Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.595
Filter
1.
Pharm Biol ; 62(1): 367-393, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38745507

ABSTRACT

CONTEXT: Rice bran arabinoxylan compound (RBAC) is a natural immunomodulator with anticancer properties. OBJECTIVE: This study critically evaluates the available evidence on the biological pathways of RBAC and its effects on cancer treatment. METHODS: This secondary analysis of a scoping review includes studies evaluating the mechanisms of RBAC on healthy or malignant cells, animal models, or humans for cancer prevention or treatment. Data from randomized controlled trials on survival and quality of life outcomes were subjectd to meta analysis. RESULTS: The evidence synthesis was based on 38 articles. RBAC exhibited antitumor properties by promoting apoptosis and restoring immune function in cancer patients to enhance inflammatory and cytotoxic responses to block tumorigenesis. RBAC works synergistically with chemotherapeutic agents by upregulating drug transport. In a clinical trial, combining RBAC with chemoembolization in treating liver cancer showed improved response, reduced recurrence rates, and prolonged survival. RBAC also augments the endogenous antioxidant system to prevent oxidative stress and protect against radiation side effects. In addition, RBAC has chemoprotective effects. Animals and humans have exhibited reduced toxicity and side effects from chemotherapy. Meta analysis indicates that RBAC treatment increases the survival odds by 4.02-times (95% CI: 1.67, 9.69) in the first year and 2.89-times (95% CI: 1.56, 5.35) in the second year. CONCLUSION: RBAC is a natural product with immense potential in cancer treatment. Additional research is needed to characterize, quantify, and standardize the active ingredients in RBAC responsible for the anticancer effects. More well-designed, large-scale clinical trials are required to substantiate the treatment efficacies further.


Subject(s)
Neoplasms , Oryza , Xylans , Xylans/pharmacology , Humans , Animals , Neoplasms/drug therapy , Biological Products/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Randomized Controlled Trials as Topic , Antineoplastic Agents/pharmacology
2.
Sci Rep ; 14(1): 10075, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698201

ABSTRACT

Intraperitoneal (IP) chemotherapy with paclitaxel (PTX) for gastric cancer (GC) with peritoneal metastasis (PM) is considered a promising treatment approach, however, there are no useful biomarkers to predict the efficacy of IP therapy. We examined the association between intra-peritoneal exosomes, particularly exosomal micro-RNAs (exo-miRNAs), and IP-chemo sensitivity. MKN45 cells that were cultured with intra-peritoneal exosomes from patients who did not respond to IP therapy with PTX (IPnon-respond group) exhibited resistance to PTX compared with exosomes from responding patients (IPrespond group) (p = 0.002). A comprehensive search for exo-miRNAs indicated that miR-493 was significantly up-regulated in exosomes from the IPnon-respond group compared with those collected from the IPrespond group. The expression of miR-493 in PTX-resistant MKN45 cells (MKN45PTX-res) was higher compared with that in MKN45. In addition, MKN45PTX-res cells exhibited lower MAD2L1 gene and protein expression compared with MKN45. Finally, miR-493 enhancement by transfection of miR-493 mimics significantly down-regulated MAD2L1 expression in MKN45 cells and reduced PTX sensitivity. Our results suggest that intra-peritoneal exo-miR-493 is involved in chemoresistance to PTX by downregulating MAD2L1 in GC with PM. Exo-miR-493 may be a biomarker for chemoresistance and prognosis of GC patients with PM and may also be a promising therapeutic target.


Subject(s)
Drug Resistance, Neoplasm , Exosomes , Gene Expression Regulation, Neoplastic , Mad2 Proteins , MicroRNAs , Paclitaxel , Peritoneal Neoplasms , Stomach Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Paclitaxel/administration & dosage , Drug Resistance, Neoplasm/genetics , Exosomes/metabolism , Exosomes/genetics , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Cell Line, Tumor , Male , Female , Mad2 Proteins/metabolism , Mad2 Proteins/genetics , Middle Aged , Gene Expression Regulation, Neoplastic/drug effects , Aged , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/administration & dosage
3.
Int J Pharm ; 656: 124078, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569978

ABSTRACT

The role of tumor stroma in solid tumors has been widely recognized in cancer progression, metastasis and chemoresistance. Cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and promoting cancer cell stemness and resistance via reciprocal crosstalk. Residual tumor tissue after surgical removal as well as unresectable tumors face therapeutic challenges to achieve curable outcome. In this study, we propose to develop a dual delivery approach by combining p21-activated kinase 1 (PAK1) inhibitor (FRAX597) to inhibit tumor stroma and chemotherapeutic agent paclitaxel (PTX) to kill cancer cells using electrospun nanofibers. First, the role of the PAK1 pathway was established in CAF differentiation, migration and contraction using relevant in vitro models. Second, polycaprolactone polymer-based nanofibers were fabricated using a uniaxial electrospinning technique to incorporate FRAX597 and/or PTX, which showed a uniform texture and a prolonged release of both drugs for 16 days. To test nanofibers, stroma-rich 3D heterospheroid models were set up which showed high resistance to PTX nanofibers compared to stroma-free homospheroids. Interestingly, nanofibers containing PTX and FRAX597 showed strong anti-tumor effects on heterospheroids by reducing the growth and viability by > 90 % compared to either of single drug-loaded nanofibers. These effects were reflected by reduced intra-spheroidal expression levels of collagen 1 and α-smooth muscle actin (α-SMA). Overall, this study provides a new therapeutic strategy to inhibit the tumor stroma using PAK1 inhibitor and thereby enhance the efficacy of chemotherapy using nanofibers as a local delivery system for unresectable or residual tumor. Use of 3D models to evaluate nanofibers highlights these models as advanced in vitro tools to study the effect of controlled release local drug delivery systems before animal studies.


Subject(s)
Nanofibers , Paclitaxel , p21-Activated Kinases , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Nanofibers/administration & dosage , p21-Activated Kinases/antagonists & inhibitors , p21-Activated Kinases/metabolism , Humans , Cell Line, Tumor , Spheroids, Cellular/drug effects , Polyesters/chemistry , Polyesters/administration & dosage , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/metabolism , Drug Delivery Systems/methods , Cell Movement/drug effects , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Drug Liberation , Cell Differentiation/drug effects
4.
Mol Pharm ; 21(5): 2327-2339, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38576375

ABSTRACT

In the present study, we investigated the role of lipid composition of camptothecin (CPT)-loaded liposomes (CPT-Lips) to adjust their residence time, drug distribution, and therefore the toxicities and antitumor activity. The CPT was loaded into liposomes using a click drug loading method, which utilized liposomes preloaded with GSH and then exposed to CPT-maleimide. The method produced CPT-Lips with a high encapsulation efficiency (>95%) and sustained drug release. It is shown that the residence times of CPT-Lips in the body were highly dependent on lipid compositions with an order of non-PEGylated liposomes of unsaturated lipids < non-PEGylated liposomes of saturated lipids < PEGylated liposomes of saturated lipids. Interestingly, the fast clearance of CPT-Lips resulted in significantly decreased toxicities but did not cause a significant decrease in their in vivo antitumor activity. These results suggested that the lipid composition could effectively adjust the residence time of CPT-Lips in the body and further optimize their therapeutic index, which would guide the development of a liposomal formulation of CPT.


Subject(s)
Camptothecin , Lipids , Liposomes , Camptothecin/chemistry , Camptothecin/administration & dosage , Camptothecin/pharmacokinetics , Camptothecin/pharmacology , Liposomes/chemistry , Animals , Mice , Lipids/chemistry , Humans , Drug Liberation , Drug Delivery Systems/methods , Polyethylene Glycols/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/pharmacology , Female , Click Chemistry/methods , Mice, Inbred BALB C
5.
Phytomedicine ; 128: 155521, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489891

ABSTRACT

BACKGROUND: The ancient Chinese herb Salvia miltiorrhiza Bunge (Danshen), plays the important role in cardiovascular and cerebrovascular disease. Furthermore, Danshen could also be used for curing carcinogenesis. Up to now, the anti-tumor effects of the main active constituents of Danshen have made great progress. However, the bioavailability of the active constituents of Danshen were restricted by their unique physical characteristics, like low oral bioavailability, rapid degradation in vivo and so on. PURPOSE: With the leap development of nano-delivery systems, the shortcomings of the active constituents of Danshen have been greatly ameliorated. This review tried to summarize the recent progress of the active constituents of Danshen based delivery systems used for anti-tumor therapeutics. METHODS: A systematic literature search was conducted using 5 databases (Embase, Google scholar, PubMed, Scopus and Web of Science databases) for the identification of relevant data published before September 2023. The words "Danshen", "Salvia miltiorrhiza", "Tanshinone", "Salvianolic acid", "Rosmarinic acid", "tumor", "delivery", "nanomedicine" and other active ingredients contained in Danshen were searched in the above databases to gather information about pharmaceutical decoration for the active constituents of Danshen used for anti-tumor therapeutics. RESULTS: The main extracts of Danshen could inhibit the proliferation of tumor cells effectively and a great deal of studies were conducted to design drug delivery systems to ameliorate the anti-tumor effect of the active contents of Danshen through different ways, like improving bioavailability, increasing tumor targeting ability, enhancing biological barrier permeability and co-delivering with other active agents. CONCLUSION: This review systematically represented recent progress of pharmaceutical decorations for the active constituents of Danshen used for anti-tumor therapeutics, revealing the diversity of nano-decoration skills and trying to inspire more designs of Danshen based nanodelivery systems, with the hope that bringing the nanomedicine of the active constituents of Danshen for anti-tumor therapeutics from bench to bedside in the near future.


Subject(s)
Antineoplastic Agents, Phytogenic , Drugs, Chinese Herbal , Salvia miltiorrhiza , Salvia miltiorrhiza/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Drug Delivery Systems , Animals , Neoplasms/drug therapy , Nanoparticle Drug Delivery System/chemistry , Nanoparticles/chemistry
6.
Biomed Pharmacother ; 174: 116482, 2024 May.
Article in English | MEDLINE | ID: mdl-38520866

ABSTRACT

Chemoimmunotherapy has emerged as a promising strategy for improving the efficacy of cancer treatment. Herein, we present PD-1 receptor-presenting membrane-coated paclitaxel dimers nanoparticles (PD-1@PTX2 NPs) for enhanced treatment efficacy. PD-1 cell membrane-cloaked PTX dimer exhibited effective cellular uptake and increased cytotoxicity against cancer cells. PD-1@PTX2 NPs could selectively bind with PD-L1 ligands expressed on breast cancer cells. Our nanoparticles exhibit a remarkable tumor growth inhibition rate of 71.3% in mice bearing 4T1 xenografts and significantly prolong survival in mouse models of breast cancer. Additionally, our nanoparticles promoted a significant 3.2-fold increase in CD8+ T cell infiltration and 73.7% regulatory T cell (Treg) depletion within tumors, boosting a robust antitumor immune response. These findings underscore the potential of utilizing immune checkpoint receptor-presented PTX nanoparticles to enhance the efficacy of chemoimmunotherapy, providing an alternative approach for improving cancer treatment.


Subject(s)
Immunotherapy , Mice, Inbred BALB C , Nanoparticles , Paclitaxel , Programmed Cell Death 1 Receptor , Paclitaxel/pharmacology , Paclitaxel/administration & dosage , Animals , Nanoparticles/chemistry , Programmed Cell Death 1 Receptor/metabolism , Female , Humans , Immunotherapy/methods , Mice , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Cell Membrane/metabolism , Cell Membrane/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Xenograft Model Antitumor Assays , Dimerization , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , B7-H1 Antigen/metabolism
7.
Curr Drug Targets ; 25(3): 201-219, 2024.
Article in English | MEDLINE | ID: mdl-38231060

ABSTRACT

Breast cancer is a widespread condition that kills more women from cancer-related causes than any other type of cancer globally. Women who have estrogen-dependent, initial metastatic breast cancer frequently receive treatment with surgery, radiation therapy, and chemotherapy. They may also get more specialized treatments like tamoxifen or aromatase inhibitors (anastrozole or letrozole). The World Health Organisation reported in 2012 that by 2030, breast cancer will be more common worldwide. There are several phytochemicals, such as isoflavones, coumestans, lignans, and prenylflavonoides. Isoflavones have been shown in studies to prevent the spread of breast cancer and to trigger apoptosis. Targeting BCs in metastatic breast cancer may be made possible by combining well-formulated phytochemicals in nanoparticles or other novel drug delivery agents with currently accepted endocrine and/or conventional chemotherapies. Cell signaling, regulation of cell cycles, oxidative stress action, and inflammation could be positively impacted by phytoconstituents. They have the ability to alter non-coding RNAs, to prevent the proliferation and regeneration of cancer cells. The availability of novel approaches helps in disease targeting, safety, effectiveness and efficacy. The current literature helps to know the available drugs i.e. phytoconstituents or novel drug delivery like nanoparticle, microsphere, micelles, liposomes and neosomes. The literature has been taken from PubMed, Google Scholar, SciFinder, or other internet sites.


Subject(s)
Breast Neoplasms , Phytochemicals , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/chemistry , Drug Delivery Systems , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Nanoparticles/chemistry
8.
Future Cardiol ; 19(3): 127-135, 2023 03.
Article in English | MEDLINE | ID: mdl-37334764

ABSTRACT

Paclitaxel drug-coated balloons (DCBs) have been shown to improve patency and lower revascularization rates compared with plain old balloon angioplasty. DCBs continue to evolve by improving balloon-coating techniques that minimize the quantity of particles washed off into the bloodstream while maximizing drug retention and vascular-healing profile. Against this backdrop, it is clear that the future of antiproliferatives for the superficial femoral artery will focus on enhancements in device coating materials that will improve the efficiency of drug delivery. The Ranger DCB system recently gained US FDA approval for use. This review discusses the background of DCBs and how the Ranger DCB builds on these previous platforms based on experimental and clinical data.


Drug-coated balloons are medical devices used to open blocked arteries (a procedure called angioplasty) in patients who have atherosclerotic disease. The drug coating is provided to help keep the arteries open after treatment with the balloon. This is thought to occur through several mechanisms. In this review, we discuss recent advances in technology related to drug-coated balloons focusing on the recently introduced Ranger drug-coated Balloon.


Subject(s)
Angioplasty, Balloon , Antineoplastic Agents, Phytogenic , Paclitaxel , Peripheral Arterial Disease , Drug Delivery Systems , Humans , Femoral Artery , Coated Materials, Biocompatible , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/therapeutic use , Peripheral Arterial Disease/drug therapy
9.
Life Sci ; 296: 120435, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35247437

ABSTRACT

AIMS: Glioblastoma (GBM) is the most common and deadliest type of brain cancer, and the current therapeutic options are not curative, imposing the need for novel strategies. Asiatic acid (AA) is a natural compound and has been explored due to its anti-glioma activity and lower toxicity to healthy tissues compared with conventional chemotherapeutic agents. However, its poor water-solubility is an obstacle for clinical application. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were proposed in this work for Asiatic acid (AA) delivery. MAIN METHODS: A central composite design was implemented to optimize the NPs, and their surface was further modified with transferrin (Tf), for targeted delivery to GBM cells. The anti-glioma activity of the NPs was studied in vitro using human GBM cells and immortalized human astrocytes. KEY FINDINGS: The NPs exhibited a mean size smaller than 200 nm, with low polydispersity and negative zeta potential, indicating their suitability for brain tumor delivery. The NPs also exhibited high encapsulation efficiency and maintained a slow and controlled release of AA for 20 days. In vitro cell studies showed that NPs were able to maintain the anti-glioma activity of the natural compound and that the surface modification with Tf molecules was able to increase the cellular uptake in GBM cells, enhancing their selectivity and decreasing toxicity in healthy cells. SIGNIFICANCE: Overall, this work provided guidance for designing brain-targeting delivery systems of natural compounds.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Nanoparticles/administration & dosage , Pentacyclic Triterpenes/administration & dosage , Transferrin/chemistry , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/pharmacology , Astrocytes/drug effects , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Drug Delivery Systems/methods , Drug Liberation , Glioblastoma/pathology , Humans , Nanoparticles/chemistry , Pentacyclic Triterpenes/pharmacokinetics , Pentacyclic Triterpenes/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Receptors, Transferrin/metabolism
10.
Comput Math Methods Med ; 2022: 3010901, 2022.
Article in English | MEDLINE | ID: mdl-35190750

ABSTRACT

Gastric cancer is still the fifth most common malignant tumor in the world and has the fourth highest mortality rate in the world. Gastric cancer is difficult to treat because of its unobvious onset, low resection rate, and rapid deterioration. Therefore, humans have been working hard to combat gastric cancer. At present, the most commonly used treatment method is radiotherapy. However, this method will damage the normal tissues of the irradiated area while treating malignant tumor cells. It not only has side effects of damage to the patient's skin and mucous membranes but also needs high-rate radiotherapy and has high cost for chemotherapy. In order to solve these problems, it is necessary to find new treatment methods. This article proposes the use of Chinese medicine to invigorate the spleen to inhibit human gastric cancer cells. This article combines modern machine learning technology with traditional Chinese medicine and combines traditional Chinese medicine physiotherapy with Western medicine nude mouse transplantation experiments. The treatment of tumors in Chinese medicine is based on the theory of Chinese medicine and has different characteristics. Western medicine has the advantage of permanently injuring patients. The process of the experiment is to transplant human-derived gastric cancer cells into nude mice. After grouping treatments and obtaining comparative data, deep learning techniques are used to analyze the properties of Chinese medicines for strengthening the spleen and to compare the properties of Chinese medicines for strengthening the spleen. The experimental results showed that the tumor inhibition rate of mice using fluorouracil was 18%, the tumor inhibition rate of mice using low-dose Chinese medicine was 16%, and the tumor inhibition rate of mice using high-dose Chinese medicine reached 52%. 80 days after the experiment, the survival rate of mice using high-dose Chinese medicine is 100% higher than that of mice without treatment.


Subject(s)
Deep Learning , Medicine, Chinese Traditional/methods , Spleen/drug effects , Stomach Neoplasms/drug therapy , Algorithms , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Line, Tumor , Computational Biology , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/therapeutic use , Fluorouracil/adverse effects , Fluorouracil/therapeutic use , Humans , Medicine, Chinese Traditional/statistics & numerical data , Mice , Mice, Nude , Phytotherapy , Spleen/immunology , Stomach Neoplasms/immunology , Xenograft Model Antitumor Assays
11.
Gene ; 823: 146275, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35189245

ABSTRACT

BACKGROUND: Silibinin, the principal flavonoid derived from milk thistle seeds, has been demonstrated to have strong inhibitory effects against human malignancies. The inhibitory function of silibinin on ovarian cancer, however, is not fully identified. In this essay, both in vivo and in vitro investigations were conducted to survey the silibinin's blocking effects on ovarian cancer. METHODS: The impacts of silibinin on two ovarian cancer cell lines, SKOV-3 and A2870, were determined by evaluating cell viability, migration, invasion, and apoptosis. Q-RT-PCR and western blotting techniques were carried out to explore the protein levels of signaling pathway markers. A mouse xenograft model was utilized to determine the silibinin efficacy in inhibiting tumor growth. RESULTS: After cell treatment with silibinin, cell viability, migration, and invasion were appreciably inhibited in cancer cell lines, but cell apoptosis was promoted. Also, silibinin reversed the epithelial-mesenchymal transition (EMT) mechanism by inducing E-cadherin expression and reducing N-cadherin and vimentin expression, suppressing the levels of regulators related to EMT such as Snail, Slug, and ZEB1 transcription factors, and also decreasing PI3K/AKT, Smad2/3, and ß-catenin intermediate molecules in vitro. Silibinin effectively ameliorated tumor growth in vivo. CONCLUSION: silibinin could be considered a potent agent against ovarian cancer based on the results.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Ovarian Neoplasms/drug therapy , Silybin/administration & dosage , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Neoplasm Invasiveness , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Silybin/pharmacology , Xenograft Model Antitumor Assays
12.
Sci Rep ; 12(1): 1658, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35105904

ABSTRACT

More than 10% of women diagnosed with breast cancer during reproductive age carry hereditary germline pathogenic variants in high-penetrance BRCA genes or in others genes involved in DNA repair mechanisms such as PALB2, BRIP or ATM. Anticancer treatments may have an additional negative impact on the ovarian reserve and subsequently on the fertility of young patients carrying such mutations. Recently, the combination of carboplatin and paclitaxel is being recommended to these BRCA-mutated patients as neoadjuvant therapy. However, the impact on the ovary is unknown. Here, we investigated their effect of on the ovarian reserve using mice carriers of BRCA1-interacting protein C-terminal helicase-1 (BRIP1) mutation that plays an important role in BRCA1-dependent DNA repair. Results revealed that the administration of carboplatin or paclitaxel did not affect the ovarian reserve although increased DNA double-strand breaks were observed with carboplatin alone. Co-administration of carboplatin and paclitaxel resulted in a significant reduction of the ovarian reserve leading to a lower IVF performance, and an activation of the PI3K-Pten pathway, irrespective of the genetic background. This study suggests that co-administration of carboplatin and paclitaxel induces cumulative ovarian damage and infertility but a heterozygote genetic predisposition for DNA damage related to BRCA1 gene function does not increase this risk.


Subject(s)
Antineoplastic Agents, Phytogenic/adverse effects , Carboplatin/adverse effects , Fanconi Anemia Complementation Group Proteins/genetics , Genes, Tumor Suppressor , Germ-Line Mutation , Ovarian Reserve/drug effects , Paclitaxel/adverse effects , RNA Helicases/genetics , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Carboplatin/administration & dosage , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , DNA Repair/genetics , Embryonic Development/drug effects , Embryonic Development/genetics , Female , Fertilization in Vitro/methods , Heterozygote , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Paclitaxel/administration & dosage
13.
Pharm Biol ; 60(1): 417-426, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35175172

ABSTRACT

CONTEXT: Osthole shows antitumor effects in various tumours. Studies describing the effect of osthole on retinoblastoma (RB) are rare. OBJECTIVE: This study investigates the antitumor activity of osthole on RB. MATERIALS AND METHODS: RB cells were treated with different concentrations of osthole and then subjected to cell viability, colony formation, apoptosis, and western blot assays. The expression of hsa_circ_0007534 in RB tissues was determined by qRT-PCR. Hsa_circ_0007534 overexpression plasmid (oe-circ_0007534), miR-214-3p mimics and negative controls were transfected into RB cells to investigate cell viability. Athymic nude mice were injected with Y-79 cells to establish subcutaneous RB models. These mice were treated with osthole (0.5 mmol/kg) or corn oil for 36 days. Tumour tissues were collected for further analysis. RESULTS: Osthole inhibited cell viability of RB cells with an IC50 of 200 µM for 24 h treatment and 120 µM for 48 h treatment, respectively. Hsa_circ_0007534 was increased significantly in RB tissues as compared to the matched nontumor tissues (p < 0.001). Oe-circ_0007534 counteracted the inhibitory effect of osthole on cell viability and colony numbers of Y-79 cells (p < 0.01). In vivo experiments indicated osthole significantly decreased the expression of hsa_circ_0007534 (p < 0.01) and increased the level of miR-214-3p in vivo. Furthermore, as compared to the control, osthole decreased the ratios of p-PI3K/PI3K, p-AKT/AKT and p-mTOR/mTOR (p < 0.01). However, hsa_circ_0007534 overexpression reversed the effect of osthole on the PI3K/AKT/mTOR pathway. DISCUSSION AND CONCLUSIONS: Osthole exhibited an antitumour effect in RB, providing a scientific basis for further research and clinical applications of osthole in RB treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Coumarins/pharmacology , MicroRNAs/genetics , Retinoblastoma/drug therapy , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Coumarins/administration & dosage , Humans , Male , Mice , Mice, Nude , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Retinoblastoma/genetics , Retinoblastoma/pathology , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Pharm Res ; 39(2): 369-379, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35118566

ABSTRACT

PURPOSE: This study aims to investigate the effect of poly(D, L-lactic acid)10K (PDLLA10K) incorporation on the drug loading and stability of poly(ethylene glycol)2K-block-poly(D, L-lactide)2.4K (mPEG2k-b-PDLLA2.4k) micelles. In addition, a suitable lyophilization protector was screened for this micelle to obtain favorable lyophilized products. METHODS: The incorporation ratios of PDLLA10k were screened based on the particle size and drug loading. The dynamic stability, core viscosity, drug release, stability in albumin, and in vivo pharmacokinetic characteristics of PDLLA10k incorporated micelles were compared with the original micelles. In addition, the particle size variation was used as an indicator to screen the most suitable lyophilization protectant for the micelles. DSC, FTIR, XRD were used to illustrate the mechanism of the lyophilized protectants. RESULTS: After the incorporation of 5 wt% PDLLA10K, the maximum loading of mPEG2k-b-PDLLA2.4k micelles for TM-2 was increased from 26 wt% to 32 wt%, and the in vivo half-life was increased by 2.25-fold. Various stability of micelles was improved. Also, the micelles with hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as lyophilization protectants had minimal variation in particle size. CONCLUSIONS: PDLLA10k incorporation can be employed as a strategy to increase the stability of mPEG2k-b-PDLLA2.4k micelles, which can be attributed to the viscosity building effect. HP-ß-CD can be used as an effective lyophilization protectant since mPEG and HP-ß-CD form the pseudopolyrotaxanesque inclusion complexes.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Drug Carriers , Paclitaxel/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacokinetics , Drug Compounding , Drug Liberation , Freeze Drying , Injections, Intravenous , Micelles , Paclitaxel/administration & dosage , Paclitaxel/pharmacokinetics , Particle Size , Rats, Sprague-Dawley , Viscosity
15.
Molecules ; 27(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35164159

ABSTRACT

Novel turmeric rhizome extract nanoparticles (TE-NPs) were developed from fractions of dried turmeric (Curcuma longa Linn.) rhizome. Phytochemical studies, by using HPLC and TLC, of the fractions obtained from ethanol extraction and solvent-solvent extraction showed that turmeric rhizome ethanol extract (EV) and chloroform fraction (CF) were composed mainly of three curcuminoids and turmeric oil. Hexane fraction (HE) was composed mainly of turmeric oil while ethyl acetate fraction (EA) was composed mainly of three curcuminoids. The optimal TE-NPs formulation with particle size of 159.6 ± 1.7 nm and curcumin content of 357.48 ± 8.39 µM was successfully developed from 47-run D-optimal mixture-process variables experimental design. Three regression models of z-average, d50, and d90 could be developed with a reasonable accuracy of prediction (predicted r2 values were in the range of 0.9120-0.9992). An in vitro cytotoxicity study using MTT assay demonstrated that the optimal TE-NPs remarkably exhibited the higher cytotoxic effect on human hepatoma cells, HepG2, when compared with free curcumin. This study is the first to report nanoparticles prepared from turmeric rhizome extract and their cytotoxic activity to hepatic cancer cells compared with pure curcumin. These nanoparticles might serve as a potential delivery system for cancer therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Nanoparticles/administration & dosage , Plant Extracts/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Survival/drug effects , Curcuma/chemistry , Hep G2 Cells , Humans , Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rhizome/chemistry
16.
Pharmacol Res ; 176: 106080, 2022 02.
Article in English | MEDLINE | ID: mdl-35032663

ABSTRACT

Combination therapy system has become a promising strategy for achieving favorable antitumor efficacy. Herein, a novel oral drug delivery system with colon localization and tumor targeting functions was designed for orthotopic colon cancer chemotherapy and photothermal combinational therapy. The polydopamine coated nanodiamond (PND) was used as the photothermal carrier, through the coupling of sulfhydryl-polyethylene glycol-folate (SH-PEG-FA) on the surface of PND to achieve systematic colon tumor targeting, curcumin (CUR) was loaded as the model drug, and then coated with chitosan (CS) to achieve the long gastrointestinal tract retention and colon localization functions to obtain PND-PEG-FA/CUR@CS nanoparticles. It has high photothermal conversion efficiency and good photothermal stability and exhibited near-infrared (NIR) laser-responsive drug release behavior. Folate (FA) modification effectively promotes the intracellular uptake of nanoparticles by CT26 cells, and the combination of chemotherapy and photothermal therapy (CT/PTT) can enhance cytotoxicity. Compared with free CUR group, nanoparticles prolonged the gastrointestinal tract retention time, accumulated more in colon tumor tissues, and exhibited good photothermal effect in vivo. More importantly, the CT/PTT group exhibited satisfactory tumor growth inhibition effects with good biocompatibility in vivo. In summary, this oral drug delivery system is an efficient platform for chemotherapy and photothermal combinational therapy of orthotopic colon cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Colonic Neoplasms/therapy , Curcumin/administration & dosage , Folic Acid/administration & dosage , Indoles/administration & dosage , Nanodiamonds/administration & dosage , Polyethylene Glycols/administration & dosage , Polymers/administration & dosage , Administration, Oral , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/metabolism , Combined Modality Therapy , Curcumin/chemistry , Curcumin/pharmacokinetics , Drug Liberation , Folic Acid/chemistry , Folic Acid/pharmacokinetics , Indoles/chemistry , Indoles/pharmacokinetics , Mice, Inbred BALB C , Nanodiamonds/chemistry , Photothermal Therapy , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polymers/chemistry , Polymers/pharmacokinetics
17.
J Ethnopharmacol ; 289: 115010, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35065248

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium hypoglaucum (Kunmingshanhaitang in Chinese) is a plant of the genus Tripterygium which have been used as anti-tumor folk medicines in Yi and Bai ethnic groups in Yunnan province, China for hundreds of years. Terpenoids from T. hypoglaucum presented therapeutic effects on multiple tumors. But there were few studies about pancreatic cancer treatment of these terpenoids. Pancreatic cancer is an aggressive malignancy and lacked of specific drugs. Currently, anti-tumor drugs have poor therapeutic effect and prognosis for pancreatic cancer. AIM OF THE STUDY: This study aimed to elucidate the terpenoids from T. hypoglaucum and illuminate their anti-pancreatic cancer bioactivities. MATERIAL AND METHODS: Terpenoids were obtained through sequential chromatographic methods including silica gel, MCI gel, Sephadex LH-20, and preparative HPLC. Their structures were determined by HRESIMS, 1D and 2D NMR spectroscopic analysis. The absolute configurations of some new diterpenoids were assigned through comparison of experimental and calculated circular dichroism spectra. The cytotoxicity of isolates was measured using the MTT method on human pancreatic cancer cells SW1990. The effects on expressions of AKT, Erk1/2, p-AKT, p-Erk1/2, and Bax proteins in human pancreatic cancer cells SW1990 of these compounds were determined by western blotting assays. RESULTS: Eleven new (compounds 1∼11) and fourteen known terpenoids (compounds 12∼25) were isolated from the underground parts of T. hypoglaucum. These compounds were belonged to abietane diterpenoids, isoprimara diterpenoids, ent-kaurane diterpenoids, oleanane triterpenoids, and friedelane triterpenoids. Compounds 5, 7, 8, 9, 16, 18, 22, 24, and 25 possessed significant cytotoxicity against SW1990 cells with IC50 values of 19.28 ± 4.39, 9.91 ± 2.23, 27.32 ± 5.89, 56.43 ± 6.92, 0.16 ± 0.05, 0.58 ± 0.15, 0.81 ± 0.04, 0.48 ± 0.11, and 10.01 ± 1.39 µM respectively. After compounds 16, 22, and 24 been treated with the pancreatic cancer cells in medium and high doses, the protein expressions of AKT, p-AKT, Erk, and p-Erk were not remarkably reduced and the expressions of Bax protein were significantly increased. CONCLUSION: This study indicated that terpenoids from T. hypoglaucum could inhibit human pancreatic cancer cells SW1990. Especially, compounds 16, 22, and 24 possessed significant cytotoxicity against SW1990 cells with low IC50 values and could increase the expressions of Bax protein. These compounds shared a wide variety of structural characteristics which provided us more candidate molecules for the development of anti-pancreatic cancer drugs and further prompted us to investigate their anti-pancreatic mechanisms.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Pancreatic Neoplasms/drug therapy , Terpenes/pharmacology , Tripterygium/chemistry , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitory Concentration 50 , Terpenes/administration & dosage , Terpenes/isolation & purification , bcl-2-Associated X Protein/genetics
18.
Drug Deliv ; 29(1): 229-237, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35001781

ABSTRACT

Cancer poses a serious threat to human health and is the most common cause of human death. Polymer-based nanomedicines are presently used to enhance the treatment effectiveness and decrease the systemic toxicity of chemotherapeutic agents. However, the disadvantage of currently polymeric carriers is without therapy procedure. Herein, for the first time, glutathione (GSH)-responsive polymer (PRES) with anti-cancer effect was synthesized following the condensation-polymerization method using resveratrol (RES) and 3,3'-dithiodipropionic acid. PRES can not only suppress the tumor cells growth but can also self-assemble into nanoparticles (∼93 nm) for delivering antitumor drugs, such as paclitaxel (PTX@PRES NPs). The system could achieve high drug loading (∼7%) and overcome multidrug resistance (MDR). The results from the in vitro studies revealed that the NPs formed of PRES were stable in the systemic circulation, while could be efficiently degraded in tumor cells high GSH environment. Results from cytotoxicity tests confirmed that PTX@PRES NPs could effectively suppress the growth of cancer cells (A549) and drug-resistant cells (A549/PTX). The NPs could also be used to significantly increase the therapeutic efficacy of the drugs in A549/PTX tumor-bearing mice. In vivo investigations also demonstrated that the PRES-based NPs exhibited tumor inhibition effects. In summary, we report that the GSH-responsive polymer synthesized by us exhibited multiple interesting functions and could be used for effective drug delivery. The polymer exhibited good therapeutic effects and could be used to overcome MDR. Thus, the synthesized system can be used to develop a new strategy for treating cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Drug Resistance, Neoplasm/drug effects , Glutathione/chemistry , Nanoparticle Drug Delivery System/chemistry , Paclitaxel/pharmacology , Resveratrol/pharmacology , A549 Cells , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacokinetics , Cell Survival , Chemistry, Pharmaceutical , Drug Carriers/chemistry , Drug Liberation , Drug Stability , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Paclitaxel/administration & dosage , Paclitaxel/pharmacokinetics , Particle Size , Rats , Rats, Sprague-Dawley , Resveratrol/administration & dosage , Resveratrol/pharmacokinetics , Surface Properties , Xenograft Model Antitumor Assays
19.
Bol. latinoam. Caribe plantas med. aromát ; 21(1): 108-122, ene. 2022. ilus, tab
Article in English | LILACS | ID: biblio-1372494

ABSTRACT

Cota tinctoria is a medicinal plant which has been used for management of cancer in folk medicine of various regions. The aim of present study is to investigate cytotoxic activity of different concentrations of hydroalcoholic extract of C. tinctoria flowers on gastric (AGS) and liver (Hep-G2) cancer cell lines as well as Human Natural GUM fibroblast (HUGU) cells. Cell mortality rates were examined after 24, 48 and 72 h incubations using the MTT assay. IC50of extract on AGS cells after 24, 48 and 72h was 1.46, 1.29 and 1.14 µg/mL respectively. The extract demonstrated IC50 of 5.15, 3.92 and 2.89 µg/mL on Hep-G2 cells after 24, 48 and 72 h respectively. No cytotoxic effect was detected on HUGU (Human Natural GUM fibroblast) cells. C. tinctoria seems to have a promising potential to be considered as a source for anticancer drug discovery. However, more experimental and clinical studies are required.


Cota tinctoria es una planta medicinal que se ha utilizado para el tratamiento del cáncer en la medicina popular de varias regiones. El objetivo del presente estudio es investigar la actividad citotóxica de diferentes concentraciones de extracto hidroalcohólico de flores de C. tinctoria en líneas celulares de cáncer gástrico (AGS) e hígado (Hep-G2), así como en células de fibroblasto GUM humano natural (HUGU). Se examinaron las tasas de mortalidad celular después de incubaciones de 24, 48 y 72 h utilizando el ensayo MTT. La CI50 del extracto en células AGS después de 24, 48 y 72 h fue de 1,46; 1,29 y 1,14 µg respectivamente. El extracto demostró una CI50 de 5,15, 3,92 y 2,89 µg/mL en células Hep-G2 después de 24, 48 y 72 h, respectivamente. No se detectó ningún efecto citotóxico en las células HUGU (fibroblasto GUM humano natural). C. tinctoria parece tener un potencial prometedor para ser considerada como una fuente de descubrimiento de fármacos contra el cáncer. Sin embargo, se requieren más estudios experimentales y clínicos.


Subject(s)
Plant Extracts/administration & dosage , Asteraceae/chemistry , Cell Line, Tumor/drug effects , Liver Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/administration & dosage , Stomach Neoplasms/drug therapy , Flavonoids/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Culture Techniques , Anthemis/chemistry , Phenolic Compounds/analysis , Hep G2 Cells/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
20.
Basic Clin Pharmacol Toxicol ; 130(1): 56-69, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34634178

ABSTRACT

Oleandrigenin-3-O-ß-D-diginoside (a derivative of odoroside A), isolated and purified by our group, has seldom been explored for its pharmacological activity. This study aimed at clarifying the mechanisms towards the leukaemia-suppressive role of odoroside A (compound #1) and its derivative, oleandrigenin-3-O-ß-D-diginoside (compound #2) isolated from Nerium oleander. Viability and nuclear morphology change were assessed by CCK-8 assay and fluorescence microscope, respectively. Then, the cell apoptosis and autophagy induced by the compounds were detected by flow cytometry and Western blot. Xenograft model of nude mice was also applied to measure the leukaemia-suppressive effects of compound #2 in vivo. The result displayed that compound #1 and compound #2 inhibited the proliferation of HL60 and K562 cells and stronger effects were found in HL60 than K562 cells. Both of the compounds induced a dose-dependent apoptosis and autophagy in HL60 cells, where compound #2 was more potent than compound #1. Compound #2 also demonstrated a time-dependent apoptosis and autophagy in HL60 cells. Furthermore, ROS generation and JNK phosphorylation occurred in a dose-dependent manner in the cells treated with compound #2. Mitochondria also played critical role, proved by the decrease of Bcl-2, the release of cyto c to cytosol and the activation of caspase-3 and caspase-9. Moreover, the antitumour effects of compound #2 were validated in the nude mouse xenograft model in vivo. Odoroside A and its derivative inhibited the growth of leukaemia by inducing apoptosis and autophagy through the activation of ROS/JNK pathway. These results suggest that the compounds can serve as potential antitumour agents against leukaemia, especially acute myeloid leukaemia (AML).


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cardenolides/pharmacology , Leukemia/drug therapy , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Autophagy/drug effects , Cardenolides/administration & dosage , Cardenolides/isolation & purification , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , HL-60 Cells , Humans , K562 Cells , Leukemia/pathology , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Nerium/chemistry , Reactive Oxygen Species/metabolism , Time Factors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...