Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.996
Filter
1.
Fluids Barriers CNS ; 21(1): 39, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711118

ABSTRACT

BACKGROUND: Triptans are anti-migraine drugs with a potential central site of action. However, it is not known to what extent triptans cross the blood-brain barrier (BBB). The aim of this study was therefore to determine if triptans pass the brain capillary endothelium and investigate the possible underlying mechanisms with focus on the involvement of the putative proton-coupled organic cation (H+/OC) antiporter. Additionally, we evaluated whether triptans interacted with the efflux transporter, P-glycoprotein (P-gp). METHODS: We investigated the cellular uptake characteristics of the prototypical H+/OC antiporter substrates, pyrilamine and oxycodone, and seven different triptans in the human brain microvascular endothelial cell line, hCMEC/D3. Triptan interactions with P-gp were studied using the IPEC-J2 MDR1 cell line. Lastly, in vivo neuropharmacokinetic assessment of the unbound brain-to-plasma disposition of eletriptan was conducted in wild type and mdr1a/1b knockout mice. RESULTS: We demonstrated that most triptans were able to inhibit uptake of the H+/OC antiporter substrate, pyrilamine, with eletriptan emerging as the strongest inhibitor. Eletriptan, almotriptan, and sumatriptan exhibited a pH-dependent uptake into hCMEC/D3 cells. Eletriptan demonstrated saturable uptake kinetics with an apparent Km of 89 ± 38 µM and a Jmax of 2.2 ± 0.7 nmol·min-1·mg protein-1 (n = 3). Bidirectional transport experiments across IPEC-J2 MDR1 monolayers showed that eletriptan is transported by P-gp, thus indicating that eletriptan is both a substrate of the H+/OC antiporter and P-gp. This was further confirmed in vivo, where the unbound brain-to-unbound plasma concentration ratio (Kp,uu) was 0.04 in wild type mice while the ratio rose to 1.32 in mdr1a/1b knockout mice. CONCLUSIONS: We have demonstrated that the triptan family of compounds possesses affinity for the H+/OC antiporter proposing that the putative H+/OC antiporter plays a role in the BBB transport of triptans, particularly eletriptan. Our in vivo studies indicate that eletriptan is subjected to simultaneous brain uptake and efflux, possibly facilitated by the putative H+/OC antiporter and P-gp, respectively. Our findings offer novel insights into the potential central site of action involved in migraine treatment with triptans and highlight the significance of potential transporter related drug-drug interactions.


Subject(s)
Blood-Brain Barrier , Brain , Endothelial Cells , Mice, Knockout , Pyrrolidines , Tryptamines , Tryptamines/pharmacology , Tryptamines/metabolism , Tryptamines/pharmacokinetics , Animals , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain/metabolism , Cell Line , Mice , Mice, Inbred C57BL , Biological Transport/physiology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Male , Antiporters/metabolism , Pyrilamine/metabolism , Pyrilamine/pharmacology , ATP Binding Cassette Transporter, Subfamily B/metabolism
2.
Methods Enzymol ; 696: 109-154, 2024.
Article in English | MEDLINE | ID: mdl-38658077

ABSTRACT

The use of molecular dynamics (MD) simulations to study biomolecular systems has proven reliable in elucidating atomic-level details of structure and function. In this chapter, MD simulations were used to uncover new insights into two phylogenetically unrelated bacterial fluoride (F-) exporters: the CLCF F-/H+ antiporter and the Fluc F- channel. The CLCF antiporter, a member of the broader CLC family, has previously revealed unique stoichiometry, anion-coordinating residues, and the absence of an internal glutamate crucial for proton import in the CLCs. Through MD simulations enhanced with umbrella sampling, we provide insights into the energetics and mechanism of the CLCF transport process, including its selectivity for F- over HF. In contrast, the Fluc F- channel presents a novel architecture as a dual topology dimer, featuring two pores for F- export and a central non-transported sodium ion. Using computational electrophysiology, we simulate the electrochemical gradient necessary for F- export in Fluc and reveal details about the coordination and hydration of both F- and the central sodium ion. The procedures described here delineate the specifics of these advanced techniques and can also be adapted to investigate other membrane protein systems.


Subject(s)
Fluorides , Molecular Dynamics Simulation , Fluorides/chemistry , Fluorides/metabolism , Antiporters/chemistry , Antiporters/metabolism , Sodium/metabolism , Sodium/chemistry , Biological Transport , Cell Membrane/metabolism , Cell Membrane/chemistry , Protein Binding
3.
Biochem J ; 481(7): 499-514, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38572757

ABSTRACT

Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.


Subject(s)
Electron Transport Complex I , Protons , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Antiporters/metabolism , Electrons , Molecular Dynamics Simulation , Oxidation-Reduction , Benzoquinones
4.
Proc Natl Acad Sci U S A ; 121(16): e2318009121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588414

ABSTRACT

Secondary-active transporters catalyze the movement of myriad substances across all cellular membranes, typically against opposing concentration gradients, and without consuming any ATP. To do so, these proteins employ an intriguing structural mechanism evolved to be activated only upon recognition or release of the transported species. We examine this self-regulated mechanism using a homolog of the cardiac Na+/Ca2+ exchanger as a model system. Using advanced computer simulations, we map out the complete functional cycle of this transporter, including unknown conformations that we validate against existing experimental data. Calculated free-energy landscapes reveal why this transporter functions as an antiporter rather than a symporter, why it specifically exchanges Na+ and Ca2+, and why the stoichiometry of this exchange is exactly 3:1. We also rationalize why the protein does not exchange H+ for either Ca2+ or Na+, despite being able to bind H+ and its high similarity with H+/Ca2+ exchangers. Interestingly, the nature of this transporter is not explained by its primary structural states, known as inward- and outward-open conformations; instead, the defining factor is the feasibility of conformational intermediates between those states, wherein access pathways leading to the substrate binding sites become simultaneously occluded from both sides of the membrane. This analysis offers a physically coherent, broadly transferable route to understand the emergence of function from structure among secondary-active membrane transporters.


Subject(s)
Antiporters , Sodium-Calcium Exchanger , Sodium-Calcium Exchanger/metabolism , Antiporters/metabolism , Membrane Transport Proteins/metabolism , Biological Transport , Protein Conformation
5.
J Phys Chem B ; 128(11): 2697-2706, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38447081

ABSTRACT

CLCF fluoride/proton antiporters move fluoride ions out of bacterial cells, leading to fluoride resistance in these bacteria. However, many details about their operating mechanisms remain unclear. Here, we report a combined quantum-mechanical/molecular-mechanical (QM/MM) study of a CLCF homologue from Enterococci casseliflavus (Eca), in accord with the previously proposed windmill mechanism. Our multiscale modeling sheds light on two critical steps in the transport cycle: (i) the external gating residue E118 pushing a fluoride in the external binding site into the extracellular vestibule and (ii) an incoming fluoride reconquering the external binding site by forcing out E118. Both steps feature competitions for the external binding site between the negatively charged carboxylate of E118 and the fluoride. Remarkably, the displaced E118 by fluoride accepts a proton from the nearby R117, initiating the next transport cycle. We also demonstrate the importance of accurate quantum descriptions of fluoride solvation. Our results provide clues to the mysterious E318 residue near the central binding site, suggesting that the transport activities are unlikely to be disrupted by the glutamate interacting with a well-solvated fluoride at the central binding site. This differs significantly from the structurally similar CLC chloride/proton antiporters, where a fluoride trapped deep in the hydrophobic pore causes the transporter to be locked down. A free-energy barrier of 10-15 kcal/mol was estimated via umbrella sampling for a fluoride ion traveling through the pore to repopulate the external binding site.


Subject(s)
Antiporters , Protons , Antiporters/chemistry , Antiporters/metabolism , Fluorides/chemistry , Models, Molecular , Membrane Transport Proteins/metabolism , Chlorides/chemistry , Chloride Channels/chemistry , Chloride Channels/metabolism , Ion Transport
6.
Plant Sci ; 343: 112061, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461863

ABSTRACT

The plasmalemma Na+/H+ antiporter Salt Overly Sensitive 1 (SOS1) is responsible for the efflux of Na+ from the cytoplasm, an important determinant of salt resistance in plants. In this study, an ortholog of SOS1, referred to as NsSOS1, was cloned from Nitraria sibirica, a typical halophyte that grows in deserts and saline-alkaline land, and its expression and function in regulating the salt tolerance of forest trees were evaluated. The expression level of NsSOS1 was higher in leaves than in roots and stems of N. sibirica, and its expression was upregulated under salt stress. Histochemical staining showed that ß-glucuronidase (GUS) driven by the NsSOS1 promoter was strongly induced by abiotic stresses and phytohormones including salt, drought, low temperature, gibberellin, and methyl jasmonate, suggesting that NsSOS1 is involved in the regulation of multiple signaling pathways. Transgenic 84 K poplar (Populus alba × P. glandulosa) overexpressing NsSOS1 showed improvements in survival rate, root biomass, plant height, relative water levels, chlorophyll and proline levels, and antioxidant enzyme activities versus non-transgenic poplar (NT) under salt stress. Transgenic poplars accumulated less Na+ and more K+ in roots, stems, and leaves, which had a lower Na+/K+ ratio compared to NT under salt stress. These results indicate that NsSOS1-mediated Na+ efflux confers salt tolerance to transgenic poplars, which show more efficient photosynthesis, better scavenging of reactive oxygen species, and improved osmotic adjustment under salt stress. Transcriptome analysis of transgenic poplars confirmed that NsSOS1 not only mediates Na+ efflux but is also involved in the regulation of multiple metabolic pathways. The results provide insight into the regulatory mechanisms of NsSOS1 and suggest that it could be used to improve the salt tolerance of forest trees.


Subject(s)
Populus , Salt-Tolerant Plants , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Salt Tolerance/genetics , Plants, Genetically Modified/metabolism , Antiporters/metabolism , Populus/metabolism , Stress, Physiological , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Nat Commun ; 15(1): 2792, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555362

ABSTRACT

Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thylakoids/metabolism , Protons , Antiporters/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Photosynthesis/physiology , Chloroplasts/metabolism , Light
8.
Sci Rep ; 14(1): 5915, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467695

ABSTRACT

Cell pH and Na+ homeostasis requires Na+/H+ antiporters. The crystal structure of NhaA, the main Escherichia coli Na+/H+ antiporter, revealed a unique NhaA structural fold shared by prokaryotic and eukaryotic membrane proteins. Out of the 12 NhaA transmembrane segments (TMs), TMs III-V and X-XII are topologically inverted repeats with unwound TMs IV and XI forming the X shape characterizing the NhaA fold. We show that intramolecular cross-linking under oxidizing conditions of a NhaA mutant with two Cys replacements across the crossing (D133C-T340C) inhibits antiporter activity and impairs NhaA-dependent cell growth in high-salts. The affinity purified D133C-T340C protein binds Li+ (the Na+ surrogate substrate of NhaA) under reducing conditions. The cross-linking traps the antiporter in an outward-facing conformation, blocking the antiport cycle. As many secondary transporters are found to share the NhaA fold, including some involved in human diseases, our data have importance for both basic and clinical research.


Subject(s)
Escherichia coli Proteins , Humans , Escherichia coli Proteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Escherichia coli/metabolism , Antiporters/metabolism , Ion Transport , Ions/metabolism , Hydrogen-Ion Concentration
9.
Nature ; 627(8003): 382-388, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418878

ABSTRACT

Calcium (Ca2+) is an essential nutrient for plants and a cellular signal, but excessive levels can be toxic and inhibit growth1,2. To thrive in dynamic environments, plants must monitor and maintain cytosolic Ca2+ homeostasis by regulating numerous Ca2+ transporters3. Here we report two signalling pathways in Arabidopsis thaliana that converge on the activation of vacuolar Ca2+/H+ exchangers (CAXs) to scavenge excess cytosolic Ca2+ in plants. One mechanism, activated in response to an elevated external Ca2+ level, entails calcineurin B-like (CBL) Ca2+ sensors and CBL-interacting protein kinases (CIPKs), which activate CAXs by phosphorylating a serine (S) cluster in the auto-inhibitory domain. The second pathway, triggered by molecular patterns associated with microorganisms, engages the immune receptor complex FLS2-BAK1 and the associated cytoplasmic kinases BIK1 and PBL1, which phosphorylate the same S-cluster in CAXs to modulate Ca2+ signals in immunity. These Ca2+-dependent (CBL-CIPK) and Ca2+-independent (FLS2-BAK1-BIK1/PBL1) mechanisms combine to balance plant growth and immunity by regulating cytosolic Ca2+ homeostasis.


Subject(s)
Arabidopsis , Calcium , Homeostasis , Plant Immunity , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Cytosol/metabolism , Phosphorylation , Phosphoserine/metabolism , Protein Serine-Threonine Kinases/metabolism , Cation Transport Proteins/metabolism , Antiporters/metabolism
10.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G555-G566, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38349781

ABSTRACT

Cystic fibrosis (CF) is a genetic disease caused by the mutations of cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis transmembrane conductance regulator gene. Cftr is a critical ion channel expressed in the apical membrane of mouse salivary gland striated duct cells. Although Cftr is primarily a Cl- channel, its knockout leads to higher salivary Cl- and Na+ concentrations and lower pH. Mouse experiments show that the activation of Cftr upregulates epithelial Na+ channel (ENaC) protein expression level and Slc26a6 (a 1Cl-:2[Formula: see text] exchanger of the solute carrier family) activity. Experimentally, it is difficult to predict how much the coregulation effects of CFTR contribute to the abnormal Na+, Cl-, and [Formula: see text] concentrations and pH in CF saliva. To address this question, we construct a wild-type mouse salivary gland model and simulate CFTR knockout by altering the expression levels of CFTR, ENaC, and Slc26a6. By reproducing the in vivo and ex vivo final saliva measurements from wild-type and CFTR knockout animals, we obtain computational evidence that ENaC and Slc26a6 activities are downregulated in CFTR knockout in salivary glands.NEW & NOTEWORTHY This paper describes a salivary gland mathematical model simulating the ion exchange between saliva and the salivary gland duct epithelium. The novelty lies in the implementation of CFTR regulating ENaC and Slc26a6 in a CFTR knockout gland. By reproducing the experimental saliva measurements in wild-type and CFTR knockout glands, the model shows that CFTR regulates ENaC and Slc26a6 anion exchanger in salivary glands. The method could be used to understand the various cystic fibrosis phenotypes.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Mice , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cell Membrane/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Sodium/metabolism , Models, Theoretical , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Antiporters/genetics , Antiporters/metabolism
11.
Exp Eye Res ; 240: 109815, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316204

ABSTRACT

Corneal endothelial dysfunction is a major indication for corneal transplantation. However, a global shortage of donor corneal tissues and risks associated with corneal surgeries have prompted exploration of alternative options, including tissue-engineered grafts or cell injection therapy. Nonetheless, these approaches require a controlled culture of primary human corneal endothelial cells (HCEnCs). Although HCEnCs established from young donors are generally more proliferative and maintain a better phenotype, corneas from old donors are more frequently accessible from eye banks due to a lower corneal endothelial cell count than the necessary threshold required for transplantation. In this study, we investigated various culture media to evaluate which one is the most appropriate for stimulating the proliferation while maintaining cell morphology and function of HCEnCs derived from old donors (age >65 years). All experiments were performed on paired research-grade donor corneas, divided for the conditions under investigation in order to minimize the inter-donor variability. Cell morphology as well as expression of specific markers were assessed at both mRNA (CD166, SLC4A11, ATP1A1, COL8A1, α-SMA, CD44, COL1A1, CDKN2A, LAP2A and LAP2B) and protein (ZO-1, α-SMA, Ki67 and LAP2) levels. Results obtained showed how the Dual Media formulation maintained the hexagonal phenotype more efficiently than Single Medium, but cell size gradually increased with passages. In contrast, the Single Medium provided a higher proliferation rate and a prolonged in vitro expansion but acquired an elongated morphology. To summarize, Single medium and Dual media preserve morphology and functional phenotype of HCEnCs from old donor corneas at low passages while maintenance of the same cell features at high passages remains an active area of research. The new insights revealed within this work become particularly relevant considering that the elderly population a) is the main target of corneal endothelial therapy, b) represents the majority of corneal donors. Therefore, the proper expansion of HCEnCs from old donors is essential to develop novel personalised therapeutic strategies and reduce requirement of human corneal tissues globally.


Subject(s)
Endothelial Cells , Endothelium, Corneal , Humans , Aged , Cells, Cultured , Endothelium, Corneal/metabolism , Cornea , Tissue Donors , Culture Media , Antiporters/metabolism , Anion Transport Proteins/metabolism
12.
Phytomedicine ; 126: 155283, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422652

ABSTRACT

BACKGROUND: Portulacae Herba and Granati Pericarpium pair (PGP) is a traditional Chinese herbal medicine treatment for colitis, clinically demonstrating a relatively favorable effect on relieving diarrhea and abnormal stools. However, the underlying mechanism remain uncertain. PURPOSE: The present study intends to evaluate the efficacy of PGP in treating colitis in mice and investigate its underlying mechanism. METHODS: The protective effect of PGP against colitis was determined by monitoring body weight, colon length, colon weight, and survival rate in mice. Colonic inflammation was assessed by serum cytokine levels, colonic H&E staining, and local neutrophil infiltration. The reversal of intestinal epithelial barrier damage by PGP was subsequently analyzed with Western blot and histological staining. Furthermore, RNA-seq analysis and molecular docking were performed to identify potential pathways recruited by PGP. Following the hints of the transcriptomic results, the role of PGP through the IL-6/STAT3/SOCS3 pathway in DSS-induced colitis mice was verified by Western blot. RESULTS: DSS-induced colitis in mice was significantly curbed by PGP treatment. PGP treatment significantly mitigated DSS-induced colitis in mice, as evidenced by improvements in body weight, DAI severity, survival rate, and inflammatory cytokines levels in serum and colon. Moreover, PGP treatment up-regulated the level of Slc26a3, thereby increasing the expressions of the tight junction/adherens junction proteins ZO-1, occludin and E-cadherin in the colon. RNA-seq analysis revealed that PGP inhibits the IL-6/STAT3/SOCS3 pathway at the transcriptional level. Molecular docking indicated that the major components of PGP could bind tightly to the proteins of IL-6 and SOCS3. Meanwhile, the result of Western blot revealed that the IL-6/STAT3/SOCS3 pathway was inhibited at the protein level after PGP administration. CONCLUSION: PGP could alleviate colonic inflammation and reverse damage to the intestinal epithelial barrier in DSS-induced colitis mice. The underlying mechanism involves the inhibition of the IL-6/STAT3/SOCS3 pathway.


Subject(s)
Colitis, Ulcerative , Colitis , Plant Extracts , Pomegranate , Animals , Mice , Interleukin-6/metabolism , Molecular Docking Simulation , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/metabolism , Colon/pathology , Cytokines/metabolism , Body Weight , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal , Colitis, Ulcerative/drug therapy , Sulfate Transporters/metabolism , Sulfate Transporters/pharmacology , Sulfate Transporters/therapeutic use , Antiporters/adverse effects , Antiporters/metabolism
13.
BMC Genomics ; 25(1): 144, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317113

ABSTRACT

BACKGROUND: The cation/proton antiporter (CPA) superfamily plays a crucial role in regulating ion homeostasis and pH in plant cells, contributing to stress resistance. However, in potato (Solanum tuberosum L.), systematic identification and analysis of CPA genes are lacking. RESULTS: A total of 33 StCPA members were identified and classified into StNHX (n = 7), StKEA (n = 6), and StCHX (n = 20) subfamilies. StCHX owned the highest number of conserved motifs, followed by StKEA and StNHX. The StNHX and StKEA subfamilies owned more exons than StCHX. NaCl stress induced the differentially expression of 19 genes in roots or leaves, among which StCHX14 and StCHX16 were specifically induced in leaves, while StCHX2 and StCHX19 were specifically expressed in the roots. A total of 11 strongly responded genes were further verified by qPCR. Six CPA family members, StNHX1, StNHX2, StNHX3, StNHX5, StNHX6 and StCHX19, were proved to transport Na+ through yeast complementation experiments. CONCLUSIONS: This study provides comprehensive insights into StCPAs and their response to NaCl stress, facilitating further functional characterization.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Protons , Sodium Chloride/pharmacology , Antiporters/genetics , Antiporters/metabolism , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant , Cations/metabolism , Stress, Physiological/genetics
14.
Sci Adv ; 10(7): eadk2317, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354239

ABSTRACT

Lysosomal calcium (Ca2+) release is critical to cell signaling and is mediated by well-known lysosomal Ca2+ channels. Yet, how lysosomes refill their Ca2+ remains hitherto undescribed. Here, from an RNA interference screen in Caenorhabditis elegans, we identify an evolutionarily conserved gene, lci-1, that facilitates lysosomal Ca2+ entry in C. elegans and mammalian cells. We found that its human homolog TMEM165, previously designated as a Ca2+/H+ exchanger, imports Ca2+ pH dependently into lysosomes. Using two-ion mapping and electrophysiology, we show that TMEM165, hereafter referred to as human LCI, acts as a proton-activated, lysosomal Ca2+ importer. Defects in lysosomal Ca2+ channels cause several neurodegenerative diseases, and knowledge of lysosomal Ca2+ importers may provide previously unidentified avenues to explore the physiology of Ca2+ channels.


Subject(s)
Calcium , Cation Transport Proteins , Animals , Humans , Calcium/metabolism , Caenorhabditis elegans/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Signal Transduction , Lysosomes/metabolism , Calcium Signaling , Mammals/metabolism , Antiporters/metabolism , Cation Transport Proteins/metabolism
15.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396725

ABSTRACT

The transcription of glycine-rich RNA-binding protein 2 (PeGRP2) transiently increased in the roots and shoots of Populus euphratica (a salt-resistant poplar) upon initial salt exposure and tended to decrease after long-term NaCl stress (100 mM, 12 days). PeGRP2 overexpression in the hybrid Populus tremula × P. alba '717-1B4' (P. × canescens) increased its salt sensitivity, which was reflected in the plant's growth and photosynthesis. PeGRP2 contains a conserved RNA recognition motif domain at the N-terminus, and RNA affinity purification (RAP) sequencing was developed to enrich the target mRNAs that physically interacted with PeGRP2 in P. × canescens. RAP sequencing combined with RT-qPCR revealed that NaCl decreased the transcripts of PeGRP2-interacting mRNAs encoding photosynthetic proteins, antioxidative enzymes, ATPases, and Na+/H+ antiporters in this transgenic poplar. Specifically, PeGRP2 negatively affected the stability of the target mRNAs encoding the photosynthetic proteins PETC and RBCMT; antioxidant enzymes SOD[Mn], CDSP32, and CYB1-2; ATPases AHA11, ACA8, and ACA9; and the Na+/H+ antiporter NHA1. This resulted in (i) a greater reduction in Fv/Fm, YII, ETR, and Pn; (ii) less pronounced activation of antioxidative enzymes; and (iii) a reduced ability to maintain Na+ homeostasis in the transgenic poplars during long-term salt stress, leading to their lowered ability to tolerate salinity stress.


Subject(s)
Populus , Salt Tolerance , Salt Tolerance/genetics , Populus/metabolism , Reactive Oxygen Species/metabolism , Sodium Chloride/metabolism , Ions/metabolism , Sodium/metabolism , Homeostasis , Adenosine Triphosphatases/metabolism , Antiporters/metabolism , Photosynthesis/genetics , Gene Expression Regulation, Plant
16.
Sci Rep ; 14(1): 246, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168913

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death worldwide. Cigarette smoke which has approximately 2-3 µg of Cadmium (Cd) per cigarette contributes to the environmental exposure and development and severity of COPD. With the lack of a cadmium elimination mechanism in humans, the contribution of cadmium induced stress to lung epithelial cells remains unclear. Studies on cadmium responsive miRNAs suggest regulation of target genes with an emphasis on the critical role of miRNA-mRNA interaction for cellular homeostasis. Mir-381, the target miRNA in this study is negatively regulated by cadmium in airway epithelial cells. miR-381 is reported to also regulate ANO1 (Anoctamin 1) expression negatively and in this study low dose cadmium exposure to airway epithelial cells was observed to upregulate ANO1 mRNA expression via mir-381 inhibition. ANO1 which is a Ca2+-activated chloride channel has multiple effects on cellular functions such as proliferation, mucus hypersecretion and fibroblast differentiation in inflamed airways in chronic respiratory diseases. In vitro studies with cadmium at a high concentration range of 100-500 µM is reported to activate chloride channel, ANO1. The secretory epithelial cells are regulated by chloride channels like CFTR, ANO1 and SLC26A9. We examined "ever" smokers with COPD (n = 13) lung tissue sections compared to "never" smoker without COPD (n = 9). We found that "ever" smokers with COPD had higher ANO1 expression. Using mir-381 mimic to inhibit ANO1, we demonstrate here that ANO1 expression is significantly (p < 0.001) downregulated in COPD derived airway epithelial cells exposed to cadmium. Exposure to environmental cadmium contributes significantly to ANO1 expression.


Subject(s)
MicroRNAs , Pulmonary Disease, Chronic Obstructive , Humans , Cadmium/metabolism , Anoctamin-1/genetics , Anoctamin-1/metabolism , Epithelial Cells/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , MicroRNAs/metabolism , RNA, Messenger/genetics , Neoplasm Proteins/metabolism , Sulfate Transporters/metabolism , Antiporters/metabolism
17.
Mol Genet Metab ; 141(3): 108144, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277989

ABSTRACT

Glycogen storage disease type Ib (GSD Ib, biallelic variants in SLC37A4) is a rare disorder of glycogen metabolism complicated by neutropenia/neutrophil dysfunction. Since 2019, the SGLT2-inhibitor empagliflozin has provided a mechanism-based treatment option for the symptoms caused by neutropenia/neutrophil dysfunction (e.g. mucosal lesions, inflammatory bowel disease). Because of the rarity of GSD Ib, the published evidence on safety and efficacy of empagliflozin is still limited and does not allow to develop evidence-based guidelines. Here, an international group of experts provides 14 best practice consensus treatment recommendations based on expert practice and review of the published evidence. We recommend to start empagliflozin in all GSD Ib individuals with clinical or laboratory signs related to neutropenia/neutrophil dysfunction with a dose of 0.3-0.4 mg/kg/d given as a single dose in the morning. Treatment can be started in an outpatient setting. The dose should be adapted to the weight and in case of inadequate clinical treatment response or side effects. We strongly recommend to pause empagliflozin immediately in case of threatening dehydration and before planned longer surgeries. Discontinuation of G-CSF therapy should be attempted in all individuals. If available, 1,5-AG should be monitored. Individuals who have previously not tolerated starches should be encouraged to make a new attempt to introduce starch in their diet after initiation of empagliflozin treatment. We advise to monitor certain safety and efficacy parameters and recommend continuous, alternatively frequent glucose measurements during the introduction of empagliflozin. We provide specific recommendations for special circumstances like pregnancy and liver transplantation.


Subject(s)
Benzhydryl Compounds , Glucosides , Glycogen Storage Disease Type I , Neutropenia , Humans , Neutrophils/metabolism , Consensus , Glycogen Storage Disease Type I/complications , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/genetics , Neutropenia/drug therapy , Neutropenia/etiology , Monosaccharide Transport Proteins , Antiporters/metabolism
18.
J Phys Chem Lett ; 15(3): 725-732, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38215403

ABSTRACT

Transporter proteins change their conformations to carry their substrate across the cell membrane. The conformational dynamics is vital to understanding the transport function. We have studied the oxalate transporter (OxlT), an oxalate:formate antiporter from Oxalobacter formigenes, significant in avoiding kidney stone formation. The atomic structure of OxlT has been recently solved in the outward-open and occluded states. However, the inward-open conformation is still missing, hindering a complete understanding of the transporter. Here, we performed a Gaussian accelerated molecular dynamics simulation to sample the extensive conformational space of OxlT and successfully predicted the inward-open conformation where cytoplasmic substrate formate binding was preferred over oxalate binding. We also identified critical interactions for the inward-open conformation. The results were complemented by an AlphaFold2 structure prediction. Although AlphaFold2 solely predicted OxlT in the outward-open conformation, mutation of the identified critical residues made it partly predict the inward-open conformation, identifying possible state-shifting mutations.


Subject(s)
Molecular Dynamics Simulation , Oxalates , Oxalates/chemistry , Oxalates/metabolism , Membrane Transport Proteins/chemistry , Antiporters/metabolism , Formates/metabolism , Protein Conformation
19.
J Biomol Struct Dyn ; 42(7): 3492-3506, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37218086

ABSTRACT

The Small Multidrug Resistance efflux pump protein KpnE, plays a pivotal role in multi-drug resistance in Klebsiella pneumoniae. Despite well-documented study of its close homolog, EmrE, from Escherichia coli, the mechanism of drug binding to KpnE remains obscure due to the absence of a high-resolution experimental structure. Herein, we exclusively elucidate its structure-function mechanism and report some of the potent inhibitors through drug repurposing. We used molecular dynamics simulation to develop a dimeric structure of KpnE and explore its dynamics in lipid-mimetic bilayers. Our study identified both semi-open and open conformations of KpnE, highlighting its importance in transport process. Electrostatic surface potential map suggests a considerable degree of similarity between KpnE and EmrE at the binding cleft, mostly occupied by negatively charged residues. We identify key amino acids Glu14, Trp63 and Tyr44, indispensable for ligand recognition. Molecular docking and binding free energy calculations recognizes potential inhibitors like acarbose, rutin and labetalol. Further validations are needed to confirm the therapeutic role of these compounds. Altogether, our membrane dynamics study uncovers the crucial charged patches, lipid-binding sites and flexible loop that could potentiate substrate recognition, transport mechanism and pave the way for development of novel inhibitors against K. pneumoniae.Communicated by Ramaswamy H. Sarma.


Subject(s)
Escherichia coli Proteins , Molecular Dynamics Simulation , Klebsiella pneumoniae , Molecular Docking Simulation , Escherichia coli/metabolism , Lipid Bilayers/chemistry , Antiporters/metabolism , Escherichia coli Proteins/metabolism
20.
Transl Res ; 266: 57-67, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38013006

ABSTRACT

TMEM165-CDG has first been reported in 2012 and manganese supplementation was shown highly efficient in rescuing glycosylation in isogenic KO cells. The unreported homozygous missense c.928G>C; p.Ala310Pro variant leading to a functional but unstable protein was identified. This patient was diagnosed at 2 months and displays a predominant bone phenotype and combined defects in N-, O- and GAG glycosylation. We administered for the first time a combined D-Gal and Mn2+ therapy to the patient. This fully suppressed the N-; O- and GAG hypoglycosylation. There was also striking improvement in biochemical parameters and in gastrointestinal symptoms. This study offers exciting therapeutic perspectives for TMEM165-CDG.


Subject(s)
Cation Transport Proteins , Congenital Disorders of Glycosylation , Humans , Manganese/metabolism , Galactose , Antiporters/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Cation Transport Proteins/metabolism , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...