ABSTRACT
BACKGROUND: Discussion of the benefits of moderate alcohol consumption is ongoing. Broadly, research focusing on ethanol consumption tends to report no benefits. However, studies that distinguish between different types of alcoholic beverages, particularly beers, often reveal positive effects. The present study evaluated the genotoxic and mutagenic effects of moderate chronic consumption of India Pale Ale (IPA) craft beer. Sixty-four adult male Swiss mice were used and divided into control and treatment groups receiving water, IPA beer with 55.23 g of ethanol per liter of beer, aqueous solution with 55.23 g of ethanol per liter, and hop infusion ad libitum for 30 days. After this period, the animals were genetically evaluated with a comet assay. For the ex vivo comet assay, blood was collected and exposed to hydrogen peroxide (H2O2). For the in vivo assay, the alkylating agent cyclophosphamide (CP) was administered to the groups after blood collection and sacrificed after 24 h. Brain, liver, and heart tissues were analyzed. Bone marrow was collected and submitted to the micronucleus test. RESULTS: The groups treated with IPA beer, ethanol, and hops did not show genotoxic and mutagenic action in the blood, brain, heart, or liver. The antigenotoxic action of IPA beer and hops was observed in both in vivo and ex vivo models, showing a similar reduction in DNA damage caused by CP. There was no significant difference between the groups with regard to the formation of micronuclei by CP. CONCLUSION: Moderate chronic consumption of IPA beer and hops infusion showed antigenotoxic effects in mice but no antimutagenic action. © 2024 Society of Chemical Industry.
Subject(s)
Beer , Comet Assay , DNA Damage , Animals , Beer/analysis , Mice , Male , DNA Damage/drug effects , India , Liver/metabolism , Liver/drug effects , Liver/chemistry , Humans , Micronucleus Tests , Ethanol , Antimutagenic Agents/pharmacologyABSTRACT
Although numerous studies have demonstrated the biomedical potential of Myrtus communis L., (Myrtaceae) data on myrt le from Montenegro are scarce. T o evaluate antioxidant, antimutagenic and antibacterial activity of myrtle methanolic extracts. Antioxidant activity was evaluated by measuring free radicals scavenging activity, reducing power and enzyme inhibition. The strongest scavenging activity was towards DPPH radical ( 2,2 - diphenyl - 1 - picry lhydrazyl) (IC 50 1.69 - 2.25 mg/mL) and superoxide anion (IC 50 0.56 to 0.88 mg/mL), followed by high reducing power (428 - 472 mgAA/g.DE) and inhibition of XOD (IC 50 0.308 - 0.6261mg/mL). Antimutagenic activity was evaluated in reverse mutation assays with Esche richia coli WP2 oxyR mutant IC202 and deficient in the induction of antioxidant enzymes. The myrtle extracts strongly inhibited mutagenesis induced by t - BOOH, reaching 70% at the highest concentration applied. Antimicrobial activity was examined on eight different bacterial strains. Gram - positive bacteria, S. epidermis , S. aureus and M. flavus demonstrated the highest sensitivity towards extracts (MICs 4.5 - 9 mg/mL), but significantly lower towards essential oil (MIC 0.42 - 3.32 mg/mL).
Aunque numerosos estudios han demostrado el potencial biomédico de Myrtus communis L., (Myrtaceae), los datos sobre el mirto de Montenegro son escasos. E valuar la actividad antioxidante, antimutagéni ca y antibacteriana de extractos metanólicos de mirto. La actividad antioxidante se evaluó midiendo la actividad de eliminación de radicales libres, el poder reductor y la inhibición enzimática. La actividad secuestrante más fuerte fue hacia DPPH radical ( IC 50 1.69 - 2.25 mg/mL) y radicales de anión superóxido (IC 50 0.56 a 0.88 mg/mL), seguido de alto poder reductor (428 - 472 m gAA/g.DE) e inhibición de XOD (I C 50 0,308 - 0,6261 mg/m L ). La actividad antimutagénica se evaluó en ensayos de mutación inversa con Esche richia coli WP2 oxyR mutante IC202 y deficiente en la inducción de enzimas antioxidantes. Los extractos de mirto inhibieron fuertemente la mutagénesis inducida por t - BOOH, alcanzando el 70% a la mayor concentración aplicada. La actividad antimicrobiana se examinó en octo cepas bacterianas diferentes. Las bacterias grampositivas, S. epidermis , S. aureus y M. flavus demostraron la sensibilidad más alta hacia los extractos (MIC 4.5 - 9 mg/mL), pero significativamente más baja hacia el aceite esencial (MIC 0.42 - 3 .32 mg/mL). Los resultados muestran la gran perspectiva nutrafarmacéutica de la especie montenegrina Myrtus communis .
Subject(s)
Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Myrtus/chemistry , Phenols/analysis , Bacteria/drug effects , Flavonoids/analysis , Oils, Volatile/chemistry , Plant Extracts/chemistry , Antimutagenic Agents/pharmacology , Montenegro , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacologyABSTRACT
Tellimagrandin-I (TL) and camptothin A (CA) are ellagitannins widely found in diverse plant species. Numerous studies demonstrated their significant biological activities, which include antitumor, antioxidant, and hepatoprotective properties. Despite this protective profile, the effects of TL and CA on DNA have not been comprehensively investigated. Thus, the aim of this study was to determine the mutagenic and antimutagenic effects attributed to TL and CA exposure on Salmonella enterica serovar Typhimurium strains using the Ames test. In addition, the cytotoxic and genotoxic effects were examined on human lymphocytes, employing both trypan blue exclusion and CometChip assay. The antigenotoxic effect was determined following TL and CA exposure in the presence of co-treatment with doxorubicin (DXR). Our results from the Ames test indicated that TL or CA did not display marked mutagenic activity. However, TL or CA demonstrated an ability to protect DNA against the damaging effects of the mutagens 4-nitroquinoline-1-oxide and sodium azide, thereby exhibiting antimutagenic properties. In relation to human lymphocytes, TL or CA did not induce significant cytotoxic or genotoxic actions on these cells. Further, these ellagitannins exhibited an ability to protect DNA from damage induced by DOX during co-treatment, indicating their potential beneficial usefulness as antigenotoxic agents. In conclusion, the protective effects of TL or CA against mutagens, coupled with their absence of genotoxic and cytotoxic effects on human lymphocytes, emphasize their potential therapeutic value in chemopreventive strategies.
Subject(s)
Antimutagenic Agents , Salmonella enterica , Humans , Salmonella typhimurium/genetics , Salmonella enterica/genetics , Hydrolyzable Tannins/pharmacology , Serogroup , Mutagenicity Tests , Mutagens/toxicity , Antimutagenic Agents/pharmacology , Plant Extracts/pharmacology , Carcinogens/pharmacology , DNA/pharmacology , LymphocytesABSTRACT
Several bioactive compounds, such as polyphenols, demonstrate low toxicity and prominent effects on cancer cells with antioxidant, anti-inflammatory, and antitumor activities. Such compounds can be found in Amazon mosses Leucobryum martianum (Hornsch.) Hampe ex Müll. Hal. (Hornsch.) and Leucobryum laevifolium (Broth). Antimutagenic assay with Salmonella enterica serovar Typhimurium and cytotoxicity with different eukaryotic cell lines were carried out to screen aqueous, hydroalcoholic, and ethanolic extracts of those Amazon mosses for anticancer potential. The results indicate the capacity of all extracts of both mosses to exert chemopreventive effects against 4-nitroquinoline-N-oxide (4NQO) and 2-aminoanthracene (2-AA), which are direct or indirect mutagens. In particular, the ethanolic and aqueous extract from L. martianum. The ethanolic extract from L. martianum induces significant cytotoxicity by mitochondrial metabolism and cell membrane disruption pathways to tumor or non-tumor cells. The aqueous extract from L. martianum showed a mainly cytotoxic response in the HepG2 cells, a human liver carcinoma, reaching ~90% cytotoxicity. The same extract did not induce significant damage to normal liver cells (F C3H cells) by membrane interaction pathway. The selective cytotoxicity in the aqueous extract of L. martianum makes it a candidate against liver cancer. Further studies, including in vivo models, are necessary to validate the efficacy and safety of the aqueous extract of L. martianum.
Subject(s)
Antimutagenic Agents , Antineoplastic Agents , Bryophyta , Humans , Plant Extracts/pharmacology , Antimutagenic Agents/pharmacology , Antioxidants/pharmacology , Mutagens/toxicityABSTRACT
The identification of new drugs with few or no adverse effects is of great interest worldwide. In cancer therapy, natural products have been used as chemopreventive and chemotherapeutic agents. Plants from the Brazilian savannah belonging to the Byrsonima genus are popularly known as muricis and have attracted much attention due to their various pharmacological activities. However, there are currently no data on these plants concerning their use as chemopreventive or chemotherapeutic agents in human cell lines. The present study assessed the potential of B. correifolia, B. verbascifolia, B. crassifolia, and B. intermedia extracts as natural alternatives in the prevention and/or treatment of cancer. The chemical constituents present in each extract were analyzed by electrospray ionization-mass spectrometry (ESI-MSN). The mutagenic/antimutagenic (micronucleus assay), genotoxic/antigenotoxic (comet assay), apoptotic/necrotic (acridine orange/ethidium bromide uptake), and oxidative/antioxidative (CM-H2DCFDA) effects of the extracts and their influence on gene expression (RTqPCR) were investigated in nonmetabolizing gastric (MNP01) and metabolizing hepatocarcinoma (HepG2) epithelial cells to evaluate the effects of metabolism on the biological activities of the extracts. The genotoxicity, mutagenicity, and apoptotic effects observed in HepG2 cells with B. correifolia and B. verbascifolia extracts are probably associated with the presence of proanthocyanidins and amentoflavone. In MNP01 cells, none of the four extracts showed mutagenic effects. B. crassifolia and B. intermedia extracts exhibited strong antimutagenicity and enhanced detoxification in HepG2 cells and antioxidant capacities in both types of cells, possibly due to the presence of gallic and quinic acids, which possess chemopreventive properties. This study identifies for the first time B. correifolia and B. verbascifolia extracts as potential agents against hepatocarcinoma and B. crassifolia and B. intermedia extracts as putative chemopreventive agents.
Subject(s)
Anticarcinogenic Agents , Antimutagenic Agents , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Brazil , Plants , Antioxidants/pharmacology , Mutagens/toxicity , Genomic Instability , Antimutagenic Agents/pharmacologyABSTRACT
El objetivo del presente estudio fue analizar el efecto del ácido clorogénico, uno de los compuestos polifenólicos con mayor concentración en la infusión de Ilex paraguariensis, sobre el daño celular y molecular inducido por el benzo(a)pireno. La infusión de Ilex paraguariensis ("mate") es bebida por la mayoría de los habitantes de Argentina, Paraguay, sur de Brasil y Uruguay. La levadura Saccharomyces cerevisiae (cepas SC7K lys2-3; SX46A y SX46Arad14() se utilizó como modelo eucariota. Las células en crecimiento exponencial se expusieron a concentraciones crecientes de benzo(a)pireno y a tratamientos combinados con una concentración de 250 ng/mL de benzo(a)pireno y ácido clorogénico a una concentración igual a la encontrada en la infusión de yerba mate. Luego de los tratamientos se determinaron fracciones de sobrevida, frecuencia mutagénica y roturas de doble cadena de ADN así como la modulación en la expresión de la proteína Rad14 a través de un análisis de Western Blot. Se observó un aumento significativo en las fracciones de sobrevida así como una disminución en la frecuencia mutagénica después de la exposición combinada con benzo(a)pireno y ácido clorogénico en comparación con los tratamientos con benzo(a)pireno como único agente. En la cepa mutante deficiente en la proteína Rad14 se observó un aumento significativo en la sensibilidad a benzo(a)pireno en comparación con la cepa SC7K lys2-3. En los tratamientos combinados de benzo(a)pireno y ácido clorogénico se observó una importante disminución de la letalidad. Con respecto a la determinación de roturas de doble cadena de ADN no se observó fraccionamiento cromosómico a la concentración de benzo(a)pireno utilizada en los experimentos. Los análisis de Western Blot mostraron un aumento en la expresión de la proteína Rad14 en las muestras tratadas con benzo(a)pireno como único agente en comparación con la muestra control. Adicionalmente se observó una disminución en la expresión de la proteína cuando en los tratamientos se utilizaron benzo(a)pireno y ácido clorogénico combinados. Los resultados indican que el ácido clorogénico disminuye significativamente la actividad mutagénica producida por el benzo(a)pireno, la cual no se encuentra relacionada con un incremento en la remoción de las lesiones inducidas por el sistema de reparación por escisión de nucleótidos.
The aim of this study was to analyze the effect of chlorogenic acid, a polyphenolic compound found at high concentrations in Ilex paraguariensis infusions, on cellular and molecular damage induced by benzo(a)pyrene. Ilex paraguariensis infusions ("mate") are consumed by most of the population in Argentina, Paraguay, southern Brazil and Uruguay. Saccharomyces cerevisiae yeast (SC7K lys2-3; SX46A and SX46Arad14( strains) were used as eukaryotic model organisms. Cells in an exponential growth phase were exposed to increasing concentrations of benzo(a)pyrene, as well as combined treatments of benzo(a)pyrene at a concentration of 250 ng/mL and chlorogenic acid at a concentration matching that which is commonly found in mate. Determinations of surviving fraction, mutagenic frequency and double strand DNA breaks induction were performed, along with the assessment of the modulation of the expression of protein Rad14 by Western Blot. A significant increase of surviving fractions and a decrease in mutagenic frequency were observed after exposure to benzo(a)pyrene plus chlorogenic acid, contrary to benzo(a)pyrene alone. A substantial increase in sensitivity to benzo(a)pyrene was observed for the Rad14 protein-deficient mutating strain when compared to the SC7K lys2-3 strain. An important decrease in lethality was observed when combined benzo(a)pyrene and chlorogenic acid treatments were applied. As for the determination of DSBs, no chromosomic fractionation was observed at the benzo(a)pyrene concentration tested in the experiments. Western Blot analysis showed an increase in the expression of protein Rad14 for samples treated with benzo(a)pyrene as a single agent when compared against the control sample. Additionally, the expression of this protein was observed to diminish when combined treatments with benzo(a)pyrene and chlorogenic acid were used. Results obtained indicate that chlorogenic acid significantly decreases the mutagenic activity of benzo(a)pyrene, which is not related to an increase in the removal of lesions induced by nucleotide excision repair system.
O objetivo deste estudo foi analisar o efeito do ácido clorogênico, um dos compostos polifenólicos com maior concentração na infusão de Ilex paraguariensis, sobre o dano celular e molecular induzido pelo benzopireno. A infusão de Ilex paraguariensis ("mate") é consumida pela maioria dos habitantes da Argentina, Paraguai, sul do Brasil e Uruguai. A levedura Saccharomyces cerevisiae (cepas SC7K lys2-3; SX46A e SX46Arad14() foi utilizada como modelo eucariótico. Células em crescimento exponencial foram expostas a concentrações crescentes de benzopireno e tratamentos combinados foram realizados com uma concentração de 250 ng/mL de benzo(a)pireno e ácido clorogênico, igual à encontrada na infusão de erva-mate. Após os tratamentos, foram determinadas as frações de sobrevivência, frequência mutagênica e quebras de fita dupla do DNA, bem como a modulação na expressão da proteína Rad14 por meio de análise de Western Blot. Um aumento significativo nas frações de sobrevivência, bem como uma diminuição na frequência mutagênica foram observados após a exposição combinada de benzo(a)pireno e ácido clorogênico em comparação com tratamentos de agente único de benzo(a)pireno. Um aumento significativo na sensibilidade ao benzo(a)pireno foi observado na cepa mutante deficiente em proteína Rad14 em comparação com a cepa SC7K lys2-3. Nos tratamentos combinados de benzo(a)pireno e ácido clorogênico, observou-se uma diminuição significativa na letalidade. Com relação à determinação das quebras de fita dupla de DNA, não foi observado fracionamento cromossômico na concentração de benzo(a)pireno utilizada nos experimentos. A partir da análise de Western Blot, observou-se um aumento na expressão da proteína Rad14 nas amostras tratadas com benzo(a)pireno como agente único em relação à amostra controle. Além disso, uma diminuição na expressão da proteína foi observada quando combinados de benzo(a)pireno e ácido clorogênico foram usados âânos tratamentos. Os resultados obtidos neste trabalho indicam que o ácido clorogênico diminui significativamente a atividade mutagênica produzida pelo benzo(a)pireno, a qual não está relacionada a um aumento na remoção de lesões induzidas pelo sistema de reparo por excisão de nucleotídeos.
Subject(s)
Benzo(a)pyrene/pharmacology , Chlorogenic Acid/pharmacology , Cell Death/drug effects , Saccharomyces cerevisiae Proteins/adverse effects , DNA Repair Enzymes/genetics , Benzo(a)pyrene/toxicity , Mutagenesis/drug effects , Cell Death/genetics , Antimutagenic Agents/pharmacology , Saccharomyces cerevisiae Proteins/genetics , DNA Breaks, Double-Stranded/drug effects , Mutation RateABSTRACT
Pedunculagin (PD), an ellagitannin found in different plant species, possesses several pharmaceutical properties, including antitumor, antioxidant, gastroprotective, hepatoprotective, and anti-inflammatory properties. However, the effects of PD alone on DNA remain to be determined. The aim of this study was to investigate the potential cytotoxic, genotoxic, and antigenotoxic activities of PD isolated from Plinia cauliflora seeds using in silico and in vitro assays. To elucidate the biological activities of PD, in silico tools indicative of antioxidant, antineoplastic, and chemopreventive activities of PD were used. Subsequently, the mutagenic/antimutagenic effects of PD were later assessed using bacteria with the Ames test, and the cytotoxic, genotoxic, and antigenotoxic effects utilizing human lymphocytes as evidenced by trypan blue exclusion test and CometChip assay. In silico analysis indicated potential antioxidant, chemopreventive, free radical scavenger, and cytostatic activities of PD. In the Ames test, PD was found to be not mutagenic; however, this plant component protected DNA against damage-mediated by mutagens 4-nitroquinoline-1-oxide and sodium azide. Regarding human lymphocytes, PD alone was cytotoxic and genotoxic; however, it also reduced DNA damage induced by doxorubicin at co- and post-treatment. In conclusion, PD showed genotoxic, antigenotoxic and cytotoxic effects in human lymphocytes and antimutagenic effects in bacteria.
Subject(s)
Antimutagenic Agents , Antineoplastic Agents , Myrtaceae , Antimutagenic Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , DNA Damage , Humans , Lymphocytes , Mutagens/toxicity , Plant Extracts/pharmacology , Salmonella typhimurium , Seeds , TanninsABSTRACT
Medicinal plants have always been used for therapeutic purposes; however, some plants may contain toxic and mutagenic substances. The aim of this study was to assess the cytotoxic, genotoxic, mutagenic, antioxidant, antigenotoxic, and antimutagenic effects of the bark ethanolic extract of Spondias purpurea L. using male and female Swiss albino mice. To determine the protective effects of the extract, benzo[a]pyrene (B[a]P) and cyclophosphamide (CP) were selected as cell damage inducers. The extract was examined at doses of 500, 1000, or 1500 mg/kg body weight (BW)via gavage alone or concomitant with B[a]P or CP. Oxidative stress was measured by quantification of blood catalase activity (CAT), reduced glutathione (GSH) levels in total blood, liver, and kidney, and concentrations of malondiadehyde (MDA) in liver and kidney. Genotoxicity and antigenotoxicity were evaluated by the comet assay using peripheral blood. Cytotoxicity, mutagenicity, and antimutagenicity were determined utilizing the micronucleus test in bone marrow and peripheral blood. The S. purpurea L extract increased CAT activity and GSH levels accompanied by a decrease in MDA levels after treatment with B[a]P and CP. No genotoxic, cytotoxic, or mutagenic effects were found in mice exposed only to the extract. These results indicate that the extract of S. purpurea exhibited protective effects against oxidative and DNA damage induced by B[a]P and CP.
Subject(s)
Anacardiaceae , Antimutagenic Agents , Animals , Antimutagenic Agents/pharmacology , Antioxidants/pharmacology , Cyclophosphamide/toxicity , DNA Damage , Female , Male , Mice , Micronucleus Tests , Mutagens/toxicity , Plant Bark , Plant Extracts/pharmacologyABSTRACT
Melanoma, an aggressive skin cancer originating from melanocytes, can metastasize to the lungs, liver, cortex, femur, and spinal cord, ultimately resulting in DNA mutagenic effects. Melatonin is an endogenous hormone and free radical scavenger that possesses the ability to protect the DNA and to exert anti-proliferative effects in melanoma cells. The aim of this study was to evaluate the effects of B16F10 melanoma cells and the effects of melatonin supplementation on genotoxic parameters in murine melanoma models. Thirty-two male C57Bl/6 mice were divided in the following four groups: PBS + vehicle (n = 6), melanoma + vehicle (n = 10), PBS + melatonin (n = 6), and melanoma + melatonin (n = 10). The melanoma groups received a B16F10 cell injection, and melatonin was administered during 60 days. After treatment, tumor sizes were evaluated. DNA damage within the peripheral blood, lungs, liver, cortex, and spinal cord was determined using comet assay, and the mutagenicity within the bone marrow was determined using the micronucleus test. B16F10 cells effectively induced DNA damage in all tissues, and melatonin supplementation decreased DNA damage in the blood, liver, cortex, and spinal cord. This hormone exerts anti-tumor activity via its anti-proliferative, antioxidative, and pro-apoptotic effects. As this result was not observed within the lungs, we hypothesized that melatonin can induce apoptosis in cancer cells, and this was not evaluated by comet assay. This study provides evidence that melatonin can reduce the genotoxicity and mutagenicity caused by B16F10 cells.
Subject(s)
Antimutagenic Agents , Melanoma , Melatonin , Animals , Antimutagenic Agents/pharmacology , Comet Assay , DNA Damage , Dietary Supplements , Male , Melatonin/pharmacology , Mice , Mice, Inbred C57BLABSTRACT
Phytochemicals have been suggested as an effective strategy for cancer prevention. Within this context, triterpene betulinic acid (BA) exhibits several biological properties but its chemopreventive effect has not been fully demonstrated. The present study investigated the antigenotoxic potential of BA against doxorubicin (DXR)-induced genotoxicity using the mouse peripheral blood micronucleus assay, as well as its anticarcinogenic activity against 1,2dimethylhydrazine (DMH)-induced colorectal lesions in rats. Micronuclei (MN) assay and aberrant crypt foci assay were used to assess the antigenotoxic and the anticarcinogenic potential, respectively. The molecular mechanisms underlying the anticarcinogenic activity of BA were evaluated by assessing anti-inflammatory (COX-2) and antiproliferative (PCNA) pathways. The results demonstrated that BA at the dose of 0.5 mg/kg bodyweight exerted antigenotoxic effects against DXR, with a reduction of 70.2% in the frequencies of chromosomal damage. Animals treated with BA showed a 64% reduction in the number of preneoplastic lesions when compared to those treated with the carcinogen alone. The levels of COX-2 and PCNA expression in the colon were significantly lower in animals treated with BA and DMH compared to those treated with the carcinogen alone. The chemopreventive effect of BA is related, at least in part, to its antiproliferative and anti-inflammatory activity, indicating a promising potential of this triterpene in anticancer therapies, especially for colorectal cancer.
Subject(s)
Anticarcinogenic Agents/pharmacology , Antimutagenic Agents/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/drug effects , Pentacyclic Triterpenes/pharmacology , Proliferating Cell Nuclear Antigen/drug effects , Animals , Cell Proliferation/drug effects , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/prevention & control , Cyclooxygenase 2/metabolism , Doxorubicin/toxicity , Inflammation/prevention & control , Male , Mice , Precancerous Conditions/chemically induced , Precancerous Conditions/prevention & control , Signal Transduction/drug effects , Betulinic AcidABSTRACT
Aim: Evaluate the chemopreventive potential of the extract from P. polymyxa RNC-D. Methods: Concentrations of P. polymyxa RNC-D extract were tested in HepG2/C3A cells to assess their genotoxic (comet assay), mutagenic (micronucleus test) and antigenotoxic potential (comet assay) in vitro. Results: 400 and 40 µg/ml concentrations induced DNA lesions, whereas the 4 µg/ml induced a desmutagenic effect. Complementary tests indicated that the extract minimized the formation of reactive oxygen species induced by methyl methanesulfonate and normalized the loss of membrane potential. The quantification of cytokines indicated that TNF-α was immunostimulated by the extract. However, when administered in conjunction with the methyl methanesulfonate, the extract blocked the TNF-α release. Conclusion: The fermentation broth from P. polymyxa RNC-D showed an antigenotoxic effect, and thus the potential to be used as chemopreventive compound.
Subject(s)
Antimutagenic Agents/metabolism , Paenibacillus polymyxa/metabolism , Antimutagenic Agents/pharmacology , Cell Survival/drug effects , Cytokines/metabolism , Fermentation , Hep G2 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Methyl Methanesulfonate/toxicity , Mutagenicity Tests , Reactive Oxygen Species/metabolismABSTRACT
BACKGROUND: Cancer is a disease characterized by the invasion and uncontrolled growth of cells. One of the best ways to minimize the harmful effects of mutagens is through the use of natural antimutagens. In this regard, the search for new antimutagens that act in the chemoprevention could represent a promising field in this area. OBJECTIVE: In this study biological potential of 11 fractions from Coccoloba uvifera L. leaf hexane extract was evaluated by several in vitro tests. METHODS: Leaves were lyophilized and hexane extraction was performed. The extract was fractionated by column chromatography with hexane, ethyl acetate, and methanol. The antimutagenic (Ames test), antiproliferative (MTT test), and antioxidant capacity (DPPH, ABTS, and ferrous ion chelation) of the fractions were evaluated. RESULTS: Fractions 4, 6, 8, and 9 have antimutagenic activity (against sodium azide in strain TA100), fraction 11 showed antiproliferative capacity (IC50 of 24 ± 9 µg/mL in cells of HCT 116). The fractions with the highest activity were analyzed by HPLC-MS and lupeol, acacetin, and ß-sitosterol were identified. CONCLUSION: This study demonstrates, for the first time, the bioactivity of C. uvifera leaf as a new source of High Biological Value Compounds (HBVC), which can be of interest to the food and pharmaceutical industries.
Subject(s)
Antimutagenic Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Polygonaceae/chemistry , Antimutagenic Agents/chemistry , Antimutagenic Agents/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Free Radicals/antagonists & inhibitors , Humans , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Salmonella typhimurium/drug effects , Sodium Azide/antagonists & inhibitors , Tumor Cells, CulturedABSTRACT
The aim of this study was to assess the protective effects of oral and topical treatment with Bidens pilosa (BP) against carbon tetrachloride (CCl4)- induced toxicity. Fifty-six rats were divided into seven groups: A: CCl4 only; B: CCl4+oral BP; C: CCl4 and topical BP; D: CCl4+oral and topical BP; E: oral BP only; F: negative control; and G: positive control (cyclophosphamide). The animals were treated for 10 weeks. Blood samples were collected for tests of hepatic and renal function, and fragments of the liver, spleen, pancreas, kidney, and intestine were collected for histopathological analyses. Cells from the femoral bone marrow were used for a micronucleus test and 'comet assay'. Statistically significant differences were observed in the levels of gamma-glutamyl transpeptidase (GGT), albumin, urea and creatinine, hepatic inflammation, renal tubular lesion, and inflammation of the intestinal mucosa between the BP-treated groups and untreated group. The median number of micronuclei in group A was 4.00, in group G was 9.00 and in the other groups was 0.00. Group A had the lowest number of cells with a score of 0 and the greatest number with scores of 3 and 4, similar to the results obtained from group G using the 'comet assay'. Thus, BP effectively protected against the toxic effects of CCl4 on the liver, kidney, and intestine and exerted an antimutagenic effect on rats exposed to CCl4.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimutagenic Agents/pharmacology , Bidens , Chemical and Drug Induced Liver Injury/prevention & control , Drugs, Chinese Herbal/pharmacology , Kidney Diseases/prevention & control , Kidney/drug effects , Liver/drug effects , Animals , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Comet Assay , DNA Damage , Disease Models, Animal , Kidney/metabolism , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/pathology , Liver/metabolism , Liver/pathology , Male , Micronuclei, Chromosome-Defective/chemically induced , Micronuclei, Chromosome-Defective/drug effects , Micronucleus Tests , Rats, WistarABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Jarilla is the common name of an appreciated group of native plants from the semi-arid region in Argentina (Larrea cuneifolia Cav., Larrea divaricata Cav. and Zuccagnia punctata Cav.) that have been historically consumed to heal respiratory, musculoskeletal and skin ailments, as well as recommended for weakness/tiredness, hypertension, diabetes and cancer treatment. It was previously reported that some biological properties could be improved when these plants are used jointly. Infusions of a defined mixture, composed by three Jarilla species, L. cuneifolia: L. divaricata: Z. punctata (0.5:0.25:0.25) (HM2) showed synergistic and additive effect on antioxidant activity even after passing through the gastro-duodenal tract. AIM OF THE STUDY: The main purpose of this work was to evaluate antigenotoxic, antitumor, and anti-metastatic properties of the Jarilla species that grow in the Northwest of Argentina and a herbal combination of them. MATERIAL AND METHODS: Infusions of Jarilla mixture (HM2), and of each single plant species were prepared. Phenolic profiles of infusions were analyzed by HPLC-ESI-MS/MS and two relevant chemical markers were quantified. The antigenotoxic activity was evaluated by using the Ames test and the Cytokinesis-Block Micronucleus (CBMN) assay against direct mutagens. Evaluations of both cytotoxicity and antiproliferative effects were conducted on tumor and non-tumor cell lines. Both in vivo tumoral growth and metastasis inhibition were evaluated by using a carcinoma model on Balb/c mice. RESULTS: HM2 mix could suppress genetic and chromosome mutations induced by 4-nitro-o-phenylendiamine (4-NPD) and doxorubicin. Herbal mixture and single plant infusions showed cytotoxic effect against mammary, uterus, and brain tumoral cells without a selective action vs normal human cell line. HM2 mix was able to reduce mammary tumor mass on the Balb/c mice model and showed a significant reduction in the number of metastatic nodules in the lungs. CONCLUSIONS: Our results suggest that the combinations of three Jarilla species from northwest Argentina would be a promising alternative to treat or slow down the development of chronic diseases, such as cancer.
Subject(s)
Antimutagenic Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation/drug effects , DNA Damage/drug effects , Fabaceae , Larrea , Neoplasms/drug therapy , Plant Extracts/pharmacology , Animals , Antimutagenic Agents/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Argentina , CHO Cells , Cricetulus , Fabaceae/chemistry , HeLa Cells , Humans , Larrea/chemistry , MCF-7 Cells , Male , Medicine, Traditional , Mice, Inbred BALB C , Neoplasm Metastasis , Neoplasms/pathology , Phytotherapy , Plant Extracts/isolation & purification , Plants, MedicinalABSTRACT
This study aimed to investigate the relationship between endogenous antioxidant system, 8-hydroxydeoxyguanosine adduct (8-OHdG) repair, and apoptosis in mice treated with chromium(VI) alone and in the presence of the antigenotoxic compound (-)-epigallocatechin-3-gallate (EGCG). Groups of 5 Hsd:ICR male mice were divided and treated as follows: (1) control, vehicle only; (2) EGCG, 8.5 mg/kg by gavage alone; (3) CrO3, 20 mg/kg intraperitoneally alone; and (4) EGCG combined with CrO3, EGCG was administered 4 hr prior to CrO3. Peripheral blood parameters were analyzed before treatment administration (time 0), and 48 hr after exposure. The administration of EGCG increased 8-OHdG levels and superoxide dismutase (SOD) activity. Treatment with CrO3 increased number of micronucleus (MN) presence, elevated apoptotic/necrotic cells frequencies, decreased 8-OHdG levels, diminished total antioxidant capacity (TAC), increased glutathione (GSH) total levels, and lowered SOD activity. Administration of EGCG prior to treatment with CrO3 resulted in lower concentrations of MN, reduced apoptotic and necrotic cell number, and restored TAC and SOD activity to control levels. It is conceivable that the dose of EGCG plays an important role in the genotoxic damage protection pathways. Thus, this study confirms the action of EGCG as an antigenotoxic agent against chromium(VI)-induced oxidative insults and demonstrates potential protective pathways for EGCG actions to counteract genotoxic damage induced by this metal.
Subject(s)
8-Hydroxy-2'-Deoxyguanosine/metabolism , Antimutagenic Agents/pharmacology , Apoptosis , Catechin/analogs & derivatives , Chromium/adverse effects , DNA Adducts/metabolism , Environmental Pollutants/adverse effects , Animals , Antioxidants/metabolism , Catechin/pharmacology , Male , MiceABSTRACT
The aim of the present work was to evaluate the effects of Thalassia testudinum hydroethanolic extract, its polyphenolic fraction and thalassiolin B on the activity of phase I metabolizing enzymes as well as their antimutagenic effects. Spectrofluorometric techniques were used to evaluate the effect of tested products on rat and human CYP1A and CYP2B activity. The antimutagenic effect of tested products was evaluated in benzo[a]pyrene (BP)-induced mutagenicity assay by an Ames test. Finally, the antimutagenic effect of Thalassia testudinum (100 mg/kg) was assessed in BP-induced mutagenesis in mice. The tested products significantly (p < 0.05) inhibit rat CYP1A1 activity, acting as mixed-type inhibitors of rat CYP1A1 (Ki = 54.16 ± 9.09 µg/mL, 5.96 ± 1.55 µg/mL and 3.05 ± 0.89 µg/mL, respectively). Inhibition of human CYP1A1 was also observed (Ki = 197.1 ± 63.40 µg/mL and 203.10 ± 17.29 µg/mL for the polyphenolic fraction and for thalassiolin B, respectively). In addition, the evaluated products significantly inhibit (p < 0.05) BP-induced mutagenicity in vitro. Furthermore, oral doses of Thalassia testudinum (100 mg/kg) significantly reduced (p < 0.05) the BP-induced micronuclei and oxidative damage, together with an increase of reduced glutathione, in mice. In summary, Thalassia testudinum metabolites exhibit antigenotoxic activity mediated, at least, by the inhibition of CYP1A1-mediated BP biotransformation, arresting the oxidative and mutagenic damage. Thus, the metabolites of T. testudinum may represent a potential source of chemopreventive compounds for the adjuvant therapy of cancer.
Subject(s)
Antimutagenic Agents/pharmacology , Benzo(a)pyrene/toxicity , Cytochrome P-450 CYP1A1/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Hydrocharitaceae/metabolism , Polyphenols/pharmacology , Salmonella typhi/drug effects , Activation, Metabolic , Animals , Antimutagenic Agents/isolation & purification , Benzo(a)pyrene/metabolism , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2 Inhibitors/isolation & purification , Cytochrome P-450 CYP1A2 Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/isolation & purification , DNA Damage/drug effects , Flavonoids/isolation & purification , Humans , Isoenzymes , Kinetics , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Oxidative Stress/drug effects , Polyphenols/isolation & purification , Rats , Salmonella typhi/geneticsABSTRACT
The antimutagenicity of an extract from the medicinal plant Asclepias subulata (ASE) against heterocyclic aromatic amines (HAAs) commonly found in cooked meat, as well as its stability to heat treatment (HT), was evaluated. HT (180 °C/3 min) had no effect on the content in ASE of the bioactive compound corotoxigenin-3-O-glucopyranoside; conversely, calotropin significantly decreased by 72%. ASE exerted antimutagenicity against PhIP, MelQ, and MelQx in TA98 and TA100 Salmonella strains, and this activity was not affected by heat, with the exception of MelQ (p < 0.05). Since HAAs can induce colorectal cancer, the thermal stability of ASE's antiproliferative effect against colorectal cancer cells was also evaluated. HT decreased (p < 0.05) the antiproliferative activity of ASE; however, the remaining activity was still strong with an IC50 of 16.8 ± 2.03 µg/mL. Therefore, ASE can be used as a food ingredient to reduce the carcinogenic potential of thermally induced HAAs.
Subject(s)
Amines/pharmacology , Antimutagenic Agents/pharmacology , Asclepias/chemistry , Carcinogens/pharmacology , Heterocyclic Compounds/pharmacology , Meat/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Amines/analysis , Amines/chemistry , Animals , Antimutagenic Agents/chemistry , Carcinogens/chemistry , Cell Proliferation/drug effects , Cooking , Heterocyclic Compounds/analysis , Hot Temperature , Humans , ImidazolesABSTRACT
Betulinic acid (BA) is a pentacyclic triterpenoid found in several plant species. Urethane (URE) is a known promutagen. Here, we examine the genotoxicity and mutagenicity of BA alone or in combination with URE using the bone marrow micronucleus assay in mice bone marrow cells and the Somatic Mutation and Recombination Test in Drosophila melanogaster. Findings revealed that BA alone was not genotoxic, but reduced the frequency of micronucleus when compared to the positive control. No significant differences were observed in the cytotoxicity. Biochemical analyzes showed no significant differences for liver (AST and ALT) or renal (creatinine and urea) function parameters, indicating the absence of hepatotoxic and nephrotoxic effects. BA alone did not increase the frequency of mutant spots, but reduced the total frequency of mutant spots when co-administered with URE in both ST and HB crosses. In addition, BA reduced the recombinogenic effect of URE at the highest concentrations of both crosses. In conclusion, under experimental conditions, BA has modulatory effects on the genotoxicity induced by URE in mice, as well as in somatic cells of D. melanogaster. We suggest that the modulatory effects of BA may be mainly due to its antioxidant and apoptotic properties.
Subject(s)
Drosophila melanogaster/drug effects , Mutagenesis/drug effects , Triterpenes/pharmacology , Urethane/toxicity , Animals , Antimutagenic Agents/pharmacology , Antioxidants/pharmacology , Bone Marrow/drug effects , Carcinogens/pharmacology , Drosophila melanogaster/genetics , Female , Hair/drug effects , Male , Mice , Mutagenicity Tests , Pentacyclic Triterpenes , Survival Rate , Trichomes/drug effects , Triterpenes/chemistry , Wings, Animal/drug effects , Betulinic AcidABSTRACT
Chalcones are chemically defined as α,ß-unsaturated ketones with a 1,3-diphenyl-2-propen-1-one nucleus. These compounds occur naturally in plants and are considered precursors of flavonoids. Given that evaluating genetic toxicology tests is essential in investigating the safe use and chemopreventive potential of different natural and synthetic compounds, this study aimed to assess the genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activity of the chalcone 1E,4E-1-(4-chlorophenyl)-5-(2,6,6-trimethylcyclohexen-1-yl)penta-1,4-dien-3-one (CAB7ß). The CAB7ß was synthesized via Claisen-Schmidt reaction. The Ames test was applied using the co-treatment model as well as a micronucleus assay of mouse bone marrow with co-, pre- and post-treatment models. Our results indicate no genotoxic effect for CAB7ß in any of the tests applied. At all the concentrations used, CAB7ß showed a significant DNA protective effect against the mutagenic action of 4-nitroquinoline-1-oxide and sodium azide according to the Ames test, and against doxorubicin in the co-, pre- and post-treatment models of the micronucleus assay. CAB7ß alone displayed cytotoxic activity in the micronucleus test. At concentrations of 12,5 and 50 µg/plate, CAB7ß showed a moderate cytotoxic profile only in Salmonella typhimurium strain TA98. However, an anticytotoxic effect was observed against S. typhimurium strain TA100 for all the concentrations tested and during co-, pre- and post-treatment in the micronucleus assay. It was concluded that CAB7ß exhibited a slightly cytotoxic effect in S. typhimurium strain TA98 and significant antigenotoxic and anticytotoxic effects in cells of mouse, making it a promising candidate in chemoprevention and possibly in the development of new cancer treatments.
Subject(s)
Antimutagenic Agents/pharmacology , Chalcones/pharmacology , DNA Damage/drug effects , 4-Nitroquinoline-1-oxide/toxicity , Animals , Female , Male , Mice , Micronucleus Tests , Salmonella typhimurium/drug effects , Sodium Azide/toxicityABSTRACT
BACKGROUND: Leaves of Spinacia oleracea have been widely used as vegetarian foods. Some studies on the chemical composition of spinach have shown that it contains a high content of micronutrients (vitamins and minerals), and has an important economic value with some agronomic advantages. S. oleracea in traditional medicine is reported to cure more than one health problem. OBJECTIVE: This review focuses on the ethnopharmacological uses and pharmacological and phytochemical studies of Spinacia oleracea. METHODS: Information on S. oleracea was obtained via electronic search of scientific databases such as Scopus, PubMed, Google Scholar, Scirus, Science Direct, Scielo, Web of Science, Medline, Springerlink, BioMed Central (BMC), and SciFinder for publications on this plant. In addition, books on medicinal herbs were also consulted. RESULTS: Approximately 100 chemical compounds were isolated and characterized from S. oleracea. The major active components of the plant are flavones, flavanols, methylenedioxyflavonol glucuronides, glucuronides, and carotenoids, which were extensively investigated. This review revealed potential pharmacological properties of these isolated compounds such as anti-obesity, anti-α-amylase, bileacid binding capacity, anti-mutagenic, anti-oxidant, anticancer, anti-inflammatory, cognitive and mood effect, hypoglycemic, and anti-hypertriglyceridemia. CONCLUSION: S. oleracea is an important edible plant also used for ethnomedical therapy of obesity, inflammation of lungs, lumbago, flatulence, and treatment of urinary calculi. Pharmacological and phytochemical studies of this plant including bioactives, which have been adequately studied, support its uses in traditional medicine. Additionally, prospects and future trends of this plant are proposed.