Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.650
Filter
1.
Nature ; 628(8008): 612-619, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509366

ABSTRACT

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Subject(s)
Dura Mater , Immunity, Humoral , Lymphoid Tissue , Veins , Administration, Intranasal , Antigens/administration & dosage , Antigens/immunology , Bone Marrow/immunology , Central Nervous System/blood supply , Central Nervous System/immunology , Dura Mater/blood supply , Dura Mater/immunology , Germinal Center/cytology , Germinal Center/immunology , Lymphatic Vessels/immunology , Lymphoid Tissue/blood supply , Lymphoid Tissue/immunology , Plasma Cells/immunology , Skull/blood supply , T-Lymphocytes/immunology , Veins/physiology , Humans , Male , Female , Adult , Middle Aged , Animals , Mice , Aged, 80 and over
2.
Front Immunol ; 14: 1156451, 2023.
Article in English | MEDLINE | ID: mdl-37122761

ABSTRACT

Prion diseases are a novel class of infectious disease based in the misfolding of the cellular prion protein (PrPC) into a pathological, self-propagating isoform (PrPSc). These fatal, untreatable neurodegenerative disorders affect a variety of species causing scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) in cervids, and Creutzfeldt-Jacob disease (CJD) in humans. Of the animal prion diseases, CWD is currently regarded as the most significant threat due its ongoing geographical spread, environmental persistence, uptake into plants, unpredictable evolution, and emerging evidence of zoonotic potential. The extensive efforts to manage CWD have been largely ineffective, highlighting the need for new disease management tools, including vaccines. Development of an effective CWD vaccine is challenged by the unique biology of these diseases, including the necessity, and associated dangers, of overcoming immune tolerance, as well the logistical challenges of vaccinating wild animals. Despite these obstacles, there has been encouraging progress towards the identification of safe, protective antigens as well as effective strategies of formulation and delivery that would enable oral delivery to wild cervids. In this review we highlight recent strategies for antigen selection and optimization, as well as considerations of various platforms for oral delivery, that will enable researchers to accelerate the rate at which candidate CWD vaccines are developed and evaluated.


Subject(s)
Antigens , Deer , PrPC Proteins , Protein Subunit Vaccines , Vaccine Development , Wasting Disease, Chronic , Zoonoses , Animals , Humans , Administration, Oral , Antigens/administration & dosage , Antigens/immunology , Genetic Vectors , Immunotherapy , Protein Subunit Vaccines/administration & dosage , Protein Subunit Vaccines/immunology , PrPC Proteins/immunology , PrPC Proteins/therapeutic use , Vaccination , Wasting Disease, Chronic/prevention & control , Wasting Disease, Chronic/transmission , Zoonoses/prevention & control , Zoonoses/transmission
3.
Int Immunopharmacol ; 104: 108522, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35032825

ABSTRACT

Induction of tumor-specific CD8 + T cell responses is known as a major challenge for cancer vaccine development; here we presented a strategy to improve peptide nanofibers-mounted antitumor immune responses. To this end, peptide nanofibers bearing class I (Kb)-restricted epitope (Epi-Nano) were formulated with polyethylene imine backbone (Epi-Nano-PEI), and characterized using morphological and physicochemicalcharacterizationtechniques. Nanofibers were studied in terms of their uptake by antigen-presenting cells (APCs), antigen cross-presentation capacity, and cytotoxic activity. Furthermore, nanofibers were assessed by their potency to induce NLRP3 inflammasome-related cytokines and factors. Finally, the ability of nanofibers to induce tumor-specific CD8 T cells and tumor protection were investigated in tumor-bearing mice. The formulation of Epi-Nano with PEI led to the formation of short strand nanofibers with a positive surface charge, a low critical aggregation concentration (CAC), and an increased resistancetoproteolytic degradation. Epi-Nano-PEI was significantly taken up more efficiently by antigen-presenting cells (APCs), and was more potent in cross-presentation when compared to Epi-Nano. Moreover, Epi-Nano-PEI, in comparison to Epi-Nano, efficiently up-regulated the expression of NLRP3, caspase-1, IL-1b, IL18 and IL-6. Cell viability analysis showed that formulation of PEI with Epi-Nano not only abolished its cytotoxic activity, but surprisingly induced macrophage proliferation. Furthermore, it demonstrated that Epi-Nano-PEI triggered robust antigen-specific CD8+ T cell responses, and induced maximum antitumor response (tumor growth inhibition and prolonged survival) in tumor-bearing mice that were significantly higher compared to Epi-Nano. Taken together, the formulation of Epi-Nano with PEI is suggested as a promising strategy to improve nanofibers-mounted antitumor immune response.


Subject(s)
Antigens/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Epitopes/administration & dosage , Nanofibers/administration & dosage , Neoplasms/immunology , Ovalbumin/administration & dosage , Peptides/administration & dosage , Polyethyleneimine/administration & dosage , Animals , Antigen-Presenting Cells/immunology , Cell Line, Tumor , Female , Mice, Inbred C57BL
4.
Front Immunol ; 12: 697292, 2021.
Article in English | MEDLINE | ID: mdl-34867941

ABSTRACT

Ideally, a vaccine should provide life-long protection following a single administered dose. In our previous study, the immunopotentiator CVC1302, which contains pattern- recognition receptor (PRR) agonists, was demonstrated to prolong the lifetime of the humoral immune response induced by killed foot-and-mouth disease virus (FMDV) vaccine. To elucidate the mechanism by which CVC1302 induces long-term humoral immunity, we used 4-hydroxy-3-nitrophenylacetyl (NP)-OVA as a pattern antigen and administered it to mice along with CVC1302, emulsified together with Marcol 52 mineral oil (NP-CVC1302). From the results of NP-specific antibody levels, we found that CVC1302 could induce not only higher levels of NP-specific antibodies but also high-affinity NP-specific antibody levels. To detect the resulting NP-specific immune cells, samples were taken from the injection sites, draining lymph nodes (LNs), and bone marrow of mice injected with NP-CVC1302. The results of these experiments show that, compared with mice injected with NP alone, those injected with NP-CVC1302 had higher percentages of NP+ antigen-presenting cells (APCs) at the injection sites and draining LNs, higher percentages of follicular helper T cells (TFH), germinal center (GC) B cells, and NP+ plasma-blasts in the draining LNs, as well as higher percentages of NP+ long-lived plasma cells (LLPCs) in the bone marrow. Additionally, we observed that the inclusion of CVC1302 in the immunization prolonged the lifetime of LLPCs in the bone marrow by improving the transcription expression of anti-apoptotic transcription factors such as Mcl-1, Bcl-2, BAFF, BCMA, Bax, and IRF-4. This research provides a blueprint for designing new generations of immunopotentiators.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens/administration & dosage , Immunity, Humoral/drug effects , Nitrophenols/administration & dosage , Ovalbumin/administration & dosage , Phenylacetates/administration & dosage , Receptors, Pattern Recognition/agonists , Animals , Antigen-Presenting Cells/immunology , Antigens/immunology , B-Lymphocytes/immunology , Female , Immunoglobulin G/blood , Mice, Inbred BALB C , Nitrophenols/immunology , Ovalbumin/immunology , Phenylacetates/immunology , T-Lymphocytes/immunology
5.
Front Immunol ; 12: 732298, 2021.
Article in English | MEDLINE | ID: mdl-34745102

ABSTRACT

Immune modulating therapies and vaccines are in high demand, not least to the recent global spread of SARS-CoV2. To achieve efficient activation of the immune system, professional antigen presenting cells have proven to be key coordinators of such responses. Especially targeted approaches, actively directing antigens to specialized dendritic cells, promise to be more effective and accompanied by reduced payload due to less off-target effects. Although antibody and glycan-based targeting of receptors on dendritic cells have been employed, these are often expensive and time-consuming to manufacture or lack sufficient specificity. Thus, we applied a small-molecule ligand that specifically binds Langerin, a hallmark receptor on Langerhans cells, conjugated to a model protein antigen. Via microneedle injection, this construct was intradermally administered into intact human skin explants, selectively loading Langerhans cells in the epidermis. The ligand-mediated cellular uptake outpaces protein degradation resulting in intact antigen delivery. Due to the pivotal role of Langerhans cells in induction of immune responses, this approach of antigen-targeting of tissue-resident immune cells offers a novel way to deliver highly effective vaccines with minimally invasive administration.


Subject(s)
Antigens, CD/metabolism , Antigens/administration & dosage , Green Fluorescent Proteins/administration & dosage , Langerhans Cells/metabolism , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Animals , Antigens/immunology , Antigens/metabolism , COS Cells , Chlorocebus aethiops , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Injections, Intradermal , Langerhans Cells/immunology , Ligands , Miniaturization , Nanomedicine , Needles , Protein Binding , Protein Transport , Proteolysis , THP-1 Cells , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Subunit/metabolism
6.
Adv Sci (Weinh) ; 8(23): e2100118, 2021 12.
Article in English | MEDLINE | ID: mdl-34693665

ABSTRACT

Recently, viral infectious diseases, including COVID-19 and Influenza, are the subjects of major concerns worldwide. One strategy for addressing these concerns focuses on nasal vaccines, which have great potential for achieving successful immunization via safe, easy, and affordable approaches. However, conventional nasal vaccines have major limitations resulting from fast removal when pass through nasal mucosa and mucociliary clearance hindering their effectiveness. Herein a nanoparticulate vaccine (NanoVac) exhibiting photochemical immunomodulation and constituting a new self-assembled immunization system of a photoactivatable polymeric adjuvant with influenza virus hemagglutinin for efficient nasal delivery and antigen-specific immunity against pathogenic influenza viruses is described. NanoVac increases the residence period of antigens and further enhances by spatiotemporal photochemical modulation in the nasal cavity. As a consequence, photochemical immunomodulation of NanoVacs successfully induces humoral and cellular immune responses followed by stimulation of mature dendritic cells, plasma cells, memory B cells, and CD4+ and CD8+ T cells, resulting in secretion of antigen-specific immunoglobulins, cytokines, and CD8+ T cells. Notably, challenge with influenza virus after nasal immunization with NanoVacs demonstrates robust prevention of viral infection. Thus, this newly designed vaccine system can serve as a promising strategy for developing vaccines that are active against current hazardous pathogen outbreaks and pandemics.


Subject(s)
Hemagglutinins/chemistry , Influenza Vaccines/administration & dosage , Light , Nanoparticles/chemistry , Orthomyxoviridae Infections/prevention & control , Adjuvants, Immunologic/administration & dosage , Administration, Inhalation , Animals , Antigens/administration & dosage , Antigens/chemistry , Antigens/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Hemagglutinins/administration & dosage , Hemagglutinins/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Photosensitizing Agents/chemistry , Polymers/chemistry
7.
Front Immunol ; 12: 751883, 2021.
Article in English | MEDLINE | ID: mdl-34707615

ABSTRACT

A simple formulation is urgently needed for mucosal vaccine development. We employed formyl peptide receptor-like 1 inhibitory protein (FLIPr), an FcγR antagonist secreted by Staphylococcus aureus, as a vector to target ovalbumin (OVA) to dendritic cells (DCs) via intranasal administration. Our results demonstrate that intranasal administration of recombinant OVA-FLIPr fusion protein (rOVA-FLIPr) alone efficiently delivers OVA to DCs in nasal lymphoid tissue. Subsequently, OVA-specific IgG and IgA antibodies in the circulatory system and IgA antibodies in mucosal tissue were detected. Importantly, activation of OVA-specific CD4+ and CD8+ T cells and induction of a broad-spectrum cytokine secretion profile were detected after intranasal administration of rOVA-FLIPr alone in immunocompetent C57BL/6 mice. Furthermore, we employed immunodeficient AG129 mice as a Zika virus infection model and demonstrated that intranasal administration of recombinant Zika virus envelope protein domain III-FLIPr fusion protein induced protective immune responses against the Zika virus. These results suggest that antigen-FLIPr fusion protein alone via intranasal administration can be applied to mucosal vaccine development.


Subject(s)
Antigens/administration & dosage , Bacterial Proteins/administration & dosage , Ovalbumin/administration & dosage , Recombinant Fusion Proteins/administration & dosage , Vaccination/methods , Administration, Intranasal , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Immunity, Mucosal , Immunoglobulin A/blood , Immunoglobulin G/blood , Mice, Inbred C57BL
8.
Elife ; 102021 08 17.
Article in English | MEDLINE | ID: mdl-34402793

ABSTRACT

Follicular T helper cells (Tfh) are a specialized subset of CD4 effector T cells that are crucial for germinal center (GC) reactions and for selecting B cells to undergo affinity maturation. Despite this central role for humoral immunity, only few data exist about their clonal distribution when multiple lymphoid organs are exposed to the same antigen (Ag) as it is the case in autoimmunity. Here, we used an autoantibody-mediated disease model of the skin and injected one auto-Ag into the two footpads of the same mouse and analyzed the T cell receptor (TCR)ß sequences of Tfh located in GCs of both contralateral draining lymph nodes. We found that over 90% of the dominant GC-Tfh clonotypes were shared in both lymph nodes but only transiently. The initially dominant Tfh clonotypes especially declined after establishment of chronic disease while GC reaction and autoimmune disease continued. Our data demonstrates a dynamic behavior of Tfh clonotypes under autoimmune conditions and emphasizes the importance of the time point for distinguishing auto-Ag-specific Tfh clonotypes from potential bystander activated ones.


Subject(s)
Autoantibodies/immunology , Autoimmunity/immunology , Germinal Center/immunology , Lymph Nodes/immunology , T Follicular Helper Cells/immunology , Animals , Antigens/administration & dosage , Antigens/immunology , B-Lymphocytes/immunology , Female , Immunity, Humoral , Immunization , Lymph Nodes/cytology , Mice , Mice, Inbred C57BL
9.
Goiânia; SES-GO; 31 ago 2021. 1-9 p. ilus.
Non-conventional in Portuguese | SES-GO, Coleciona SUS, CONASS, LILACS | ID: biblio-1290834

ABSTRACT

Em janeiro de 2020, os testes para detectar o SARS-CoV-2 em amostras coletadas de pacientes foram desenvolvidos logo após o sequenciamento e divulgação do genoma do vírus (CORMAN et al., 2020) e, desde então, diferentes metodologias de testagem , têm sido empregadas em contextos distintos. Embora sejam o padrão de referência para diagnóstico da infecção aguda pelo SARS-CoV-2, os testes moleculares de reação em cadeia da polimerase (RT-PCR) não podem ser dimensionados para atender às demandas extensas da saúde pública (MINA & ANDERSEN, 2021). O processo é limitado para algumas regiões devido à necessidade de equipamentos sofisticados, operadores extremamente qualificados ao tempo que pode decorrer. Contudo, os testes de antígeno, permitem limitar de forma eficaz a disseminação da COVID-19 e responder a surtos da pandemia. Foram levantadas no estudo as recomendações quanto aos testes de antígeno emitidos pela Organização Mundial da Saúde (OMS), pela Europa, pelo Reino Unido, Estados Unidos, Israel e Brasil.


In January 2020, tests to detect SARS-CoV-2 in samples collected from patients were developed soon after the sequencing and dissemination of the virus genome (CORMAN et al., 2020) and, since then, different testing methodologies, have been used in different contexts. Although they are the reference standard for diagnosing acute SARS-CoV-2 infection, molecular polymerase chain reaction (RT-PCR) tests cannot be scaled to meet the extensive demands of public health (MINA & ANDERSEN, 2021 ). The process is limited to some regions due to the need for sophisticated equipment, extremely qualified operators and the time that may elapse. However, antigen tests effectively limit the spread of COVID-19 and respond to pandemic outbreaks. Recommendations for antigen tests issued by the World Health Organization (WHO), Europe, the United Kingdom, the United States, Israel and Brazil were raised in the study.


Subject(s)
Humans , Male , Female , Pregnancy , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , COVID-19/prevention & control , Antigens/administration & dosage
10.
Mol Pharm ; 18(8): 2867-2888, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34264684

ABSTRACT

Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens/administration & dosage , Drug Delivery Systems , Lipids/chemistry , Nanoparticles/chemistry , Vaccines/administration & dosage , COVID-19 Vaccines/administration & dosage , Humans , Liposomes , SARS-CoV-2/immunology , Vaccines/chemistry
11.
Immunobiology ; 226(4): 152108, 2021 07.
Article in English | MEDLINE | ID: mdl-34247017

ABSTRACT

In Algeria, Androctonus australis hector scorpion envenomation remains a major problem of public health because of non-efficient therapy. The development of safe vaccine against scorpion venom could be one key strategy for the envenomation prevention. The irradiation of venom by γ-rays develops suitable immunogens which produced effective antivenom and safe vaccine. In this study, we investigated the ability of the irradiated toxic fraction (γ-FtoxG50) to induce long-term memory humoral response in immunized animals (mice and rabbits), by involving the long-lived plasma cells to prevent efficiently the lethality of scorpion envenomation. For this purpose, an appropriate immunization schedule was established in mice and rabbits using three (3) similar doses of γ-FtoxG50 associated with Alum adjuvant. Obtained results indicate that the long-term immunogenicity of γ-FtoxG50 is able to induce the long-term memory humoral response with a high level of specific antibodies. The long-term persistence of antibody levels could depend on bone marrow memory plasma cells. These cells produce continuously antibodies without antigen stimulus. Furthermore, an enhanced memory response was obtained post-repeated envenomation with toxic native venom that leads to improved protection of animals. Together, pre-existing protective antibodies and the activation of memory B-cells could induce a rapid neutralization of scorpion toxins and long-term protection against scorpion envenomation.


Subject(s)
Antigens/administration & dosage , Immunoglobulin G/immunology , Neurotoxins/administration & dosage , Plasma Cells/immunology , Scorpion Venoms/administration & dosage , Vaccines/administration & dosage , Adjuvants, Vaccine/administration & dosage , Alum Compounds/administration & dosage , Animals , Antigens/radiation effects , Bone Marrow/immunology , Female , Gamma Rays , Immunologic Memory , Mice , Neurotoxins/radiation effects , Rabbits , Scorpion Venoms/radiation effects , Spleen/immunology
12.
Curr Opin Endocrinol Diabetes Obes ; 28(4): 411-418, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34101651

ABSTRACT

PURPOSE OF REVIEW: Update on antigen-specific immunotherapy (ASIT) in type 1 diabetes (T1D) with focus on deoxyribonucleic acid (DNA)-induced immunization and the current obstacles to further research and clinical realization. RECENT FINDINGS: In T1D, immune system imbalances together with malfunctioning islet-specific processes cause autoreactive immune cells to destroy beta cells in the islets. ASIT may restore self-tolerance; however, the approach has yet to fully meet its promise and may require co-administration of antigen (preproinsulin) and suitable immune response modifiers. SUMMARY: A self-tolerant immune system may be regained using ASIT where T effector cells are repressed and/or T regulatory cells are induced. Administration of exogenous antigens has been safe in T1D. Conversely, adequate and lasting beta cell preservation has yet to be tested in sufficiently large clinical trials in suitable patients and may require targeting of multiple parts of the immunopathophysiology using combination therapies. DNA-based induction of native antigen expression to ensure important posttranscriptional modifications and presentation to the immune system together with tolerance-enhancing immune response modifiers (i.e., cytokines) may be more efficacious than exogenous antigens given alone. Progress is limited mainly by the scarcity of validated biomarkers to track the effects of ASIT in T1D.


Subject(s)
Antigens , Diabetes Mellitus, Type 1 , Immunotherapy , Insulin-Secreting Cells , Antigens/administration & dosage , Antigens/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Humans , Immune Tolerance/drug effects , Immune Tolerance/immunology , Immunotherapy/methods , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/immunology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology
13.
Curr Opin Endocrinol Diabetes Obes ; 28(4): 404-410, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34101653

ABSTRACT

PURPOSE OF REVIEW: Current therapies for autoimmune disorders often employ broad suppression of the immune system. Antigen-specific immunotherapy (ASI) seeks to overcome the side-effects of immunosuppressive therapy by specifically targeting only disease-related autoreactive T and B cells. Although it has been in development for several decades, ASI still is not in use clinically to treat autoimmunity. Novel ways to deliver antigen may be effective in inducing ASI. Here we review recent innovations in antigen delivery. RECENT FINDINGS: New ways to deliver antigen include particle and nonparticle approaches. One main focus has been the targeting of antigen-presenting cells in a tolerogenic context. This technique often results in the induction and/or expansion of regulatory T cells, which has the potential to be effective against a complex, polyclonal immune response. SUMMARY: Whether novel delivery approaches can help bring ASI into general clinical use for therapy of autoimmune diseases remains to be seen. However, preclinical work and early results from clinical trials using these new techniques show promising signs.


Subject(s)
Autoimmune Diseases , Immune Tolerance , Immunotherapy/methods , Antigens/administration & dosage , Antigens/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmunity/drug effects , Autoimmunity/immunology , Humans , Immune Tolerance/drug effects , Immune Tolerance/immunology , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
14.
Ann Clin Lab Sci ; 51(3): 359-367, 2021 May.
Article in English | MEDLINE | ID: mdl-34162566

ABSTRACT

OBJECTIVE: The aim of this investigation was to evaluate the property of bovine lactoferrin (LF) in the generation of delayed type hypersensitivity (DTH) as an oral adjuvant during immunization with ovalbumin (OVA) and BCG. METHODS: LF admixed with OVA or BCG was used for immunization of CBA or C57BL/6 mice when given via oral or subcutaneous routes. Elicited DTH response was measured post immunization. Inhibition studies using mannose or galactose were accomplished by gavage prior to oral administration of antigens. LF was also examined for effects on BCG uptake by bone marrow derived macrophages (BMM). RESULTS: LF at doses of 1.0 mg and 10.0 mg, admixed with OVA (10.0 mg), significantly enhanced the antigen-specific DTH reaction. The stimulatory effects of LF were inhibited by the oral pretreatment of mice with 50.0 mg of mannose but not galactose. LF also enhanced the DTH reaction to orally administered BCG. LF enhanced uptake of BCG by BMM in a dose-dependent manner. CONCLUSION: LF was able to augment development of DTH when orally administered with OVA or BCG antigens. Inhibition studies suggest the involvement of the receptor with an affinity to mannose in mediation of the adjuvant effect. LF augmentation of the DTH response was partially effective when given in advance of oral delivery of the antigen; this effect could also be saturated by mannose. BCG studies provide preliminary evidence for LF in the potential augmentation of oral vaccination to prevent mycobacterial infection. In vitro experiments provide evidence that LF plays a role in modulation of antigen presenting cell activation.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens/administration & dosage , Hypersensitivity, Delayed/pathology , Lactoferrin/administration & dosage , Macrophages/immunology , Mycobacterium bovis/immunology , Ovalbumin/administration & dosage , Administration, Oral , Animals , Antigens/immunology , Hypersensitivity, Delayed/etiology , Lactoferrin/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Ovalbumin/immunology
15.
Front Immunol ; 12: 648348, 2021.
Article in English | MEDLINE | ID: mdl-34079542

ABSTRACT

Dendritic cells (DCs) in peripheral tissues may have a unique role to regulate innate and adaptive immune responses to antigens that enter the tissues. Peritoneal cavity is the body compartment surrounding various tissues and organs and housing diverse immune cells. Here, we investigated the specialized features of classical DC (cDC) subsets following the intraperitoneal injection of a model antigen ovalbumin (OVA). Peritoneal cDC1s were superior to cDC2s in activating OVA-specific CD8 T cells, while both cDCs were similar in stimulating OVA-specific CD4 T cells. Each peritoneal cDC subset differentially regulated the homing properties of CD8 T cells. CD8 T cells stimulated by cDC1s displayed a higher level of lung-homing receptor CCR4, whereas those stimulated by cDC2s prominently expressed various homing receptors including gut-homing molecules CCR9 and α4ß7. Also, we found that cDC1s played a dominating role over cDC2s in controlling the overall gene expression of CD8 T cells. Soluble factor(s) emanating from CD8 T cells stimulated by peritoneal cDC1s were responsible for mediating this dominance of cDC1s, and we identified IL-2 as a soluble factor regulating the global gene expression of T cells. Collectively, our study indicates that different peritoneal cDC subsets effectively diversify T cell responses by altering the level of cytokines, such as IL-2, in the milieu.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Communication/genetics , Dendritic Cells/immunology , Gene Expression Regulation , Interleukin-2/metabolism , Peritoneal Cavity/cytology , Animals , Antigen Presentation/drug effects , Antigens/administration & dosage , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Cells, Cultured , Dendritic Cells/drug effects , Female , Gene Expression/drug effects , Gene Expression Regulation/drug effects , Interleukin-2/pharmacology , Mice , Mice, Inbred C57BL , Ovalbumin/administration & dosage , Receptors, CCR/metabolism , Receptors, CCR4/metabolism
16.
Eur J Pharm Biopharm ; 165: 293-305, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34044110

ABSTRACT

The degree of antigen adsorption to adjuvants in subunit vaccines may significantly influence the immune responses they induce upon vaccination. Commonly used approaches for studying how the level of adsorption affects the induction of antigen-specific immune responses include (i) using adjuvants with different abilities to adsorb antigens, and (ii) comparing different antigens selected based on their ability to adsorb to the adjuvant. A weakness of these approaches is that not only the antigen adsorption level is varied, but also other important functional factors such as adjuvant composition and/or the B/T cell epitopes, which may affect immunogenicity. Hence, we investigated how changing the adsorption capabilities of a single antigen to an adjuvant influenced the vaccine-induced immune responses. The model antigen lysozyme, which displays a positive net charge at physiological pH due to an isoelectric point (pI) of 11, was succinylated to different extents, resulting in a reduction of the pI value to 4.4-5.9, depending on the degree of succinylation. A pronounced inverse correlation was found between the pI value of the succinylated lysozyme analogues and the degree of adsorption to a cationic liposomal adjuvant consisting of dimethyldioctadecylammonium bromide (DDA) and trehalose dibehenate (TDB) (CAF®01). Furthermore, increased adsorption to this adjuvant correlated directly with the magnitude of lysozyme-specific Th1/Th17 immune responses induced by the vaccine in mice, while there was an inverse correlation with antibody induction. However, high lysozyme-specific antibody titers were induced with an increased antigen dose, even upon vaccination with a strongly adsorbed succinylated lysozyme analogue. Hence, these data illustrate that the degree of lysozyme adsorption to CAF®01 strongly affects the quality of the resulting immune responses.


Subject(s)
Adjuvants, Immunologic/chemistry , Antigens/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/administration & dosage , Adsorption , Animals , Antigens/administration & dosage , Antigens/chemistry , Cations/administration & dosage , Cations/chemistry , Female , Glycolipids/administration & dosage , Glycolipids/chemistry , Immunogenicity, Vaccine , Liposomes , Mice , Models, Animal , Muramidase/administration & dosage , Muramidase/chemistry , Muramidase/immunology , Quaternary Ammonium Compounds/administration & dosage , Quaternary Ammonium Compounds/chemistry , Th1 Cells , Th17 Cells , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/chemistry
17.
Front Immunol ; 12: 736936, 2021.
Article in English | MEDLINE | ID: mdl-35003059

ABSTRACT

Palladium (Pd) is a widely used metal and extremely important biomaterial for the reconstruction of occlusions during dental restorations. However, metallic biomaterials can cause serious allergic reactions, such as Pd-related oral mucositis seen in dentistry. Metal allergy is categorized as a type IV allergy and we demonstrated that CD8 T cells play an important role in Pd allergy previously. As TCR of CD8 T cells recognizes MHC class I/peptide complex, the antigen specificity to this complex seems to be generated during Pd allergy. However, it remains unknown if Pd affects the MHC class I/peptide complex. In this study, we investigated the behavior of the MHC class I/peptide complex in response to Pd treatment. We found that PdCl2 treatment altered peptide presentation on MHC class I and that co-culture with Pd-treated DC2.4 cells induced activation of Pd-responsive TCR-expressing T cell line. Furthermore, PdCl2 treatment induced temporal MHC class I internalization and inhibition of membrane movement suppressed Pd-induced T cell-mediated antigenicity. These data suggest that Pd-induced MHC class I internalization is critical for generation of antigenicity through a mechanism including differential peptide loading on MHC class I, which results in Pd allergy.


Subject(s)
Antigens/adverse effects , CD8-Positive T-Lymphocytes/immunology , Drug Hypersensitivity/etiology , Drug Hypersensitivity/immunology , Histocompatibility Antigens Class I/immunology , Palladium/adverse effects , Animals , Antigens/administration & dosage , Cell Line , Cell Membrane/metabolism , Dendritic Cells/immunology , Female , Humans , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/adverse effects , Mice , Mice, Inbred C57BL , Palladium/administration & dosage , Receptors, Antigen, T-Cell, alpha-beta/metabolism
18.
Exp Dermatol ; 30(3): 367-376, 2021 03.
Article in English | MEDLINE | ID: mdl-33063903

ABSTRACT

Food allergy is an antigen-specific immunological adverse reaction after exposure to a given food. Multiple clinical studies showed that oral immunotherapy (OIT) is effective for the prevention and treatment for food allergy that is developed in infants and children. However, the effectiveness of OIT for epicutaneously sensitized food allergy remains unclear. Previously, we established a mouse model of epicutaneous-sensitized food allergy. In this model, systemic allergic reaction including intestinal and skin symptoms, such as anaphylaxis, was observed. We treated this model with OIT in two ways (OIT before sensitization or OIT during the sensitization phase) and evaluated the preventive effect of both methods. OIT before sensitization significantly ameliorated mast cell degranulation in sensitized skin, but there was no decrease in rectal temperatures or in mast cell degranulation in the jejunum. However, OIT administered during the sensitization phase significantly ameliorated the decrease in rectal temperature and mast cell degranulation in the skin and jejunum. OIT before sensitization increased the regulatory T cells in mesenteric lymph node (MLN), but not in the spleen, and it reduced antigen-specific IgG, but not IgE, production compared with the non-OIT control. However, OIT during sensitization caused a greater increase in regulatory T cells in both the MLN and spleen and reduced antigen-specific IgE and IgG generation compared with the non-OIT control group. Thus, OIT during the sensitization phase was effective for the prevention of epicutaneous-sensitized food allergy.


Subject(s)
Anaphylaxis/prevention & control , Desensitization, Immunologic/methods , Food Hypersensitivity/prevention & control , Immune Tolerance , Skin Diseases/immunology , Skin/immunology , Administration, Cutaneous , Administration, Oral , Anaphylaxis/immunology , Animals , Antigens/administration & dosage , Antigens/immunology , Body Temperature , Cell Degranulation , Chymases/blood , Disease Models, Animal , Food Hypersensitivity/blood , Food Hypersensitivity/complications , Food Hypersensitivity/immunology , Immunoglobulin E/blood , Immunoglobulin G/blood , Jejunum/immunology , Lymph Nodes/pathology , Mast Cells/immunology , Mesentery , Mice , Ovalbumin/administration & dosage , Ovalbumin/immunology , Spleen/pathology , T-Lymphocytes, Regulatory/pathology
19.
Methods Mol Biol ; 2183: 461-475, 2021.
Article in English | MEDLINE | ID: mdl-32959260

ABSTRACT

A hybrid biological-biomaterial vector composed of a biocompatible polymeric biomaterial coating and an Escherichia coli core was designed and developed for antigen delivery. It provides a unique and efficient mechanism to transport antigens (protein or genetic) via different mechanisms of vector design that include antigen cellular localization (cytoplasm, periplasm, cellular surface) and nonnative functionalities that assist in antigen delivery. Based on a variety of E. coli strain development and polymer chemistry tools, the hybrid vector can be constructed into a number of formats for the purpose of optimized uptake and processing by antigen presenting cells, serving as the basis for a potent subsequent immune response. This chapter serves to outline a protocol for assembling a hybrid biological-biomaterial vector for use as a vaccine delivery system.


Subject(s)
Antigens/administration & dosage , Antigens/immunology , Genetic Vectors/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Animals , Antigens, Bacterial/administration & dosage , Antigens, Bacterial/immunology , Biofilms , Drug Delivery Systems , Gene Expression , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Immunization , Plasmids/genetics , Polymers/chemistry , Streptococcus pneumoniae/immunology
20.
Expert Opin Drug Deliv ; 18(2): 151-167, 2021 02.
Article in English | MEDLINE | ID: mdl-32924651

ABSTRACT

INTRODUCTION: Infectious pathogens are global disrupters. Progress in biomedical science and technology has expanded the public health arsenal against infectious diseases. Specifically, vaccination has reduced the burden of infectious pathogens. Engineering systemic immunity by harnessing the cutaneous immune network has been particularly attractive since the skin is an easily accessible immune-responsive organ. Recent advances in skin-targeted drug delivery strategies have enabled safe, patient-friendly, and controlled deployment of vaccines to cutaneous microenvironments for inducing long-lived pathogen-specific immunity to mitigate infectious diseases, including COVID-19. AREAS COVERED: This review briefly discusses the basics of cutaneous immunomodulation and provides a concise overview of emerging skin-targeted drug delivery systems that enable safe, minimally invasive, and effective intracutaneous administration of vaccines for engineering systemic immune responses to combat infectious diseases. EXPERT OPINION: In-situ engineering of the cutaneous microenvironment using emerging skin-targeted vaccine delivery systems offers remarkable potential to develop diverse immunization strategies against pathogens. Mechanistic studies with standard correlates of vaccine efficacy will be important to compare innovative intracutaneous drug delivery strategies to each other and to existing clinical approaches. Cost-benefit analyses will be necessary for developing effective commercialization strategies. Significant involvement of industry and/or government will be imperative for successfully bringing novel skin-targeted vaccine delivery methods to market for their widespread use.


Subject(s)
Communicable Disease Control/methods , Drug Delivery Systems/methods , Skin/immunology , Vaccination/methods , Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Administration, Cutaneous , Animals , Antigens/administration & dosage , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Cellular Microenvironment/immunology , Humans , Nanoparticles/administration & dosage , Nanoparticles/chemistry , SARS-CoV-2 , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...