-Regulation/genetics , Antigen Presentation/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics
3.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675621

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Pyrazoles , Transplantation, Homologous , Animals , Mice , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/metabolism , Azetidines/pharmacology , Disease Models, Animal , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase Inhibitors/pharmacology , Mice, Inbred C57BL , Purines/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects
4.
Immunol Rev ; 323(1): 303-315, 2024 May.
Article in English | MEDLINE | ID: mdl-38501766

ABSTRACT

Besides its canonical role in protecting the host from pathogens, the immune system plays an arguably equally important role in maintaining tissue homeostasis. Within barrier tissues that interface with the external microenvironment, induction of immune tolerance to innocuous antigens, such as commensal, dietary, and environmental antigens, is key to establishing immune homeostasis. The early postnatal period represents a critical window of opportunity in which parallel development of the tissue, immune cells, and microbiota allows for reciprocal regulation that shapes the long-term immunological tone of the tissue and subsequent risk of immune-mediated diseases. During early infancy, the immune system appears to sacrifice pro-inflammatory functions, prioritizing the establishment of tissue tolerance. In this review, we discuss mechanisms underlying early life windows for intestinal tolerance with a focus on newly identified RORγt+ antigen-presenting cells-Thetis cells-and highlight the role of the intestinal microenvironment in shaping intestinal immune system development and tolerance.


Subject(s)
Homeostasis , Immune Tolerance , Intestinal Mucosa , Humans , Animals , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestines/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Gastrointestinal Microbiome/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism
5.
Bioessays ; 46(4): e2300230, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412391

ABSTRACT

In circulation, T cells are spherical with selectin enriched dynamic microvilli protruding from the surface. Following extravasation, these microvilli serve another role, continuously surveying their environment for antigen in the form of peptide-MHC (pMHC) expressed on the surface of antigen presenting cells (APCs). Upon recognition of their cognate pMHC, the microvilli are initially stabilized and then flatten into F-actin dependent microclusters as the T cell spreads over the APC. Within 1-5 min, clathrin is recruited by the ESCRT-0 component Hrs to mediate release of T cell receptor (TCR) loaded vesicles directly from the plasma membrane by clathrin and ESCRT-mediated ectocytosis (CEME). After 5-10 min, Hrs is displaced by the endocytic clathrin adaptor epsin-1 to induce clathrin-mediated trans-endocytosis (CMTE) of TCR-pMHC conjugates. Here we discuss some of the functional properties of the clathrin machinery which enables it to control these topologically opposite modes of membrane transfer at the immunological synapse, and how this might be regulated during T cell activation.


Subject(s)
Clathrin , T-Lymphocytes , Clathrin/metabolism , Antigen-Presenting Cells/metabolism , Receptors, Antigen, T-Cell , Endocytosis/physiology , Endosomal Sorting Complexes Required for Transport/metabolism , Communication
6.
Curr Protoc ; 4(2): e976, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38400601

ABSTRACT

Antigen-presenting cells (APCs), such as dendritic cells and macrophages, have a unique ability to survey the body and present information to T cells via peptide-loaded major histocompatibility complexes (signal 1). This presentation, along with a co-stimulatory signal (signal 2), leads to activation and subsequent expansion of T cells. This process can be harnessed and utilized for therapeutic applications, but the use of patient-derived APCs can be complex and inefficient. Alternatively, artificial APCs (aAPCs) provide a simplified method to achieve T cell activation by presenting the two necessary stimulatory signals. This protocol describes the utilization of magnetic nanoparticles and stimulatory proteins to create aAPCs that can be employed for activating and expanding antigen-specific T cells for both basic and translational immunology and immunotherapy studies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Protein and particle modification for aAPC fabrication Basic Protocol 2: aAPC validation by immunolabeling of conjugated protein Support Protocol 1: Quantification of aAPC stock concentration Basic Protocol 3: Determination of aAPC usage for murine CD8+ T cell activation Support Protocol 2: Isolation of murine CD8+ T cells.


Subject(s)
Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , Humans , Animals , Mice , Antigen-Presenting Cells/metabolism , Lymphocyte Activation , Immunotherapy/methods , Macrophages
7.
Nat Rev Immunol ; 24(1): 64-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37479834

ABSTRACT

Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.


Subject(s)
Lymphocytes , Nuclear Receptor Subfamily 1, Group F, Member 3 , Humans , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Immunity, Innate , Endothelial Cells , Antigen-Presenting Cells/metabolism , Carrier Proteins/metabolism
8.
Int J Mol Sci ; 24(23)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38069400

ABSTRACT

The cells and numerous macromolecules of living organisms carry an array of simple and complex carbohydrates on their surface, which may be recognized by many types of proteins, including lectins. Human macrophage galactose-type lectin (MGL, also known as hMGL/CLEC10A/CD301) is a C-type lectin receptor expressed on professional antigen-presenting cells (APCs) specific to glycans containing terminal GalNAc residue, such as Tn antigen or LacdiNAc but also sialylated Tn antigens. Macrophage galactose-type lectin (MGL) exhibits immunosuppressive properties, thus facilitating the maintenance of immune homeostasis. Hence, MGL is exploited by tumors and some pathogens to trick the host immune system and induce an immunosuppressive environment to escape immune control. The aims of this article are to discuss the immunological outcomes of human MGL ligand recognition, provide insights into the molecular aspects of these interactions, and review the MGL ligands discovered so far. Lastly, based on the human fetoembryonic defense system (Hu-FEDS) hypothesis, this paper raises the question as to whether MGL-mediated interactions may be relevant in the development of maternal tolerance toward male gametes and the fetus.


Subject(s)
Antigen-Presenting Cells , Galactose , Male , Humans , Ligands , Antigen-Presenting Cells/metabolism , Macrophages/metabolism , Lectins, C-Type/metabolism
9.
Nature ; 624(7992): 630-638, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38093012

ABSTRACT

The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.


Subject(s)
COVID-19 Vaccines , Immunity, Mucosal , Animals , Cricetinae , Humans , Mice , Administration, Inhalation , Aerosols , Antibodies, Viral/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, Viral/immunology , Cholera Toxin , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Nanoparticles , Powders , Primates/virology , SARS-CoV-2/classification , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccination , Capsules
10.
Cancer Res Commun ; 3(10): 2158-2169, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37823774

ABSTRACT

Novel therapeutic strategies are urgently needed for patients with high-risk Ewing sarcoma and for the reduction of severe side effects for all patients. Immunotherapy may fill this need, but its successful application has been hampered by a lack of knowledge on the composition and function of the Ewing sarcoma immune microenvironment. Here, we explore the immune microenvironment of Ewing sarcoma, by single-cell RNA sequencing of 18 Ewing sarcoma primary tissue samples. Ewing sarcoma is infiltrated by natural killer, T, and B cells, dendritic cells, and immunosuppressive macrophages. Ewing sarcoma-associated T cells show various degrees of dysfunction. The antigen-presenting cells found in Ewing sarcoma lack costimulatory gene expression, implying functional impairment. Interaction analysis reveals a clear role for Ewing sarcoma tumor cells in turning the Ewing sarcoma immune microenvironment into an immunosuppressive niche. These results provide novel insights into the functional state of immune cells in the Ewing sarcoma tumor microenvironment and suggest mechanisms by which Ewing sarcoma tumor cells interact with, and shape, the immune microenvironment. SIGNIFICANCE: This study is the first presenting a detailed analysis of the Ewing sarcoma microenvironment using single-cell RNA sequencing. We provide novel insight into the functional state of immune cells and suggests mechanisms by which Ewing tumor cells interact with, and shape, their immune microenvironment. These insights provide help in understanding the failures and successes of immunotherapy in Ewing sarcoma and may guide novel targeted (immuno) therapeutic approaches.


Subject(s)
Neuroectodermal Tumors, Primitive, Peripheral , Sarcoma, Ewing , Humans , Sarcoma, Ewing/genetics , Single-Cell Gene Expression Analysis , Cell Line, Tumor , Antigen-Presenting Cells/metabolism , Tumor Microenvironment/genetics
11.
Immunol Cell Biol ; 101(9): 847-856, 2023 10.
Article in English | MEDLINE | ID: mdl-37585342

ABSTRACT

Artificial antigen-presenting cells (aAPCs) offer a cost effective and convenient tool for the expansion of chimeric antigen receptor (CAR)-bearing T cells and NK cells. aAPCs are particularly useful because of their ability to efficiently expand low-frequency antigen-reactive lymphocytes in bulk cultures. Commonly derived from the leukemic cell line K562, these aAPCs lack most major histocompatibility complex expression and are therefore useful for NK cell expansion without triggering allogeneic T-cell proliferation. To combat difficulties in accessing existing aAPC lines, while circumventing the iterative lentiviral gene transfers with antibody-mediated sorting required for the isolation of stable aAPC clones, we developed a single-step technique using Sleeping Beauty (SB)-based vectors with antibiotic selection options. Our SB vectors contain options of two to three genes encoding costimulatory molecules, membrane-bound cytokines as well as the presence of antibiotic-resistance genes that allow for stable transposition-based transfection of feeder cells. Transfection of K562 with SB vectors described in this study allows for the surface expression of CD86, 4-1BBL, membrane-bound (mb) interleukin (IL)-15 and mbIL-21 after simultaneous transposition and antibiotic selection using only two antibiotics. aAPCs successfully expanded NK cells to high purity (80-95%). Expanded NK cells could be further engineered by lentiviral CAR transduction. The multivector kit set is publicly available and will allow convenient and reproducible in-house production of effective aAPCs for the in vitro expansion of primary cells.


Subject(s)
Immunotherapy, Adoptive , T-Lymphocytes , Immunotherapy, Adoptive/methods , Antigen-Presenting Cells/metabolism , Killer Cells, Natural , Cell Proliferation , Anti-Bacterial Agents/metabolism
12.
Methods Cell Biol ; 178: 149-171, 2023.
Article in English | MEDLINE | ID: mdl-37516524

ABSTRACT

T cell activation through TCR stimulation leads to the formation of the immunological synapse (IS), a specialized adhesion organized between T lymphocytes and antigen presenting cells (APCs) in which a dynamic interaction among signaling molecules, the cytoskeleton and intracellular organelles achieves proper antigen-mediated stimulation and effector function. The kinetics of molecular reactions at the IS is essential to determine the quality of the response to the antigen stimulation. Herein, we describe methods based on biochemistry, flow cytometry and imaging in live and fixed cells to study the activation state and dynamics of regulatory molecules at the IS in the Jurkat T cell line CH7C17 and primary human and mouse CD4+ T lymphocytes stimulated by antigen presented by Raji and HOM2 B cell lines and human and mouse dendritic cells.


Subject(s)
Immunological Synapses , T-Lymphocytes , Humans , Animals , Mice , T-Lymphocytes/metabolism , Immunological Synapses/metabolism , Kinetics , Antigen-Presenting Cells/metabolism , Signal Transduction , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , Jurkat Cells
13.
Microbiome ; 11(1): 159, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491398

ABSTRACT

BACKGROUND: Cervicovaginal inflammation has been linked to negative reproductive health outcomes including the acquisition of HIV, other sexually transmitted infections, and cervical carcinogenesis. While changes to the vaginal microbiome have been linked to genital inflammation, the molecular relationships between the functional components of the microbiome with cervical immunology in the reproductive tract are understudied, limiting our understanding of mucosal biology that may be important for reproductive health. RESULTS: In this study, we used a multi'-omics approach to profile cervicovaginal samples collected from 43 Canadian women to characterize host, immune, functional microbiome, and metabolome features of cervicovaginal inflammation. We demonstrate that inflammation is associated with lower amounts of L. crispatus and higher levels of cervical antigen-presenting cells (APCs). Proteomic analysis showed an upregulation of pathways related to neutrophil degranulation, complement, and leukocyte migration, with lower levels of cornified envelope and cell-cell adherens junctions. Functional microbiome analysis showed reductions in carbohydrate metabolism and lactic acid, with increases in xanthine and other metabolites. Bayesian network analysis linked L. crispatus with glycolytic and nucleotide metabolism, succinate and xanthine, and epithelial proteins SCEL and IVL as major molecular features associated with pro-inflammatory cytokines and increased APCs. CONCLUSIONS: This study identified key molecular and immunological relationships with cervicovaginal inflammation, including higher APCs, bacterial metabolism, and proteome alterations that underlie inflammation. As APCs are involved in HIV transmission, parturition, and cervical cancer progression, further studies are needed to explore the interactions between these cells, bacterial metabolism, mucosal immunity, and their relationship to reproductive health. Video Abstract.


Subject(s)
HIV Infections , Humans , Female , HIV Infections/microbiology , Proteomics , Bayes Theorem , Canada , Vagina/microbiology , Inflammation/metabolism , Cytokines , Antigen-Presenting Cells/metabolism , Xanthines/metabolism
14.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298605

ABSTRACT

Retinoids are a frequently used class of drugs in the treatment of inflammatory as well as malignant skin diseases. Retinoids have differential affinity for the retinoic acid receptor (RAR) and/or the retinoid X receptor (RXR). The endogenous dual RAR and RXR agonist alitretinoin (9-cis retinoic acid) demonstrated remarkable efficacy in the treatment of chronic hand eczema (CHE) patients; however, detailed information on the mechanisms of action remains elusive. Here, we used CHE as a model disease to unravel immunomodulatory pathways following retinoid receptor signaling. Transcriptome analyses of skin specimens from alitretinoin-responder CHE patients identified 231 significantly regulated genes. Bioinformatic analyses indicated keratinocytes as well as antigen presenting cells as cellular targets of alitretinoin. In keratinocytes, alitretinoin interfered with inflammation-associated barrier gene dysregulation as well as antimicrobial peptide induction while markedly inducing hyaluronan synthases without affecting hyaluronidase expression. In monocyte-derived dendritic cells, alitretinoin induced distinct morphological and phenotypic characteristics with low co-stimulatory molecule expression (CD80 and CD86), the increased secretion of IL-10 and the upregulation of the ecto-5'-nucleotidase CD73 mimicking immunomodulatory or tolerogenic dendritic cells. Indeed, alitretinoin-treated dendritic cells demonstrated a significantly reduced capacity to activate T cells in mixed leukocyte reactions. In a direct comparison, alitretinoin-mediated effects were significantly stronger than those observed for the RAR agonist acitretin. Moreover, longitudinal monitoring of alitretinoin-responder CHE patients could confirm in vitro findings. Taken together, we demonstrate that the dual RAR and RXR agonist alitretinoin targets epidermal dysregulation and demonstrates strong immunomodulatory effects on antigen presenting cell functions.


Subject(s)
Retinoids , Tretinoin , Humans , Alitretinoin , Retinoids/pharmacology , Tretinoin/pharmacology , Receptors, Retinoic Acid/metabolism , Retinoid X Receptors , Antigen-Presenting Cells/metabolism
15.
Front Immunol ; 14: 1170821, 2023.
Article in English | MEDLINE | ID: mdl-37207220

ABSTRACT

Staphylococcus aureus superantigens (SAgs) such as staphylococcal enterotoxin A (SEA) and B (SEB) are potent toxins stimulating T cells to produce high levels of inflammatory cytokines, thus causing toxic shock and sepsis. Here we used a recently released artificial intelligence-based algorithm to better elucidate the interaction between staphylococcal SAgs and their ligands on T cells, the TCR and CD28. The obtained computational models together with functional data show that SEB and SEA are able to bind to the TCR and CD28 stimulating T cells to activate inflammatory signals independently of MHC class II- and B7-expressing antigen presenting cells. These data reveal a novel mode of action of staphylococcal SAgs. By binding to the TCR and CD28 in a bivalent way, staphylococcal SAgs trigger both the early and late signalling events, which lead to massive inflammatory cytokine secretion.


Subject(s)
CD28 Antigens , Superantigens , Artificial Intelligence , Staphylococcus/metabolism , Antigen-Presenting Cells/metabolism , Receptors, Antigen, T-Cell
16.
Biomaterials ; 296: 122048, 2023 05.
Article in English | MEDLINE | ID: mdl-36842237

ABSTRACT

A variety of bioactive materials are currently developed to expand T cells ex vivo for adoptive T cell immunotherapy, also known as called artificial antigen-presenting cells (aAPCs). However, almost all the reported designs exhibit relatively smooth surface modified with T cell activating biomolecules, and therefore cannot well mimic the dendritic morphological characteristics of dendritic cells (DCs), the most important type of natural antigen-presenting cells (APCs) with high specific surface areas. Here, we propose a hydrophilic monomer-mediated surface morphology control strategy to synthesize biocompatible dendritic poly(N-isopropylacrylamide) (PNIPAM) microspheres for constructing aAPCs with surface morphology mimicking natural APCs (e.g., DCs). Interestingly, when maintaining the same ligands density, dendritic polymeric microspheres-based aAPCs (DPM beads) can more efficiently expand CD8+ T cells than that with smooth surfaces. Moreover, adoptive transfer of antigen-specific CD8+ T cells expanded by the DPM beads show significant antitumor effect of B16-OVA tumor bearing mice. Therefore, we provide a new concept for constructing biomimetic aAPCs with enhanced T cell expansion ability.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Biomimetics , Microspheres , Antigen-Presenting Cells/metabolism , Immunotherapy, Adoptive , Neoplasms/metabolism , Immunotherapy
17.
Semin Immunol ; 66: 101711, 2023 03.
Article in English | MEDLINE | ID: mdl-36645993

ABSTRACT

Cross-priming was first recognized in the context of in vivo cytotoxic T lymphocyte (CTL) responses generated against minor histocompatibility antigens induced by immunization with lymphoid cells. Even though the basis for T cell antigen recognition was still largely unclear at that time, these early studies recognized the implication that such minor histocompatibility antigens were derived from the immunizing cells and were obtained exogenously by the host's antigen presenting cells (APCs) that directly prime the CTL response. As antigen recognition by the T cell receptor became understood to involve peptides derived from antigens processed by the APCs and presented by major histocompatibility molecules, the "cross-priming" phenomenon was subsequently recast as "cross-presentation" and the scope considered for examining this process gradually broadened to include many different forms of antigens, including soluble proteins, and different types of APCs that may not be involved in in vivo CTL priming. Many studies of cross-presentation have relied on in vitro cell models that were recently found to differ from in vivo APCs in particular mechanistic details. A recent trend has focused on the APCs and pathways of cross-presentation used in vivo, especially the type 1 dendritic cells. Current efforts are also being directed towards validating the in vivo role of various putative pathways and gene candidates in cross-presentation garnered from various in vitro studies and to determine the relative contributions they make to CTL responses across various forms of antigens and immunologic settings. Thus, cross-presentation appears to be carried by different pathways in various types of cells for different forms under different physiologic settings, which remain to be evaluated in an in vivo physiologic setting.


Subject(s)
Antigen-Presenting Cells , Cross-Priming , Humans , Antigen-Presenting Cells/metabolism , T-Lymphocytes, Cytotoxic , Antigens , Minor Histocompatibility Antigens , Biology , Dendritic Cells , Antigen Presentation , Histocompatibility Antigens Class I
18.
Nutrients ; 15(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36678282

ABSTRACT

Nutraceuticals act as cellular and functional modulators, contributing to the homeostasis of physiological processes. In an inflammatory microenvironment, these functional foods can interact with the immune system by modulating or balancing the exacerbated proinflammatory response. In this process, immune cells, such as antigen-presenting cells (APCs), identify danger signals and, after interacting with T lymphocytes, induce a specific effector response. Moreover, this conditions their change of state with phenotypical and functional modifications from the resting state to the activated and effector state, supposing an increase in their energy requirements that affect their intracellular metabolism, with each immune cell showing a unique metabolic signature. Thus, nutraceuticals, such as polyphenols, vitamins, fatty acids, and sulforaphane, represent an active option to use therapeutically for health or the prevention of different pathologies, including obesity, metabolic syndrome, and diabetes. To regulate the inflammation associated with these pathologies, intervention in metabolic pathways through the modulation of metabolic energy with nutraceuticals is an attractive strategy that allows inducing important changes in cellular properties. Thus, we provide an overview of the link between metabolism, immune function, and nutraceuticals in chronic inflammatory processes associated with obesity and diabetes, paying particular attention to nutritional effects on APC and T cell immunometabolism, as well as the mechanisms required in the change in energetic pathways involved after their activation.


Subject(s)
Antigen-Presenting Cells , T-Lymphocytes , Humans , Antigen-Presenting Cells/metabolism , Macrophages/metabolism , Inflammation/metabolism , Dietary Supplements , Obesity/metabolism
19.
Toxicol Lett ; 373: 123-131, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36423715

ABSTRACT

Trichloroethanol (TCOH), as a metabolite of trichloroethylene, has sensitization in the pathogenesis of trichloroethylene-induced hypersensitivity dermatitis (TIHD) which the human leukocyte antigen (HLA)-B∗13:01 gene is strongly associated with it. However, it is still obscure how TCOH participates in the pathogenesis of TIHD. Here, we demonstrate that TLR2 and TLR4 signaling through MyD88 and TRAF6-dependent pathway could activate NF-κB by promoting degradation of the inhibitor IκB-α to stimulate the process of NF-κB nuclear translocation. Besides, the crucial molecules of antigen processing and presentation, including TAP1, LMP2, LMP7, and HLA-B* 13:01, were all enhanced and the abundance of HLA-B* 13:01 on the surface of CIR-B* 13:01 cells was also up-regulated with the TCOH concentration increasing. Notably, we used 50 µM pyrrolidinedithiocarbamate (ammonium) to effectively inhibit the activation of NF-κB, which could effectively reverse the stimulation of antigen processing and presentation in TCOH-treated CIR-B* 13:01 cells. Taken together, we speculated that TCOH could promote the abundance of HLA complex on the antigen-presenting cells via TLR2 and TLR4/NF-κB to induce the severe reactivation of T lymphocytes, leading to the extreme immune response.


Subject(s)
NF-kappa B , Trichloroethylene , Humans , NF-kappa B/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Antigen Presentation , Antigen-Presenting Cells/metabolism , HLA-B Antigens
20.
Curr Protoc ; 2(11): e592, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36367390

ABSTRACT

Heat-shock proteins (HSPs), or stress proteins, are abundant and highly conserved, present in all organisms and in all cells. Selected HSPs, also known as chaperones, play crucial roles in folding and unfolding of proteins, assembly of multiprotein complexes, transport and sorting of proteins into correct subcellular compartments, cell-cycle control and signaling, and protection of cells against stress and apoptosis. More recently, HSPs have been shown to be key players in immune responses: during antigen presentation as well as cross-priming, they chaperone and transfer antigenic peptides to class I and class II molecules of the major histocompatibility complexes. In addition, extracellular HSPs can stimulate and cause maturation of professional antigen-presenting cells of the immune system, such as macrophages and dendritic cells. They also chaperone several toll-like receptors, which play a central role in innate immune responses. HSPs constitute a large family of proteins that are often classified based on their molecular weight as Hsp10, Hsp40, Hsp60, Hsp70, Hsp90, etc. This unit contains a table that lists common HSPs and summarizes their characteristics including (a) name, (b) subcellular localization, (c) known function, (d) chromosome assignment, (e) brief comments, and (f) references. © 2022 Wiley Periodicals LLC.


Subject(s)
HSP70 Heat-Shock Proteins , Heat-Shock Proteins , Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Antigen Presentation , Molecular Chaperones , Antigen-Presenting Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...