Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.134
Filter
1.
Artif Cells Nanomed Biotechnol ; 52(1): 238-249, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696111

ABSTRACT

Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.


Subject(s)
Antimalarials , Green Chemistry Technology , Metal Nanoparticles , Plant Extracts , Plant Leaves , Plasmodium falciparum , Silver , Terminalia , Silver/chemistry , Silver/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Metal Nanoparticles/chemistry , Terminalia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plasmodium falciparum/drug effects , Molecular Docking Simulation , Humans
2.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675640

ABSTRACT

Chalcones are polyphenols that belong to the flavonoids family, known for their broad pharmacological properties. They have thus attracted the attention of chemists for their obtention and potential activities. In our study, a library of compounds from 2'-hydroxychalcone's family was first synthesized. A one-step mechanochemical synthesis via Claisen-Schmidt condensation reaction under ball mill conditions was studied, first in a model reaction between a 5'-fluoro-2'-hydroxyacetophenone and 3,4-dimethoxybenzaldehyde. The reaction was optimized in terms of catalysts, ratio of reagents, reaction time, and influence of additives. Among all assays, we retained the best one, which gave the highest yield of 96% when operating in the presence of 1 + 1 eq. of substituted benzaldehyde and 2 eq. of KOH under two grinding cycles of 30 min. Thus, this protocol was adopted for the synthesis of the selected library of 2'-hydroxychalcones derivatives. The biological activities of 17 compounds were then assessed against Plasmodium falciparum, Leishmania donovani parasite development, as well as IGR-39 melanoma cell lines by inhibiting their viability and proliferation. Compounds 6 and 11 are the most potent against L. donovani, exhibiting IC50 values of 2.33 µM and 2.82 µM, respectively, better than the reference drug Miltefosine (3.66 µM). Compound 15 presented the most interesting antimalarial activity against the 3D7 strain, with IC50 = 3.21 µM. Finally, chalcone 12 gave the best result against IGR-39 melanoma cell lines, with an IC50 value of 12 µM better than the reference drug Dacarbazine (IC50 = 25 µM).


Subject(s)
Chalcones , Plasmodium falciparum , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Humans , Cell Line, Tumor , Plasmodium falciparum/drug effects , Leishmania donovani/drug effects , Leishmania donovani/growth & development , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Molecular Structure
3.
Eur J Med Chem ; 271: 116429, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38663284

ABSTRACT

Amodiaquine (AQ) is a potent antimalarial drug used in combination with artesunate as part of artemisinin-based combination therapies (ACTs) for malarial treatment. Due to the rising emergence of resistant malaria parasites, some of which have been reported for ACT, the usefulness of AQ as an efficacious therapeutic drug is threatened. Employing the organometallic hybridisation approach, which has been shown to restore the antimalarial activity of chloroquine in the form of an organometallic hybrid clinical candidate ferroquine (FQ), the present study utilises this strategy to modulate the biological performance of AQ by incorporating ferrocene. Presently, we have conceptualised ferrocenyl AQ derivatives and have developed facile, practical routes for their synthesis. A tailored library of AQ derivatives was assembled and their antimalarial activity evaluated against chemosensitive (NF54) and multidrug-resistant (K1) strains of the malaria parasite, Plasmodium falciparum. The compounds generally showed enhanced or comparable activities to those of the reference clinical drugs chloroquine and AQ, against both strains, with higher selectivity for the sensitive phenotype, mostly in the double-digit nanomolar IC50 range. Moreover, representative compounds from this series show the potential to block malaria transmission by inhibiting the growth of stage II/III and V gametocytes in vitro. Preliminary mechanistic insights also revealed hemozoin inhibition as a potential mode of action.


Subject(s)
Amodiaquine , Antimalarials , Ferrous Compounds , Metallocenes , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Plasmodium falciparum/drug effects , Metallocenes/chemistry , Metallocenes/pharmacology , Amodiaquine/pharmacology , Amodiaquine/chemistry , Structure-Activity Relationship , Molecular Structure , Humans , Parasitic Sensitivity Tests , Dose-Response Relationship, Drug
4.
J Med Chem ; 67(9): 7312-7329, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38680035

ABSTRACT

N-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between Plasmodium vivax and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report PvNMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity. Various functional groups are appended to a pyrazole moiety in the inhibitor to target a pocket formed beneath the peptide binding cleft. The inhibitor core group polarity, lipophilicity, and size are also varied to probe the water structure near a channel. Selectivity index values range from 0.8 to 125.3. Cocrystal structures of two selective compounds, determined at 1.97 and 2.43 Å, show that extensions bind the targeted pocket but with different stabilities. A bulky naphthalene moiety introduced into the core binds next to instead of displacing protein-bound waters, causing a shift in the inhibitor position and expanding the binding site. Our structure-activity data provide a conceptual foundation for guiding future inhibitor optimizations.


Subject(s)
Acyltransferases , Antimalarials , Enzyme Inhibitors , Plasmodium vivax , Pyrazoles , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Plasmodium vivax/enzymology , Plasmodium vivax/drug effects , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Acyltransferases/chemistry , Structure-Activity Relationship , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Crystallography, X-Ray , Humans , Models, Molecular , Binding Sites
5.
J Labelled Comp Radiopharm ; 67(5): 186-196, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38661253

ABSTRACT

Malaria continues to be a serious and debilitating disease. The emergence and spread of high-level resistance to multiple antimalarial drugs by Plasmodium falciparum has brought about an urgent need for new treatments that will be active against multidrug resistant malaria infections. One such treatment, ELQ-331 (MMV-167), an alkoxy carbonate prodrug of 4(1H)-quinolone ELQ-300, is currently in preclinical development with the Medicines for Malaria Venture. Clinical development of ELQ-331 or similar compounds will require the availability of isotopically labeled analogs. Unfortunately, a suitable method for the deuteration of these important compounds was not found in the literature. Here, we describe a facile and scalable method for the deuteration of 4(1H)-quinolone ELQ-300, its alkoxycarbonate prodrug ELQ-331, and their respective N-oxides using deuterated acetic acid.


Subject(s)
Chemistry Techniques, Synthetic , Deuterium , Quinolones , Quinolones/chemical synthesis , Quinolones/chemistry , Deuterium/chemistry , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacology
6.
Bioorg Med Chem ; 105: 117734, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38677112

ABSTRACT

Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the ß-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.


Subject(s)
Antimalarials , Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Harmine , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Harmine/pharmacology , Harmine/chemistry , Harmine/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Plasmodium falciparum/drug effects , Molecular Structure , Drug Discovery , Dose-Response Relationship, Drug , Cell Line, Tumor , Parasitic Sensitivity Tests
7.
Exp Parasitol ; 261: 108767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679125

ABSTRACT

OBJECTIVES: Malaria is a significant global health challenge, particularly in Africa, Asia, and Latin America, necessitating immediate investigation into innovative and efficacious treatments. This work involves the development of pyrazole substituted 1,3,5-triazine derivatives as antimalarial agent. METHODS: In this study, ten compounds 7(a-j) were synthesized by using nucleophilic substitution reaction, screened for in silico study and their antimalarial activity were evaluated against 3D7 (chloroquine-sensitive) strain of P. falciparum. KEY FINDING: The present work involves the development of hybrid trimethoxy pyrazole 1,3,5-triazine derivatives 7 (a-j). Through in silico analysis, four compounds were identified with favorable binding energy and dock scores. The primary focus of the docking investigations was on the examination of hydrogen bonding and the associated interactions with certain amino acid residues, including Arg A122, Ser A108, Ser A111, Ile A164, Asp A54, and Cys A15. The IC50 values of the four compounds were measured in vitro to assess their antimalarial activity against the chloroquine sensitive 3D7 strain of P. falciparum. The IC50 values varied from 25.02 to 54.82 µg/mL. CONCLUSION: Among the ten derivatives, compound 7J has considerable potential as an antimalarial agent, making it a viable contender for further refinement in the realm of pharmaceutical exploration, with the aim of mitigating the global malaria load.


Subject(s)
Antimalarials , Inhibitory Concentration 50 , Molecular Docking Simulation , Plasmodium falciparum , Pyrazoles , Triazines , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Triazines/pharmacology , Triazines/chemistry , Triazines/chemical synthesis , Plasmodium falciparum/drug effects , Computer Simulation , Drug Design , Structure-Activity Relationship , Humans , Chloroquine/pharmacology , Chloroquine/chemistry , Hydrogen Bonding
8.
Nat Prod Rep ; 41(5): 784-812, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38275179

ABSTRACT

Covering 1963 to 2023Monoterpene indole alkaloids are the main sub-family of indole alkaloids with fascinating structures, stereochemistry, and diverse bioactivities (e.g., anticancer, anti-malarial and anti-arrhythmic etc.). Vallesamidine alkaloids and structurally more complex schizozygane alkaloids are small groups of rearranged monoterpene indole alkaloids with a unique 2,2,3-trialkylated indoline scaffold, while schizozygane alkaloids can generate a further rearranged skeleton, isoschizozygane, possessing a tetra-substituted, bridged tetrahydroquinoline core. In this review, the origin and structural features of vallesamidine and schizozygane alkaloids are introduced, and a discussion on the relationship of these alkaloids with aspidosperma alkaloids and a structural rearrangement hypothesis based on published studies is followed. Moreover, uncommon skeletons and potential bioactivities, such as anti-malarial and anti-tumour activities, make such alkaloids important synthetic targets, attracting research groups globally to accomplish total synthesis, resulting in impressive works on novel total synthesis, formal synthesis, and construction of key intermediates. These synthetic endeavours are systematically reviewed and highlighted with key strategies and efficiencies, providing different viewpoints on molecular structures and promoting the extension of chemical space and mining of new active scaffolds.


Subject(s)
Indole Alkaloids , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Indole Alkaloids/chemical synthesis , Molecular Structure , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Monoterpenes/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemical synthesis
9.
Macromol Biosci ; 23(5): e2200518, 2023 05.
Article in English | MEDLINE | ID: mdl-36999404

ABSTRACT

Uncomplicated malaria is effectively treated with oral artemisinin-based combination therapy (ACT). Yet, there is an unmet clinical need for the intravenous treatment of the more fatal severe malaria. There is no combination intravenous therapy for uncomplicated due to the nonavailability of a water-soluble partner drug for the artemisinin, artesunate. The currently available treatment is a two-part regimen split into an intravenous artesunate followed by the conventional oral ACT . In a novel application of polymer therapeutics, the aqueous insoluble antimalarial lumefantrine is conjugated to a carrier polymer to create a new water-soluble chemical entity suitable for intravenous administration in a clinically relevant formulation . The conjugate is characterized by spectroscopic and analytical techniques, and the aqueous solubility of lumefantrine is determined to have increased by three orders of magnitude. Pharmacokinetic studies in mice indicate that there is a significant plasma release of lumefantrine and production its metabolite desbutyl-lumefantrine (area under the curve of metabolite is ≈10% that of the parent). In a Plasmodium falciparum malaria mouse model, parasitemia clearance is 50% higher than that of reference unconjugated lumefantrine. The polymer-lumefantrine shows potential for entering the clinic to meet the need for a one-course combination treatment for severe malaria.


Subject(s)
Antimalarials , Lumefantrine , Malaria , Polymers , Animals , Mice , Administration, Intravenous , Antimalarials/administration & dosage , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Antimalarials/toxicity , Area Under Curve , Disease Models, Animal , Drug Combinations , Lumefantrine/administration & dosage , Lumefantrine/analogs & derivatives , Lumefantrine/chemical synthesis , Lumefantrine/pharmacokinetics , Lumefantrine/therapeutic use , Lumefantrine/toxicity , Malaria/drug therapy , Mice, Inbred BALB C , Parasitemia , Plasmodium falciparum , Polymers/chemistry , Polymers/pharmacology , Polymers/therapeutic use , Solubility , Water/chemistry , Male
10.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164267

ABSTRACT

Late-stage modification of drug molecules is a fast method to introduce diversity into the already biologically active scaffold. A notable number of analogs of mefloquine, chloroquine, and hydroxychloroquine have been synthesized, starting from the readily available active pharmaceutical ingredient (API). In the current review, all the modifications sites and reactivity types are summarized and provide insight into the chemistry of these molecules. The approaches include the introduction of simple groups and functionalities. Coupling to other drugs, polymers, or carriers afforded hybrid compounds or conjugates with either easily hydrolyzable or more chemically inert bonds. The utility of some of the compounds was tested in antiprotozoal, antibacterial, and antiproliferative assays, as well as in enantiodifferentiation experiments.


Subject(s)
Antimalarials/chemistry , Hydroxychloroquine/analogs & derivatives , Mefloquine/analogs & derivatives , Quinolines/chemistry , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Chemistry Techniques, Synthetic , Humans , Hydroxychloroquine/chemical synthesis , Hydroxychloroquine/pharmacology , Malaria/drug therapy , Mefloquine/chemical synthesis , Mefloquine/pharmacology , Models, Molecular , Plasmodium/drug effects , Quinolines/chemical synthesis , Quinolines/pharmacology
11.
Bioorg Med Chem ; 57: 116629, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35091169

ABSTRACT

Malaria is a prevalent and lethal disease. The fast emergence and spread of resistance to current therapies is a major concern and the development of a novel line of therapy that could overcome, the problem of drug resistance, is imperative. Screening of a set of compounds with drug/natural product-based sub-structural motifs led to the identification of spirocyclic chroman-4-one 1 with promising antimalarial activity against the chloroquine-resistant Dd2 and chloroquine-sensitive 3D7 strains of the parasite. Extensive structure-activity and structure-property relationship studies were conducted to identify the essential features necessary for its activity and properties.


Subject(s)
Antimalarials/pharmacology , Chromans/pharmacology , Malaria/drug therapy , Plasmodium/drug effects , Spiro Compounds/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Cell Survival/drug effects , Chromans/chemical synthesis , Chromans/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
12.
Org Lett ; 24(5): 1190-1194, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35094508

ABSTRACT

We report the first total syntheses of strasseriolide A and B. Strasseriolide B shows potent activity against the wild-type malaria parasite Plasmodium falciparum and good activity against a chloroquine-resistant strain. A convergent strategy was envisioned with an aldehyde-acid fragment and a vinyl iodide-alcohol fragment. Both fragments were prepared using chiral pool starting materials. They were combined with a Yamaguchi esterification and cyclized with a Nozaki-Hiyama-Kishi reaction. Strasseriolide B was assembled in a 16-step LLS.


Subject(s)
Antimalarials , Biological Products , Macrolides , Plasmodium falciparum , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacology , Biological Products/chemical synthesis , Biological Products/chemistry , Biological Products/pharmacology , Macrolides/chemical synthesis , Macrolides/chemistry , Macrolides/pharmacology , Molecular Conformation , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects
13.
Bioorg Med Chem Lett ; 58: 128522, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34974111

ABSTRACT

Novel hydrazone derivatives 10a-m were prepared from N-Amino-11-azaartemisinin (9) and screened for their antimalarial activity by oral and intramuscular (i.m.) routes against multidrug-resistant Plasmodium yoelii in Swiss mice model. Several of the hydrazone derivatives showed higher order of antimalarial activity. Compounds 10b, 10g, 10m provided 100% protection to the infected mice at the dose of 24 mg/kg × 4 days via oral route. Fluorenone based hydrazone 10m the most active compound of the series, provided 100% protection at the dose of 6 mg/kg × 4 days via intramuscular route and also provided 100% protection at the dose of 12 mg/kg × 4 days via oral route. While artemisinin gave 100% protection at 48 mg/kg × 4 days and only 60% protection at 24 mg/kg × 4 days via intramuscular (i.m.) route. Compound 10m found to be four-fold more active than artemisinin via intramuscular route.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Hydrazones/pharmacology , Malaria/drug therapy , Plasmodium yoelii/drug effects , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Artemisinins/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Multiple/drug effects , Hydrazones/chemical synthesis , Hydrazones/chemistry , Malaria/parasitology , Mice , Molecular Structure , Structure-Activity Relationship
14.
ChemMedChem ; 17(2): e202100472, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34717044

ABSTRACT

Although many quinolones have shown promise as potent antimalarials, their clinical development has been slow due to poor performance in vivo. Insights into structural modifications that can improve their therapeutic potential will be very valuable in this vibrant area of research. Our studies involving a library of quinolones which vary in substitution pattern at N1, C3, C6 and C7 positions have shown that the presence of adenine moiety at C7 can bring a noticeable improvement in activity compared to other heterocyclic groups at this location. The most potent compound emerged from this study showed IC50 values of 0.38 µM and 0.75 µM against chloroquine-sensitive and -resistant (W2) strains, respectively. Docking analysis in the Qo site of cytochrome bc1 complex revealed the contribution of a key H-bonding interaction from the adenine unit in target binding. This corroborates with compound-induced loss of mitochondrial functions. These findings not only open avenues for further exploration of antimalarial potential of adenine-modified quinolones, but also suggests broader opportunities during lead-optimization against other antimalarial targets.


Subject(s)
Adenine/pharmacology , Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quinolones/pharmacology , Adenine/chemistry , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Chlorocebus aethiops , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Quinolones/chemical synthesis , Quinolones/chemistry , Structure-Activity Relationship , Vero Cells
15.
Prep Biochem Biotechnol ; 52(1): 99-107, 2022.
Article in English | MEDLINE | ID: mdl-33890844

ABSTRACT

The objective of this study is to synthesize neem-silver nitrate nanoparticles (neem-AgNPs) using aqueous extracts of Azadirachta indica A. Juss for malaria therapy. Neem leaves collected from FRIM Malaysia were authenticated and extracted using Soxhlet extraction method. The extract was introduced to 1 mM of silver nitrate solution for neem-AgNPs synthesis. Synthesized AgNPs were further characterized by ultraviolet-visible spectroscopy and the electron-scanning microscopy. Meanwhile, for the anti-plasmodial activity of the neem-AgNPs, two lab-adapted Plasmodium falciparum strains, 3D7 (chloroquine-sensitive), and W2 (chloroquine-resistant) were tested. Red blood cells hemolysis was monitored to observe the effects of neem-AgNPs on normal and parasitized red blood cells. The synthesized neem-AgNPs were spherical in shape and showed a diameter range from 31-43 nm. When compared to aqueous neem leaves extract, the half inhibitory concentration (IC50) of the synthesized neem-AgNPs showed a four-fold IC50 decrease against both parasite strains with IC50 value of 40.920 µg/mL to 8.815 µg/mL for 3D7, and IC50 value of 98.770 µg/mL to 23.110 µg/mL on W2 strain. The hemolysis assay indicates that the synthesized neem-AgNPs and aqueous extract alone do not have hemolysis activity against normal and parasitized red blood cells. Therefore, this study shows the synthesized neem-AgNPs has a great potential to be used for malaria therapy.


Subject(s)
Antimalarials/chemistry , Azadirachta/chemistry , Plant Extracts/chemistry , Silver Nitrate/chemistry , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Green Chemistry Technology , Humans , Malaria, Falciparum/drug therapy , Nanoparticles/chemistry , Plasmodium falciparum/drug effects , Silver Nitrate/chemical synthesis , Silver Nitrate/pharmacology
16.
Eur J Med Chem ; 228: 113981, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34782182

ABSTRACT

Malaria is the fifth most lethal parasitic infections in the world. Herein, five new series of aminoalcohol quinolines including fifty-two compounds were designed, synthesized and evaluated in vitro against Pf3D7 and PfW2 strains. Among them, fourteen displayed IC50 values below or near of 50.0 nM whatever the strain with selectivity index often superior to 100.17b was found as a promising antimalarial candidate with IC50 values of 14.9 nM and 11.0 nM against respectively Pf3D7 and PfW2 and a selectivity index higher than 770 whatever the cell line is. Further experiments were achieved to confirm the safety and to establish the preliminary ADMET profile of compound 17b before the in vivo study performed on a mouse model of P. berghei ANKA infection. The overall data of this study allowed to establish new structure-activity relationships and the development of novel agents with improved pharmacokinetic properties.


Subject(s)
Amino Alcohols/pharmacology , Antimalarials/pharmacology , Drug Design , Malaria/drug therapy , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Amino Alcohols/chemical synthesis , Amino Alcohols/chemistry , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Cell Line , Cricetulus , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
17.
Molecules ; 26(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34946603

ABSTRACT

Cancer and malaria are major health conditions around the world despite many strategies and therapeutics available for their treatment. The most used strategy for the treatment of these diseases is the administration of therapeutic drugs, which suffer from several shortcomings. Some of the pharmacological limitations associated with these drugs are multi-drug resistance, drug toxicity, poor biocompatibility and bioavailability, and poor water solubility. The currently ongoing preclinical studies have demonstrated that combination therapy is a potent approach that can overcome some of the aforementioned limitations. Artemisinin and its derivatives have been reported to exhibit potent efficacy as anticancer and antimalarial agents. This review reports hybrid compounds containing artemisinin scaffolds and their derivatives with promising therapeutic effects for the treatment of cancer and malaria.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Artemisinins/pharmacology , Malaria/drug therapy , Neoplasms/drug therapy , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Artemisinins/chemical synthesis , Artemisinins/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Molecular Conformation , Neoplasms/pathology
18.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34948361

ABSTRACT

Malaria is still one of the most dangerous infectious diseases and the emergence of drug resistant parasites only worsens the situation. A series of new tetrahydro-ß-carbolines were designed, synthesized by the Pictet-Spengler reaction, and characterized. Further, the compounds were screened for their in vitro antiplasmodial activity against chloroquine-sensitive (D10) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Moreover, molecular modeling studies were performed to assess the potential action of the designed molecules and toxicity assays were conducted on the human microvascular endothelial (HMEC-1) cell line and human red blood cells. Our studies identified N-(3,3-dimethylbutyl)-1-octyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxamide (7) (a mixture of diastereomers) as the most promising compound endowed with the highest antiplasmodial activity, highest selectivity, and lack of cytotoxicity. In silico simulations carried out for (1S,3R)-7 provided useful insights into its possible interactions with enzymes essential for parasite metabolism. Further studies are underway to develop the optimal nanosized lipid-based delivery system for this compound and to determine its precise mechanism of action.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Carbolines/chemistry , Carbolines/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Carbolines/chemical synthesis , Cell Line , Drug Design , Humans , Malaria, Falciparum/drug therapy , Molecular Docking Simulation , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism
19.
Bioorg Med Chem ; 51: 116513, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34798379

ABSTRACT

A series of new quinazolinedione derivatives have been readily synthesized and evaluated for their in vitro antiplasmodial growth inhibition activity. Most of the compounds inhibited P. falciparum FcB1 strain in the low to medium micromolar concentration. The 2-ethoxy 8ag', 2-trifluoromethoxy 8ai' and 4-fluoro-2-methoxy 8ak' showed the best inhibitory activity with EC50 values around 5 µM and were non-toxic to the primary human fibroblast cell line AB943. However, these compounds were less potent than the original hit MMV665916, which showed remarkable growth inhibition with EC50 value of 0.4 µM and presented the highest selectivity index (SI > 250). In addition, a novel approach for determining the docking poses of these quinazolinedione derivatives with their potential protein target, the P. falciparum farnesyltransferase PfFT, was investigated.


Subject(s)
Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Farnesyltranstransferase/antagonists & inhibitors , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Farnesyltranstransferase/metabolism , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Structure-Activity Relationship
20.
Chem Biol Interact ; 350: 109688, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34627786

ABSTRACT

Malaria remains one of the most important parasitic diseases in the world. The multidrug-resistant Plasmodium strains make the treatment currently available for malaria less effective. Therefore, the development of new drugs is necessary to overcome therapy resistance. Triazole derivatives exhibit several biological activities and provide a moiety that is promising from the biological perspective. Due to the structural similarity to NADH, it is believed that triazoles can bind to the active site of the Plasmodium lactate dehydrogenase (pLDH) enzyme. The present work evaluates the antimalarial activity of 1,2,3-triazole derivatives by in silico, in vitro, and in vivo studies. Preliminary in silico ADMET studies of the compounds demonstrated good pharmacokinetic properties. In silico docking analysis against LDH of Plasmodium berghei (PbLDH) showed that all compounds presented interactions with the catalytic residue in the active site and affinity similar to that presented by chloroquine; the most common antimalarial drug. Cytotoxicity and hemolysis by these derivatives were evaluated in vitro. The compounds 1, 2, 5, 8, and 9 proved to be non-cytotoxic in the performed tests. In vivo antimalarial activity was evaluated using mice infected with Plasmodium berghei NK65. The five compounds tested exhibited antimalarial activity until nine days post-infection. The compound 5 showed promising activities, with about 70% parasitemia suppression. Considering the in vitro and in vivo studies, we believe the compound 5 to be the most promising molecule for further studies in antimalarial chemotherapy.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Triazoles/chemical synthesis , Triazoles/pharmacokinetics , Animals , Antimalarials/toxicity , Catalytic Domain , Computer Simulation , Drug Evaluation, Preclinical , Female , Hemolysis/drug effects , Humans , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/chemistry , Macrophages, Peritoneal/drug effects , Malaria/drug therapy , Malaria/parasitology , Mice , Molecular Docking Simulation , Plasmodium berghei/drug effects , Plasmodium berghei/enzymology , Protein Structure, Quaternary , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Structure-Activity Relationship , Triazoles/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...