Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.928
Filter
1.
Int J Pharm Compd ; 28(3): 205-213, 2024.
Article in English | MEDLINE | ID: mdl-38768502

ABSTRACT

From ancient times to the present, parasites and the diseases they transmit have jeopardized the health and wellbeing of working and companion canines worldwide. Many common pests that afflict dogs can be classified as ectoparasites (e.g., fleas, ticks, lice), which serve as vectors of pathogens transmitted as the organism feeds or defecates; or endoparasites (e. g, helminths, protozoa), which can cause slowly progressive subclinical canine diseases as well as acute illnesses associated with high morbidity and mortality rates. Safe, effective antiparasitic prophylaxis in dogs remains a topic of major interest to both veterinarians and their clients, especially with respect to the prevention of canine heartworm infection and flea or tick infestation. Many compounders, especially those whose pharmacy includes a retail component, counsel veterinarians and pet owners about preparations and commercially available medications that prevent or treat parasitic infestations and provide assistance in obtaining those therapies. To support such efforts, this article provides information about single agents and combination-drug products prophylactic against common canine parasites, emerging resistance to those medications, and the toxic effects that such treatments can engender in some canine breeds.


Subject(s)
Dirofilariasis , Dog Diseases , Drug Combinations , Flea Infestations , Tick Infestations , Animals , Dogs , Dog Diseases/prevention & control , Dog Diseases/parasitology , Tick Infestations/veterinary , Tick Infestations/prevention & control , Tick Infestations/drug therapy , Tick Infestations/parasitology , Dirofilariasis/prevention & control , Flea Infestations/veterinary , Flea Infestations/prevention & control , Flea Infestations/drug therapy , Flea Infestations/parasitology , Antiparasitic Agents/therapeutic use
2.
BMC Vet Res ; 20(1): 126, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561770

ABSTRACT

BACKGROUND: Ethno-veterinary practices could be used as a sustainable developmental tool by integrating traditional phytotherapy and husbandry. Phytotherapeutics are available and used worldwide. However, evidence of their antiparasitic efficacy is currently very limited. Parasitic diseases have a considerable effect on pig production, causing economic losses due to high morbidity and mortality. In this respect, especially smallholders and organic producers face severe challenges. Parasites, as disease causing agents, often outcompete other pathogens in such extensive production systems. A total of 720 faecal samples were collected in two farms from three age categories, i.e. weaners, fatteners, and sows. Flotation (Willis and McMaster method), modified Ziehl-Neelsen stained faecal smear, centrifugal sedimentation, modified Blagg technique, and faecal cultures were used to identify parasites and quantify the parasitic load. RESULTS: The examination confirmed the presence of infections with Eimeria spp., Cryptosporidium spp., Balantioides coli (syn. Balantidium coli), Ascaris suum, Oesophagostomum spp., Strongyloides ransomi, and Trichuris suis, distributed based on age category. A dose of 180 mg/kg bw/day of Allium sativum L. and 90 mg/kg bw/day of Artemisia absinthium L. powders, administered for 10 consecutive days, revealed a strong, taxonomy-based antiprotozoal and anthelmintic activity. CONCLUSIONS: The results highlighted the therapeutic potential of both A. sativum and A. absinthium against gastrointestinal parasites in pigs. Their therapeutic effectiveness may be attributed to the content in polyphenols, tocopherols, flavonoids, sterols, sesquiterpene lactones, and sulfoxide. Further research is required to establish the minimal effective dose of both plants against digestive parasites in pigs.


Subject(s)
Anti-Infective Agents , Artemisia absinthium , Cryptosporidiosis , Cryptosporidium , Garlic , Intestinal Diseases, Parasitic , Parasites , Swine Diseases , Animals , Swine , Female , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Farms , Intestinal Diseases, Parasitic/drug therapy , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/parasitology , Swine Diseases/drug therapy , Swine Diseases/parasitology , Feces/parasitology , Prevalence
3.
Vet Parasitol ; 328: 110182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603925

ABSTRACT

Anthelmintic performance against equine cyathostomins can be evaluated by two different non-terminal measures; the Fecal Egg Count Reduction Test (FECRT) and the Egg Reappearance Period (ERP). Most available FECRT and ERP data have been determined in populations of young horses, and very little information is available from mature and senior horses. Furthermore, it is unknown how commonly occurring equine endocrine disorders such as Insulin dysregulation (ID) and Pituitary pars intermedia dysfunction (PPID) may interfere with these measurements, but it has been suggested that horses with these conditions could be more susceptible to parasitic infections. A research population of senior horses and horses with or without PPID, ID, or both were enrolled in this study. All strongylid egg count positive horses were included in an ivermectin (200 µg/kg) efficacy study. These were distributed among the following groups: ID: six, PPID: three, PPID and ID: seven, and healthy controls: three. Strongylid fecal egg counts were determined on the day of ivermectin administration, at two weeks post deworming, and on weekly intervals until eight weeks post treatment. Determination of FECRT and ERP were carried out following World Association for the Advancement of Veterinary Parasitology guidelines. Results revealed high ivermectin efficacy with mean egg count reduction at 99.7% or above in all groups at two weeks post treatment. Egg reappearance was documented at six and seven weeks in the ID and PPID/ID groups, respectively, whereas the PPID and healthy control groups both had ERP at 8 weeks. Statistical analysis found no significant differences in egg count levels between groups during the study. The expected ERP for ivermectin is 8-10 weeks, meaning that two of the groups displayed shortened ERPs. However, due to the small group sizes, these data should be interpreted with caution. Nonetheless, results do indicate a need for further investigation of the possible influence of endocrine disorders on anthelmintic performance in horses.


Subject(s)
Feces , Horse Diseases , Ivermectin , Parasite Egg Count , Animals , Horses , Ivermectin/therapeutic use , Ivermectin/pharmacology , Horse Diseases/drug therapy , Horse Diseases/parasitology , Parasite Egg Count/veterinary , Feces/parasitology , Female , Endocrine System Diseases/veterinary , Endocrine System Diseases/drug therapy , Male , Anthelmintics/therapeutic use , Anthelmintics/pharmacology , Antiparasitic Agents/therapeutic use , Antiparasitic Agents/pharmacology
4.
Am J Trop Med Hyg ; 110(5): 951-952, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38579698

ABSTRACT

Infection with Strongyloides stercoralis is often asymptomatic but can be life-threatening in immunocompromised patients, which can be prevented by ivermectin (IVM) treatment. The efficacy of IVM has been reported to have lessened over time in some regions as a consequence of prolonged use and mass treatment campaigns. Ivermectin has been used in Thailand for more than a decade; therefore, we investigated the efficacy of a single dose (200 µg/kg) of IVM against in asymptomatic strongyloidiasis in northeastern Thailand. Fecal samples were collected before and 2 weeks after treatment and were analyzed for the presence of Strongyloides using a modified agar plate culture and the formalin-ethyl acetate concentration technique. Our results showed that single-dose IVM treatment successfully eliminated S. stercoralis infection in asymptomatic individuals in the endemic area with a 100% cure rate, indicating the high efficacy of IVM treatment in strongyloidiasis in northeast Thailand.


Subject(s)
Feces , Ivermectin , Strongyloides stercoralis , Strongyloidiasis , Ivermectin/therapeutic use , Strongyloidiasis/drug therapy , Humans , Animals , Strongyloides stercoralis/drug effects , Thailand , Feces/parasitology , Male , Female , Adult , Middle Aged , Antiparasitic Agents/therapeutic use , Young Adult , Adolescent , Treatment Outcome
5.
Eur J Pediatr ; 183(6): 2527-2536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38536458

ABSTRACT

Scabies is a human ectoparasitosis caused by Sarcoptes scabei var. hominis. World-wide around 300 million patients are affected. Infants and children have the highest incidence rates. Poverty and overcrowding are social factors contributing to a higher risk of transmission and treatment failure. The leading symptom of the infestation is itch. Complications are bacterial infections that are responsible for mortality. Diagnosis is clinical. Non-invasive imaging technologies like dermoscopy can be used. Polymerase chain reaction (PCR) is less sensitive and specific than microscopy of skin scrapings. Treatment of choice is topical permethrin 5%. Ivermectin is the only oral drug FDA-approved for scabies. It should be used in cases non-responsive to topical therapy and in case of high number of infested patients in addition to topical therapy. Pseudo-resistance to treatment is not uncommon. New drugs are on the horizon. What is Known: • Pruritus is the leading symptom causing sleep disturbances and scratching with the risk of secondary bacterial infections. • Treatment failure is related to inappropriate application of topical drugs and asymptomatic family members. What is New: • COVID-19 pandemic and migration are contributing to an increased incidence of scabies. • New compounds to treat scabies are on the horizon.


Subject(s)
COVID-19 , Scabies , Humans , Scabies/diagnosis , Scabies/drug therapy , Child , Infant , COVID-19/complications , COVID-19/epidemiology , COVID-19/diagnosis , Permethrin/therapeutic use , Ivermectin/therapeutic use , Insecticides/therapeutic use , Antiparasitic Agents/therapeutic use , Child, Preschool
6.
Cont Lens Anterior Eye ; 47(3): 102148, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38514290

ABSTRACT

PURPOSE: Demodex blepharitis, often overlooked in ocular surface disease, involves Demodex mites, prevalent ectoparasites on human skin. Current treatments may not effectively eliminate these mites, prompting a need for targeted therapies. Lotilaner, an antiparasitic agent, shows promise. This systematic review and meta-analysis assesses 0.25% lotilaner ophthalmic solution's efficacy in reducing Demodex mite populations and its impact on ocular surface inflammation in Demodex blepharitis patients. METHODS: A comprehensive literature search was performed in the PubMed and Cochrane Library databases from inception until February 2024 to identify relevant trials investigating the use of lotilaner in patients with Demodex blepharitis. The included studies were assessed for quality, and a meta-analysis was conducted to determine the overall treatment effects of lotilaner. Odds ratios (OR) and 95% confidence intervals (CIs) were calculated for binary variables. All statistical analyses were performed using the R Statistical Software. RESULTS: Five studies met the inclusion criteria and were included in this systematic review and meta-analysis. Lotilaner demonstrated significant efficacy in Collarette Cure [OR = 6.64; 95 % CI 3.78 to 11.04; p < 0.00001, I2 = 62 %] %], clinically meaningful collarette reduction [OR = 6.21; 95 % CI 3.67 to 10.49; p < 0.00001, I2 = 90 %], and achieving at least 1-grade collarette improvement [OR = 5.12; 95 % CI (2.96 to 8.88); p < 0.00001, I2 = 90 %] compared to the placebo group. The treatment also resulted in mite eradication [OR = 6.18; 95 % CI 4.67 to 6.18; p < 0.00001, I2 = 34 %], reduction in mite density [OR = 9.37; 95 % CI 5.36 to 16.36; p < 0.00001, I2 = 84 %], and erythema cure [OR = 2.29; 95 % CI 2.24 to 3.39; p < 0.00001, I2 = 5 %] and composite cure [OR = 7.05; 95 % CI 3.66 13. 61; p < 0.00001, I2 = 11 %]. The study suggests that lotilaner is a promising therapeutic option for collarette and associated symptoms, but the high heterogeneity in some outcomes and limited long-term data warrant further research to confirm its effectiveness and safety. CONCLUSION: This systematic review and meta-analysis provides robust evidence supporting the efficacy of 0.25% lotilaner ophthalmic solution in treating Demodex blepharitis. Approval of this targeted therapy represents a significant milestone in ophthalmology and offers a promising treatment option for patients with Demodex blepharitis. Eye care professionals should consider the potential benefits of lotilaner in managing and alleviating the symptoms associated with Demodex infestations on the eyelids. Further research and long-term follow-up studies are warranted to assess the safety and effectiveness of lotilaner in treating Demodex blepharitis.


Subject(s)
Blepharitis , Eye Infections, Parasitic , Mite Infestations , Mites , Ophthalmic Solutions , Randomized Controlled Trials as Topic , Blepharitis/drug therapy , Blepharitis/parasitology , Mite Infestations/drug therapy , Mite Infestations/parasitology , Humans , Animals , Eye Infections, Parasitic/drug therapy , Eye Infections, Parasitic/parasitology , Eye Infections, Parasitic/diagnosis , Treatment Outcome , Antiparasitic Agents/therapeutic use
7.
Future Microbiol ; 19: 5-8, 2024 01.
Article in English | MEDLINE | ID: mdl-38348569

ABSTRACT

Tweetable abstract There is an urgent need to consider antiparasitic drugs in global efforts to achieve and implement equitable and sustainable antimicrobial stewardship initiatives worldwide.


Subject(s)
Anti-Infective Agents , Antimicrobial Stewardship , Antiparasitic Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/therapeutic use
8.
Acta Trop ; 252: 107141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342286

ABSTRACT

The impact of diet composition and energy content on schistosomiasis evolution and treatment efficacy is still controversial. This study compared the impact of sucrose-rich diet and intermittent fasting on Schistosoma mansoni infection and praziquantel (PZQ)-based chemotherapy response in mice. BALB/c mice were infected with S. mansoni and followed for 15 weeks. The animals were randomized into nine groups receiving high glycemic load (high-sucrose diet - HSD), low caloric load (standard chow alternate-day fasting - ADF), and standard chow ad libitum (AL). Eight weeks after S. mansoni infection, these groups remained untreated or were treated with PZQ (300 mg/kg/day) for 3 days. Our results indicated that parasite load (S. mansoni eggs and parasite DNA levels), granulomatous inflammation (granulomas number and size), and liver microstructural damage (reduction in hepatocytes number, increase in nucleus-cytoplasm ratio, connective stroma expansion and fibrosis) were increased in ADF-treated animals. These animals also showed decreased eggs retention, granulomatous inflammation and collagen accumulation in the small intestine. Conversely, HSD diet and PZQ treatment attenuated all these parameters and stimulated hepatic regenerative response. PZQ also stimulated fibrosis resolution in HSD-treated mice, effect that was limited ADF-exposed mice. Our findings indicate that dietary glycemic and energy load can modulate schistosomiasis progression and the severity of hepatic and intestinal granulomatous inflammation in untreated and PZQ-treated mice. Thus, lower intestinal eggs retention may potentially be linked to worsening liver disease in ADF, while attenuation of hepatic and intestinal granulomatous inflammation is consistent with reduced parasite load in HSD- and PZQ-treated animals.


Subject(s)
Anthelmintics , Liver Diseases , Schistosomiasis mansoni , Schistosomiasis , Animals , Mice , Schistosoma mansoni , Antiparasitic Agents/therapeutic use , Praziquantel/pharmacology , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology , Liver/parasitology , Schistosomiasis/drug therapy , Inflammation/drug therapy , Fibrosis , Diet , Sucrose/pharmacology , Sucrose/therapeutic use , Anthelmintics/therapeutic use
9.
Prev Vet Med ; 224: 106134, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325114

ABSTRACT

The effective control of ectoparasitic salmon lice, Lepeophtheirus salmonis, in fish farms is challenged by the salmon lice having developed resistance towards several antiparasitic drugs and by the effectiveness of non-medicinal treatments being limited by considerations of fish welfare. When new antiparasitics are introduced to the market, these should be used sparingly to slow resistance development. Using a population model for salmon lice parameterised for salmonid fish farms in Norway, we quantified how reduced treatment effectiveness influences treatment frequency and lice abundance. Furthermore, we investigated when in the production cycle a highly effective lice treatment leads to the largest reduction in the total number of treatments, mean lice abundance and lice larvae production. Results showed that reductions in treatment effectiveness to lower than 50% led to the steepest increases in treatment frequency and mean lice abundance, as well as to increased risk that lice abundance increased beyond control. The timing of the most effective treatment had only moderate effects on the total treatment need and the mean number of adult female lice through the production cycle, but large effect on the production of lice larvae in spring. These findings imply that farmers can optimise the timing of the most effective treatment to reduce the release of lice larvae in the period of year when wild salmonids are in coastal waters, without compromising total treatment need or mean lice levels.


Subject(s)
Copepoda , Fish Diseases , Salmo salar , Salmonidae , Animals , Female , Fisheries , Antiparasitic Agents/therapeutic use , Larva , Fish Diseases/drug therapy , Fish Diseases/prevention & control , Fish Diseases/epidemiology , Salmon/parasitology , Aquaculture/methods
10.
PLoS Negl Trop Dis ; 18(2): e0011961, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38408095

ABSTRACT

BACKGROUND: Trypanosoma cruzi and HIV coinfection can evolve with depression of cellular immunity and increased parasitemia. We applied quantitative PCR (qPCR) as a marker for preemptive antiparasitic treatment to avoid fatal Chagas disease reactivation and analyzed the outcome of treated cases. METHODOLOGY: This mixed cross-sectional and longitudinal study included 171 Chagas disease patients, 60 coinfected with HIV. Of these 60 patients, ten showed Chagas disease reactivation, confirmed by parasites identified in the blood, cerebrospinal fluid, or tissues, 12 exhibited high parasitemia without reactivation, and 38 had low parasitemia and no reactivation. RESULTS: We showed, for the first time, the success of the timely introduction of benznidazole in the non-reactivated group with high levels of parasitemia detected by qPCR and the absence of parasites in reactivated cases with at least 58 days of benznidazole. All HIV+ patients with or without reactivation had a 4.0-5.1 higher chance of having parasitemia than HIV seronegative cases. A positive correlation was found between parasites and viral loads. Remarkably, treated T. cruzi/HIV-coinfected patients had 77.3% conversion from positive to negative parasitemia compared to 19.1% of untreated patients. Additionally, untreated patients showed ~13.6 times higher Odds Ratio of having positive parasitemia in the follow-up period compared with treated patients. Treated and untreated patients showed no differences regarding the evolution of Chagas disease. The main factors associated with all-cause mortality were higher parasitemia, lower CD4 counts/µL, higher viral load, and absence of antiretroviral therapy. CONCLUSION: We recommend qPCR prospective monitoring of T. cruzi parasitemia in HIV+ coinfected patients and point out the value of pre-emptive therapy for those with high parasitemia. In parallel, early antiretroviral therapy introduction is advisable, aiming at viral load control, immune response restoration, and increasing survival. We also suggest an early antiparasitic treatment for all coinfected patients, followed by effectiveness analysis alongside antiretroviral therapy.


Subject(s)
Chagas Disease , Coinfection , HIV Infections , Nitroimidazoles , Trypanosoma cruzi , Humans , Trypanosoma cruzi/genetics , Parasitemia/drug therapy , Parasitemia/parasitology , Longitudinal Studies , Cross-Sectional Studies , Prospective Studies , Chagas Disease/complications , Chagas Disease/drug therapy , Chagas Disease/parasitology , Nitroimidazoles/therapeutic use , HIV Infections/complications , HIV Infections/drug therapy , Polymerase Chain Reaction , Antiparasitic Agents/therapeutic use , Coinfection/parasitology
11.
Article in English | MEDLINE | ID: mdl-38324876

ABSTRACT

Multiple myeloma (MM) associated with Chagas disease is rarely described. This disease and its therapy suppress T cell and macrophage functions and increase regulatory T cell function, allowing the increase of parasitemia and the risk of Chagas Disease Reactivation (CDR). We aimed to analyze the role of conventional (cPCR) and quantitative Polymerase Chain Reaction (qPCR) for prospective monitoring of T. cruzi parasitemia, searching for markers of preemptive antiparasitic therapy in MM patients with Chagas disease. Moreover, we investigated the incidence and management of hematological diseases and CDR both inside and outside the transplant setting in the MEDLINE database. We found 293 studies and included 31 of them. Around 1.9-2.0% of patients with Chagas disease were reported in patients undergoing Stem Cell Transplantation. One case of CDR was described in eight cases of MM and Chagas disease. We monitored nine MM and Chagas disease patients, seven under Autologous Stem Cell Transplantation (ASCT), during 44.56±32.10 months (mean±SD) using parasitological methods, cPCR, and qPCR. From these patients, three had parasitemia. In the first, up to 256 par Eq/mL were detected, starting from 28 months after ASCT. The second patient dropped out and died soon after the detection of 161.0 par Eq/mL. The third patient had a positive blood culture. Benznidazole induced fast negativity in two cases; followed by notably lower levels in one of them. Increased T. cruzi parasitemia was related to the severity of the underlying disease. We recommend parasitemia monitoring by qPCR for early introduction of preemptive antiparasitic therapy to avoid CDR.


Subject(s)
Chagas Disease , Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Nitroimidazoles , Trypanosoma cruzi , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/complications , Antiparasitic Agents/therapeutic use , Parasitemia/drug therapy , Parasitemia/epidemiology , Parasitemia/parasitology , Prospective Studies , Transplantation, Autologous , Chagas Disease/drug therapy , Chagas Disease/epidemiology , Nitroimidazoles/therapeutic use
12.
J Ethnopharmacol ; 326: 117858, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38346526

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: The plant Typhonium trilobatum has been utilized in traditional medicine for the treatment of many ailments, including parasitic infections. Recent examinations indicate that the bioactive substances from this plant may have antiparasitic activities against Brugia malayi, which have not been determined. PURPOSE: The parasitic nematodes Brugia malayi, Brugia timori, and Wuchereria bancrofti causing lymphatic filariasis, remain a significant challenge to global public health. Given the ongoing nature of this enduring menace, the current research endeavours to examine the efficacy of an important medicinal plant, Typhonium trilobatum. METHODS: Different extracts of the T. trilobatum tubers were evaluated for their antiparasitic activity. The most prominent extract was subjected to Gas Chromatography Mass Spectrometry (GC-MS) and High Performance Liquid Chromatography (HPLC) followed by Column Chromatography for isolating bioactive molecules. The major compounds were isolated and characterized based on different spectroscopic techniques (FTIR, NMR and HRMS). Further, the antiparasitic activity of the isolated compounds was evaluated against B. malayi and compared with clinically used antifilarial drugs like Diethylcarbamazine and Ivermectin. RESULTS: The methanolic extract of the tuber exhibited significant antiparasitic activity compared to the other extracts. The bioactive molecules isolated from the crude extract were identified as Linoleic acid and Palmitic acid. Antiparasitic activity of both the compounds has been performed against B. malayi and compared with clinically used antifilarial drugs, Ivermectin and DEC. The IC50 value of Linoleic acid was found to be 6.09 ± 0.78 µg/ml after 24 h and 4.27 ± 0.63 µg/ml after 48 h, whereas for Palmitic acid the value was 12.35 ± 1.09 µg/ml after 24 h and 8.79 ± 0.94 µg/ml after 48 h. The IC50 values of both the molecules were found to be similar to the standard drug Ivermectin (IC50 value of 11.88 ± 1.07 µg/ml in 24 h and 2.74 ± 0.43 µg/ml in 48 h), and much better compared to the DEC (IC50 values of 194.2 ± 2.28 µg/ml in 24 h and 101.8 ± 2.06 µg/ml in 48 h). Furthermore, it has been observed that both the crude extracts and the isolated compounds do not exhibit any detrimental effects on the J774.A.1 macrophage cell line. CONCLUSION: The isolation and characterization of bioactive compounds present in the methanolic tuber extract of Typhonium trilobatum were explored. Moreover, the antimicrofilarial activity of the crude extracts and its two major compounds were determined using Brugia malayi microfilarial parasites without any significant side effects.


Subject(s)
Brugia malayi , Filariasis , Plants, Medicinal , Animals , Humans , Filariasis/drug therapy , Filariasis/parasitology , Ivermectin/pharmacology , Ivermectin/therapeutic use , Palmitic Acid , Linoleic Acid/pharmacology , Plant Extracts/chemistry , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use
13.
Proc Natl Acad Sci U S A ; 121(9): e2312987121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377214

ABSTRACT

Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of Babesia spp. (B. bovis and B. divergens). We identified a potent antibabesial, MMV019266, from the Malaria Box, and selected for resistance in two species of Babesia. After sequencing of multiple independently derived lines in the two species, we identified mutations in a membrane-bound metallodependent phosphatase (phoD). In both species, the mutations were found in the phoD-like phosphatase domain. Using reverse genetics, we validated that mutations in bdphoD confer resistance to MMV019266 in B. divergens. We have also demonstrated that BdPhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of BdPhoD alter the sensitivity to MMV019266 in the parasite. Overexpression of BdPhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting BdPhoD is a pro-susceptibility factor. Together, we have generated a robust pipeline for identification of resistance loci and identified BdPhoD as a resistance mechanism in Babesia species.


Subject(s)
Anti-Infective Agents , Babesia , Babesiosis , Humans , Babesia/genetics , Alkaline Phosphatase , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Babesiosis/drug therapy , Babesiosis/parasitology , Genomics , Anti-Infective Agents/pharmacology
14.
Parasitol Res ; 123(2): 141, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393410

ABSTRACT

Subcutaneous dirofilariosis is a well-known disease caused mainly by Dirofilaria repens and described in several mammalian species including humans, dogs, and cats. Additionally, early developing stages of the heartworm Dirofilaria immitis are rarely reported in subcutaneous localization from humans and dogs. To our knowledge, confirmed clinical evidence of this condition has not been described in the cats yet, even if the feline hosts can be affected either by the classic adult-related heartworm form or heartworm-associated respiratory disease (HARD) caused by immature stages. A 2 year old, spayed male cat was presented for three subcutaneous nodules on the head and trunk. The cat lived in Northern Italy and was regularly vaccinated and treated monthly with an antiparasitic spot on formulation containing selamectin. One of the three nodules was surgically excised and examined. Histology showed the presence of a nodular lesion in the subcutis characterized by a severe inflammatory infiltrate composed of macrophages, small lymphocytes, with fewer eosinophils, and mast cells, supported by a proliferation of mature fibroblasts (fibrosis). Inflammatory cells were multifocally surrounding sections of parasites identified as adult nematodes. Microscopic features were compatible with D. immitis, which has been molecularly confirmed (98.2% identity to D. immitis isolate OP107739). The cat tested negative for D. immitis antigenemia and the two remaining nodules disappeared spontaneously in a few months. In region where heartworm is prevalent, aberrant localization of D. immitis should be considered in the differential diagnoses of subcutaneous filarial worms in cats and dogs.


Subject(s)
Cat Diseases , Dirofilaria immitis , Dirofilariasis , Animals , Cats , Male , Antiparasitic Agents/therapeutic use , Cat Diseases/drug therapy , Dirofilariasis/diagnosis , Dirofilariasis/drug therapy , Dirofilariasis/parasitology , Italy
15.
PLoS Negl Trop Dis ; 18(2): e0011956, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38359089

ABSTRACT

BACKGROUND: Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and leads to ~10,000 deaths each year. Nifurtimox and benznidazole are the only two drugs available but have significant adverse effects and limited efficacy. New chemotherapeutic agents are urgently required. Here we identified inhibitors of the acidic M17 leucyl-aminopeptidase from T. cruzi (LAPTc) that show promise as novel starting points for Chagas disease drug discovery. METHODOLOGY/PRINCIPAL FINDINGS: A RapidFire-MS screen with a protease-focused compound library identified novel LAPTc inhibitors. Twenty-eight hits were progressed to the dose-response studies, from which 12 molecules inhibited LAPTc with IC50 < 34 µM. Of these, compound 4 was the most potent hit and mode of inhibition studies indicate that compound 4 is a competitive LAPTc inhibitor, with Ki 0.27 µM. Compound 4 is selective with respect to human LAP3, showing a selectivity index of >500. Compound 4 exhibited sub-micromolar activity against intracellular T. cruzi amastigotes, and while the selectivity-window against the host cells was narrow, no toxicity was observed for un-infected HepG2 cells. In silico modelling of the LAPTc-compound 4 interaction is consistent with the competitive mode of inhibition. Molecular dynamics simulations reproduce the experimental binding strength (-8.95 kcal/mol), and indicate a binding mode based mainly on hydrophobic interactions with active site residues without metal cation coordination. CONCLUSIONS/SIGNIFICANCE: Our data indicates that these new LAPTc inhibitors should be considered for further development as antiparasitic agents for the treatment of Chagas disease.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Humans , Leucyl Aminopeptidase/chemistry , Leucyl Aminopeptidase/pharmacology , Leucyl Aminopeptidase/therapeutic use , Chagas Disease/drug therapy , Drug Discovery , Antiparasitic Agents/therapeutic use , Trypanocidal Agents/therapeutic use
16.
Vet J ; 303: 106066, 2024 02.
Article in English | MEDLINE | ID: mdl-38244671

ABSTRACT

Gastrointestinal nematode (GIN) infections impact small ruminant health, welfare, and production across farming systems. Rising anthelmintic resistance and regulation of synthetic drug use in organic farming is driving research and development of sustainable alternatives for GIN control. One alternative is the feeding of plants that contain secondary metabolites (PSMs) e.g., proanthocyanidins (PA, syn. condensed tannins) that have shown anthelmintic potential. However, PSMs can potentially impair performance, arising from reduced palatability and thus intake, digestibility or even toxicity effects. In this study, we tested the trade-off between the antiparasitic and anti-nutritional effects of heather consumption by lambs. The impact of additional feeding of a nematophagous fungus (Duddingtonia flagrans) on larval development was also explored. Lambs infected with Teladorsagia circumcincta or uninfected controls, were offered ad libitum heather, or a control chopped hay for 22 days during the infection patent period. Eight days into the patent period, parasitised lambs were supplemented (or remained unsupplemented) with D. flagrans for a 5-day period. Performance and infection metrics were recorded, and polyphenol levels in the heather and control hay were measured to investigate their association with activity. The lambs consumed heather at approximately 20% of their dry matter intake, which was sufficient to exhibit significant anthelmintic effects via a reduction in total egg output (P = 0.007), compared to hay-fed lambs; the magnitude of the reduction over time in heather fed lambs was almost 10-fold compared to control lambs. Negative effects on production were shown, as heather-fed lambs weighed 6% less than hay-fed lambs (P < 0.001), even though dry matter intake (DMI) of heather increased over time. D. flagrans supplementation lowered larval recovery in the faeces of infected lambs by 31.8% (P = 0.003), although no interactions between feeding heather and D. flagrans were observed (P = 0.337). There was no significant correlation between PA, or other polyphenol subgroups in the diet and egg output, which suggests that any association between heather feeding and anthelmintic effect is not simply and directly attributable to the measured polyphenols. The level of heather intake in this study showed no antagonistic effects on D. flagrans, demonstrating the methods can be used in combination, but provide no additive effect on overall anthelmintic efficacies. In conclusion, heather feeding can assist to reduce egg outputs in infected sheep, but at 20% of DMI negative effects on lamb performance can be expected which may outweigh any antiparasitic benefits.


Subject(s)
Anthelmintics , Calluna , Gastrointestinal Diseases , Nematoda , Nematode Infections , Sheep Diseases , Animals , Sheep , Nematode Infections/prevention & control , Nematode Infections/veterinary , Nematode Infections/parasitology , Feces/parasitology , Gastrointestinal Diseases/veterinary , Polyphenols/therapeutic use , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Antiparasitic Agents/therapeutic use , Sheep Diseases/drug therapy , Sheep Diseases/prevention & control , Sheep Diseases/parasitology , Parasite Egg Count/veterinary
17.
Arch Microbiol ; 206(2): 78, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277061

ABSTRACT

Varicellovirus bovinealpha 1 (formerly bovine alphaherpesvirus type 1, BoAHV-1) is associated with several syndromes in cattle, including respiratory disease and is one of the main agents involved in the bovine respiratory disease complex (BRDC). Its infectious cycle is characterized by latent infections with sporadic virus reactivation and transmission. Although the acute disease can be prevented by the use of vaccines, specific therapeutic measures are not available. Ivermectin (IVM) is a semi-synthetic avermectin with a broad-spectrum antiparasitic activity, which has previously shown to have potential as an antiviral drug. In this study, IVM antiviral activity against BoAHV-1 was characterized in two cell lines (MDBK [Madin Darby bovine kidney] and BT [bovine turbinate]), including the measurement of intracellular drug accumulation within virus-infected cells. IVM antiviral activity was assessed at three different drug concentrations (1.25, 2.5 and 5 µM) after incubation for 24, 48 and 72 h. Slight cytotoxicity was only observed with 5 µM IVM. Even the lowest IVM dose was able to induce a significant reduction in virus titers in both cell lines. These findings indicate that the antiviral effects of IVM were evident in our experimental model within the range of concentrations achievable through therapeutic in vivo administration. Consequently, additional in vivo trials are necessary to validate the potential utility of these results in effectively managing BoAHV-1 in infected cattle.


Subject(s)
Ivermectin , Varicellovirus , Animals , Cattle , Ivermectin/pharmacology , Ivermectin/therapeutic use , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Antiviral Agents/pharmacology
18.
Sci Total Environ ; 917: 170175, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38244617

ABSTRACT

Fipronil and imidacloprid have been widely detected in UK surface waters in recent years, often at concentrations that ecotoxicological studies have shown can harm aquatic life. Down-the-drain (DTD) passage of pet flea and tick treatments are being implicated as an important source, with many of the UK's 22 million cats and dogs receiving routine, year-round preventative doses containing these parasiticides. The UK Water Industry's 3rd Chemical Investigation Programme (UKWIR CIP3) has confirmed wastewater as a major entry pathway for these chemicals into surface waters, but the routes by which they enter the wastewater system remain unclear. We addressed this knowledge gap by conducting the first quantification of DTD emissions from 98 dogs treated with spot-on ectoparasiticides containing fipronil or imidacloprid, through bathing, bed washing and washing of owners' hands. Both chemicals were detected in 100 % of washoff samples, with bathing accounting for the largest emissions per event (up to 16.8 % of applied imidacloprid and 24.5 % of applied fipronil). Modelled to account for the frequency of emitting activities, owner handwashing was identified as the largest source of DTD emissions from the population overall, with handwash emissions occurring for at least 28 days following product application and an estimated 4.9 % of imidacloprid and 3.1 % of fipronil applied in dog spot-ons passing down-the-drain via this route. The normalised daily per capita emissions for all routes combined were 8.7 µg/person/day for imidacloprid and 2.1 µg/person/day for fipronil, equivalent to 20-40 % of the daily per capita load in wastewater, as estimated from UKWIR CIP3 data. Within the current international regulatory framework adhered to by the UK, the environmental exposure of veterinary medicines intended for use in small companion animals is assumed to be low, and DTD pathways are not considered. We recommend a systematic review of regulations and practices to address this overlooked pollution pathway.


Subject(s)
Insecticides , Neonicotinoids , Nitro Compounds , Pyrazoles , Humans , Animals , Dogs , Cats , Insecticides/analysis , Antiparasitic Agents/therapeutic use , Wastewater
19.
Microbiol Spectr ; 12(2): e0296823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38206030

ABSTRACT

Auranofin, an FDA-approved drug for rheumatoid arthritis, has emerged as a promising antiparasitic medication in recent years. The gold(I) ion in auranofin is postulated to be responsible for its antiparasitic activity. Notably, aurothiomalate and aurothioglucose also contain gold(I), and, like auranofin, they were previously used to treat rheumatoid arthritis. Whether they have antiparasitic activity remains to be elucidated. Herein, we demonstrated that auranofin and similar derivatives, but not aurothiomalate and aurothioglucose, inhibited the growth of Toxoplasma gondii in vitro. We found that auranofin affected the T. gondii biological cycle (lytic cycle) by inhibiting T. gondii's invasion and triggering its egress from the host cell. However, auranofin could not prevent parasite replication once T. gondii resided within the host. Auranofin treatment induced apoptosis in T. gondii parasites, as demonstrated by its reduced size and elevated phosphatidylserine externalization (PS). Notably, the gold from auranofin enters the cytoplasm of T. gondii, as demonstrated by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).IMPORTANCEToxoplasmosis, caused by Toxoplasma gondii, is a devastating disease affecting the brain and the eyes, frequently affecting immunocompromised individuals. Approximately 60 million people in the United States are already infected with T. gondii, representing a population at-risk of developing toxoplasmosis. Recent advances in treating cancer, autoimmune diseases, and organ transplants have contributed to this at-risk population's exponential growth. Paradoxically, treatments for toxoplasmosis have remained the same for more than 60 years, relying on medications well-known for their bone marrow toxicity and allergic reactions. Discovering new therapies is a priority, and repurposing FDA-approved drugs is an alternative approach to speed up drug discovery. Herein, we report the effect of auranofin, an FDA-approved drug, on the biological cycle of T. gondii and how both the phosphine ligand and the gold molecule determine the anti-parasitic activity of auranofin and other gold compounds. Our studies would contribute to the pipeline of candidate anti-T. gondii agents.


Subject(s)
Arthritis, Rheumatoid , Phosphines , Toxoplasma , Toxoplasmosis , Humans , Auranofin/pharmacology , Auranofin/therapeutic use , Gold/pharmacology , Gold/therapeutic use , Ligands , Aurothioglucose/pharmacology , Aurothioglucose/therapeutic use , Arthritis, Rheumatoid/drug therapy , Gold Sodium Thiomalate/pharmacology , Gold Sodium Thiomalate/therapeutic use , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use
20.
J Helminthol ; 98: e3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167243

ABSTRACT

Schistosomiasis afflicts approximately 120 million individuals globally. The hepatic pathology that occurs due to egg-induced granuloma and fibrosis is commonly attributed to this condition. However, there is currently no efficacious treatment available for either of these conditions.Our study aimed to investigate the potential antifibrotic and antiparasitic properties of different doses of gallic acid (GA) in experimental schistosomiasis mansoni. In addition, we investigated the outcomes of co-administering it with the standard anti-schistosomiasis treatment, praziquantel (PZQ).In experiment I, Schistosoma mansoni-infected mice were administered GA at doses of 10, 20, or 40 mg/kg. Their effectiveness was evaluated through parasitological (worm and egg loads, granuloma number and diameter), pathological (fibrosis percentage and H-score of hepatic stellate cells (HSCs)), and functional (liver enzymes) tests. In experiment II, we investigated the optimal dosage that yielded the best outcomes. This dosage was administered in conjunction with PZQ and was evaluated regarding the parasitological, pathological, functional, and immunological (fibrosis-regulating cytokines) activities.Our findings indicate that the administration of 40 mg/kg GA exhibited the highest level of effectiveness in experiment I. In experiment II, it exhibited lower antiparasitic efficacy in comparison to PZQ. However, it surpassed PZQ in other tests. It showed enhanced outcomes when combined with PZQ.In conclusion, our findings reveal that GA only slightly increased the antischistosomal activity of PZQ. However, it was linked to decreased fibrosis, particularly when administrated with PZQ. Our pilot study identifies GA as a natural antifibrotic agent, which could be administered with PZQ to mitigate the development of fibrosis.


Subject(s)
Anthelmintics , Schistosomiasis mansoni , Animals , Mice , Schistosomiasis mansoni/parasitology , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Pilot Projects , Liver/parasitology , Praziquantel , Schistosoma mansoni , Fibrosis , Granuloma/drug therapy , Granuloma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...